Generalized mixed equilibrium and fixed point problems in a Banach space

Sun Young Cho
Department of Mathematics, Gyeongsang National University, Jinju 660-701, Korea.
Communicated by Y. J. Cho

Abstract

In this paper, a quasi- ϕ-nonexpansive mapping and a generalized mixed equilibrium problem are investigated. A strong convergence theorem of common solutions is established in a non-uniformly convex Banach space. The results presented in the paper improve and extend some recent results. © 2016 All rights reserved. Keywords: Algorithm, equilibrium problem, quasi- ϕ-nonexpansive mapping, nonexpansive mapping, fixed point. 2010 MSC: 65J15, 90C30.

1. Introduction and Preliminaries

Let E be a real Banach space and let E^{*} be the dual space of E. Let S_{E} be the unit sphere of E. Recall that E is said to be uniformly convex if for any $\epsilon \in(0,2]$ there exists $\delta>0$ such that for any $x, y \in S_{E}$,

$$
\|x-y\| \geq \epsilon \quad \text { implies } \quad\|x+y\| \leq 2-2 \delta
$$

E is said to be a strictly convex space if and only if $\|x+y\|<2$ for all $x, y \in S_{E}$ and $x \neq y$. It is known that a uniformly convex Banach space is reflexive and strictly convex.

Recall that E is said to have a Gâteaux differentiable norm if and only if

$$
\lim _{t \rightarrow 0} \frac{\|x\|-\|x+t y\|}{t}
$$

[^0]exists for each $x, y \in S_{E}$. In this case, we also say that E is smooth. E is said to have a uniformly Gâteaux differentiable norm if for each $y \in S_{E}$, the limit is attained uniformly for all $x \in S_{E}$. E is also said to have a uniformly Fréchet differentiable norm if and only if the above limit is attained uniformly for $x, y \in S_{E}$. In this case, we say that E is uniformly smooth. It is known that a uniformly smooth Banach space is reflexive and smooth.

Recall that E is said to have the KKP if $\lim _{m \rightarrow \infty}\left\|x_{m}-x\right\|=0$, for any sequence $\left\{x_{m}\right\} \subset E$, and $x \in E$ with $\left\{x_{m}\right\}$ converges weakly to x, and $\left\{\left\|x_{m}\right\|\right\}$ converges strongly to $\|x\|$. It is known that every uniformly convex Banach space has the KKP; see [11] and the references therein.

Recall that normalized duality mapping J from E to $2^{E^{*}}$ is defined by

$$
J x=\left\{y \in E^{*}:\|x\|^{2}=\langle x, y\rangle=\|y\|^{2}\right\}
$$

It is known if E is uniformly smooth, then J is uniformly norm-to-norm continuous on every bounded subset of E; if E is a smooth Banach space, then J is single-valued and demi-continuous, i.e., continuous from the strong topology of E to the weak star topology of E; if E is a smooth, strictly convex and reflexive Banach space, then J is single-valued, one-to-one and onto.

Let C be nonempty convex and closed subset of E. Let $B: C \times C \rightarrow \mathbb{R}$ be a bifunction, $Y: C \rightarrow \mathbb{R}$ be a real valued function and $S: C \rightarrow E^{*}$ be a nonlinear mapping. Consider that the following generalized mixed equilibrium problem is to find $\bar{x} \in C$ such that

$$
\begin{equation*}
B(\bar{x}, x)+\langle S \bar{x}, x-\bar{x}\rangle+Y x-Y \bar{x} \geq 0, \forall x \in C \tag{1.1}
\end{equation*}
$$

The solution set of the generalized mixed equilibrium problem is denoted by $\operatorname{Sol}(B, S, Y)$.
The generalized mixed equilibrium problem, which finds a lot of applications in physics, economics, finance, transportation, network and structural analysis, elasticity and optimization, provides a natural, novel and unified framework to study fixed point problems, variational inequality, complementarity problems, and optimization problems; see [2], [12], 13], [19], [18], [20] and the references therein.

If $S=0$, then the generalized mixed equilibrium problem is reduced to the following mixed equilibrium problem: find $\bar{x} \in C$ such that

$$
\begin{equation*}
B(\bar{x}, x)+Y x-Y \bar{x} \geq 0, \forall x \in C . \tag{1.2}
\end{equation*}
$$

The solution set of the mixed equilibrium problem is denoted by $\operatorname{Sol}(B, Y)$.
If $B=0$, then the generalized mixed equilibrium problem is reduced to the following mixed variational inequality of Browder type: find $\bar{x} \in C$ such that

$$
\begin{equation*}
\langle S \bar{x}, x-\bar{x}\rangle+Y x-Y \bar{x} \geq 0, \forall x \in C . \tag{1.3}
\end{equation*}
$$

The solution set of the mixed equilibrium problem is denoted by $V I(C, B, Y)$.
If $Y=0$, then the generalized mixed equilibrium problem is reduced to the following generalized equilibrium problem: find $\bar{x} \in C$ such that

$$
\begin{equation*}
B(\bar{x}, x)+\langle S \bar{x}, x-\bar{x}\rangle \geq 0, \forall x \in C \tag{1.4}
\end{equation*}
$$

The solution set of the generalized equilibrium problem is denoted by $\operatorname{Sol}(B, S)$.
If $S=0$ and $Y=0$, then the generalized mixed equilibrium problem is reduced to the following equilibrium problem in the terminology of Blum and Oettli [4]: find $\bar{x} \in C$ such that

$$
\begin{equation*}
B(\bar{x}, x) \geq 0, \forall x \in C \tag{1.5}
\end{equation*}
$$

The solution set of the equilibrium problem is denoted by $\operatorname{Sol}(B)$.
The following restrictions on bifunction B are essential in this paper.
(R-1) $B(a, a) \equiv 0, \forall a \in C$;
(R-2) $B(b, a)+B(a, b) \leq 0, \forall a, b \in C$;
(R-3) $B(a, b) \geq \lim \sup _{t \downarrow 0} B(t c+(1-t) a, b), \forall a, b, c \in C$;
(R-4) $b \mapsto B(a, b)$ is convex and weakly lower semi-continuous, $\forall a \in C$.
Recently, the above nonlinear problems have been extensively studied based on iterative techniques; see [3], [6]-[10], [14]-[17], [19], [22]-[26] and the references therein. In this paper, we study generalized mixed equilibrium problem (1.1) based on a monotone projection technique without any compactness assumption. Let T be a mapping on C. T is said to be closed if for any sequence $\left\{x_{n}\right\} \subset C$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{\prime}$ and $\lim _{n \rightarrow \infty} T x_{n}=y^{\prime}$, then $T x^{\prime}=y^{\prime}$. From now on, we use \rightharpoonup and \rightarrow to stand for the weak convergence and strong convergence, respectively. Recall that a point p is said to be a fixed point of T if and only if $p=T p . \quad p$ is said to be an asymptotic fixed point of T if and only if C contains a sequence $\left\{x_{n}\right\}$, where $x_{n} \rightharpoonup p$ such that $x_{n}-T x_{n} \rightarrow 0$. From now on, We use $F i x(T)$ to stand for the fixed point set and $\widetilde{F i x}(T)$ to stand for the asymptotic fixed point set.

Next, we assume that E is a smooth Banach space which means mapping J is single-valued. Study the functional

$$
\phi(x, y):=\|x\|^{2}+\|y\|^{2}-2\langle x, J y\rangle, \quad \forall x, y \in E
$$

Let C be a closed convex subset of a real Hilbert space H. For any $x \in H$, there exists an unique nearest point in C, denoted by $P_{C} x$, such that

$$
\left\|x-P_{C} x\right\| \leq\|x-y\|, \quad \forall y \in C
$$

The operator P_{C} is called the metric projection from H onto C. It is known that P_{C} is firmly nonexpansive. In [1], Alber studied a new mapping Proj_{C} in a Banach space E which is an analogue of P_{C}, the metric projection, in Hilbert spaces. Recall that the generalized projection $\operatorname{Proj}_{C}: E \rightarrow C$ is a mapping that assigns to an arbitrary point $x \in E$ the minimum point of $\phi(x, y)$.

Recall that T is said to be relatively nonexpansive [5] if $\operatorname{Fix}(T)=\widetilde{F i x}(T) \neq \emptyset$ and

$$
\phi(p, T x) \leq \phi(p, x), \quad \forall x \in C, \forall p \in \operatorname{Fix}(T)
$$

T is said to be quasi- ϕ-nonexpansive [17] if $F i x(T) \neq \emptyset$ and

$$
\phi(p, T x) \leq \phi(p, x), \quad \forall x \in C, \forall p \in \operatorname{Fix}(T)
$$

Remark 1.1. The class of quasi- ϕ-nonexpansive mappings is more desirable than the class of relatively nonexpansive mappings because of strong restriction $\operatorname{Fix}(T)=\widetilde{F i x}(T)$.
Remark 1.2. The class of quasi- ϕ-nonexpansive mappings is reduced to the class of quasi-nonexpansive mappings in the framework of Hilbert spaces.

The following lemmas also play an important role in this paper.
Lemma 1.3 ([21]). Let r be a positive real number and let E be uniformly convex. Then there exists a convex, strictly increasing and continuous function $g:[0,2 r] \rightarrow \mathbb{R}$ such that $g(0)=0$ and

$$
\|(1-t) b+t a\|^{2}+t(1-t) g(\|b-a\|) \leq t\|a\|^{2}+(1-t)\|b\|^{2}
$$

for all $a, b \in B^{r}:=\{a \in E:\|a\| \leq r\}$ and $t \in[0,1]$.
Lemma 1.4 ([1]). Let E be a strictly convex, reflexive, and smooth Banach space and let C be a nonempty, closed, and convex subset of E. Let $x \in E$. Then

$$
\phi\left(y, \Pi_{C} x\right) \leq \phi(y, x)-\phi\left(\Pi_{C} x, x\right), \quad \forall y \in C
$$

and $x_{0}=\Pi_{C} x$ if and only if

$$
\left\langle y-x_{0}, J x-J x_{0}\right\rangle \leq 0, \forall y \in C
$$

Lemma 1.5 ([18]). Let E be a strictly convex and uniformly smooth Banach space which also has the KKP. Let T be a closed quasi- ϕ-nonexpansive mappings on C. Then $F(T)$ is closed and convex.
Lemma 1.6 ([4], [17]). Let E be a strictly convex, smooth, and reflexive Banach space and let C be a closed convex subset of E. Let B be a function with restrictions ($R-1$), ($R-2$), (R-3) and ($R-4$), from $C \times C$ to \mathbb{R}. Let $x \in E$ and let $r>0$. Then there exists $z \in C$ such that

$$
r B(z, y)+\langle z-y, J z-J x\rangle \leq 0, \forall y \in C
$$

Define a mapping $C^{B, r}$ by

$$
C^{B, r} x=\{z \in C: r B(z, y)+\langle y-z, J z-J x\rangle \geq 0, \quad \forall y \in C\}
$$

The following conclusions hold:
(1) $C^{B, r}$ is single-valued quasi- ϕ-nonexpansive;
(2) $\operatorname{Sol}(B)=F i x\left(C^{B, r}\right)$ is closed and convex.

2. Main results

We are now in a position to state our main results.
Theorem 2.1. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP. Let C be a convex and closed subset of E and let B be a bifunction with ($R-1$), (R-2), ($R-3$) and ($R-4$). Let $S: C \rightarrow E^{*}$ be a continuous and monotone mapping and let $Y: C \rightarrow \mathbb{R}$ be a lower semi-continuous and convex function. Let T be a quasi- ϕ-nonexpansive mappings on C. Assume that $\operatorname{Sol}(B, S, Y) \cap F i x(T)$ is nonempty and T is closed. Let $\left\{\alpha_{n}\right\}$ be real sequence in $(0,1)$ such that $\liminf _{n \rightarrow \infty} \alpha_{n}\left(1-\alpha_{n}\right)>0$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in E \text { chosen arbitrarily } \\
C_{1}=C \\
x_{1}=\operatorname{Proj}_{C_{1}} x_{0} \\
r_{n} B\left(z_{n}, z\right)+r_{n}\left(Y z-Y z_{n}\right)+r_{n}\left\langle S z_{n}, z-z_{n}\right\rangle \geq\left\langle z_{n}-z, J z_{n}-J x_{n}\right\rangle, \forall z \in C_{n} \\
J y_{n}=\alpha_{n} J T x_{n}+\left(1-\alpha_{n}\right) J z_{n} \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, x_{n}\right) \geq \phi\left(z, y_{n}\right)\right\} \\
x_{n+1}=\operatorname{Proj}_{C_{n+1}} x_{1}
\end{array}\right.
$$

where $\left\{r_{n}\right\}$ is a real sequence such that ${\lim \inf _{n \rightarrow \infty}} r_{n}>0$. Then $\left\{x_{n}\right\}$ converges strongly to a special common solution \bar{x}, where $\bar{x}=\operatorname{Proj}_{S o l(B, S, Y) \cap F i x(T)} x_{1}$.
Proof. Define

$$
G(a, b)=B(a, b)+\langle S a, b-a\rangle+Y b-Y a, \forall a, b \in C .
$$

Next, we prove that bifunction G satisfies (R-1), (R-2), (R-3) and (R-4). Therefore, the generalized mixed equilibrium problem is equivalent to the following equilibrium problem: find $a \in C$ such that $G(a, b) \geq 0$, $\forall b \in C$. First, we prove G is monotone. Since S is a continuous and monotone operator, we find from the definition of G that

$$
\begin{aligned}
G(b, c)+G(c, b)= & B(b, c)+\langle S b, c-b\rangle+Y c-Y b+B(c, b) \\
& +\langle S c, b-c\rangle+Y b-Y c \\
= & B(c, b)+\langle S c, b-c\rangle+B(b, c)+\langle S b, c-b\rangle \\
\leq & \langle S c-S b, b-c\rangle \leq 0
\end{aligned}
$$

It is clear that G satisfies (R-2). Next, we show that for each $a \in C, b \longmapsto G(a, b)$ is a convex and lower semicontinuous. For each $a \in C$, for all $t \in(0,1)$ and for all $b, c \in C$, since Y is convex, we have

$$
\begin{aligned}
& G(a, t b+(1-t) c) \\
& =B(a, t b+(1-t) c)+\langle S a, t b+(1-t) c-a\rangle+Y(t b+(1-t) c)-Y a \\
& \leq t(B(a, b)+Y b-Y a+\langle S a, b-a\rangle) \\
& \quad+(1-t)(B(a, c)+Y c-Y a+\langle S a, c-a\rangle) \\
& =(1-t) G(a, c)+t G(a, b) .
\end{aligned}
$$

So, $b \longmapsto G(a, b)$ is convex. Similarly, we find that $b \longmapsto G(a, b)$ is also lower semicontinuous. Since S is continuous and Y is lower semicontinuous, we have

$$
\begin{aligned}
\underset{t \downarrow 0}{\limsup } G(t c+(1-t) a, b)= & \limsup _{t \downarrow 0} B(t c+(1-t) a, b) \\
& +\limsup _{t \downarrow 0}(Y b-Y(t c+(1-t) a)) \\
& +\limsup _{t \downarrow 0}\langle S(t c+(1-t) a), b-(t c+(1-t) a)\rangle \\
\leq & B(a, b)+Y b-Y a+\langle S a, b-a\rangle \\
= & G(a, b) .
\end{aligned}
$$

Using Lemma 1.6, one sees that $\operatorname{Sol}(G)=\operatorname{Sol}(B, S, Y)$ is closed and convex. Using Lemma 1.5, one sees that $\operatorname{Fix}(T)$ is also convex and closed. Hence, $\operatorname{Sol}(B, S, Y) \cap \operatorname{Fix}(T)$ is convex and closed.

We are now in a position to show that C_{n} is convex and closed. It is obvious that $C_{1}=C$ is convex and closed. Assume that C_{i} is convex and closed for some $i \geq 1$. Let $p_{1}, p_{2} \in C_{i+1}$. It follows that $p=s p_{1}+(1-s) p_{2} \in C_{i}$, where $s \in(0,1)$. Since

$$
\phi\left(p_{1}, y_{i}\right) \leq \phi\left(p_{1}, x_{i}\right),
$$

and

$$
\phi\left(p_{2}, y_{i}\right) \leq \phi\left(p_{2}, x_{i}\right),
$$

one has

$$
2\left\langle p_{1}, J x_{i}-J y_{i}\right\rangle \leq\left\|x_{i}\right\|^{2}-\left\|y_{i}\right\|^{2}
$$

and

$$
2\left\langle p_{2}, J x_{i}-J y_{i}\right\rangle \leq\left\|x_{i}\right\|^{2}-\left\|y_{i}\right\|^{2} .
$$

Using the above two inequalities, one has $\phi\left(p, y_{i}\right) \leq \phi\left(p, x_{i}\right)$. This shows that C_{i+1} is closed and convex. Hence, C_{n} is a convex and closed set.

Next, one proves $\operatorname{Fix}(T) \cap \operatorname{Sol}(B, S, Y) \subset C_{n}$. It is obvious $\operatorname{Fix}(T) \cap \operatorname{Sol}(B, S, Y) \subset C_{1}=C$. Suppose that $\operatorname{Fix}(T) \cap \operatorname{Sol}(B, S, Y) \subset C_{i}$ for some positive integer i. For any $z \in \operatorname{Fix}(T) \cap \operatorname{Sol}(B) \subset C_{i}$, we see that

$$
\begin{aligned}
\phi\left(z, y_{i}\right)= & \|z\|^{2}+\left\|\alpha_{i} J T x_{i}+\left(1-\alpha_{i}\right) J z_{i}\right\|^{2} \\
& -2\left\langle z, \alpha_{i} J T x_{i}+\left(1-\alpha_{i}\right) J z_{i}\right\rangle \\
\leq & \|z\|^{2}+\alpha_{i}\left\|T x_{i}\right\|^{2}+\left(1-\alpha_{i}\right)\left\|J z_{i}\right\|^{2} \\
& -2\left(1-\alpha_{i}\right)\left\langle z, J z_{i}\right\rangle-2 \alpha_{i}\left\langle z, J T x_{i}\right\rangle \\
\leq & \alpha_{i} \phi\left(z, T x_{i}\right)+\left(1-\alpha_{i}\right) \phi\left(z, C^{G, r_{i}} x_{i}\right) \\
\leq & \phi\left(z, x_{i}\right),
\end{aligned}
$$

where

$$
C^{G, r_{i}} x=\left\{z \in C: r_{i} G(z, y)+\langle y-z, J z-J x\rangle \geq 0, \quad \forall y \in C_{i}\right\} .
$$

This shows that $z \in C_{i+1}$. This implies that $\operatorname{Fix}(T) \cap S o l(B, S, Y) \subset C_{n}$. Using Lemma 1.4 we find

$$
\left\langle x_{n}-z, J x_{1}-J x_{n}\right\rangle \geq 0, \forall z \in C_{n} .
$$

It follows that

$$
\left\langle x_{n}-z, J x_{1}-J x_{n}\right\rangle \geq 0, \quad \forall z \in \operatorname{Fix}(T) \cap \operatorname{Sol}(B, S, Y) \subset C_{n}
$$

Using Lemma 1.4, one has

$$
\begin{aligned}
& \phi\left(x_{n}, x_{1}\right) \leq \phi\left(\operatorname{Proj}_{F i x(T) \cap S o l}(B, S, Y)\right. \\
& \leq \phi\left(\operatorname{Proj}_{\operatorname{Fix}(T) \cap \operatorname{Sol}(B)} x_{1}, x_{1}\right)-\phi\left(\operatorname{Proj}_{F i x(T) \cap S o l(B, S, Y)} x_{1}, x_{n}\right) \\
&
\end{aligned}
$$

which shows that $\left\{\phi\left(x_{n}, x_{1}\right)\right\}$ is bounded. Hence, $\left\{x_{n}\right\}$ is also bounded. Without loss of generality, we assume $x_{n} \rightharpoonup \bar{x}$. Since every C_{n} is convex and closed. So $\bar{x} \in C_{n}$. Since $\bar{x} \in C_{n}$, one has $\phi\left(x_{n}, x_{1}\right) \leq \phi\left(\bar{x}, x_{1}\right)$. This implies that

$$
\begin{aligned}
\phi\left(\bar{x}, x_{1}\right) & \leq \liminf _{n \rightarrow \infty}\left(\left\|x_{n}\right\|^{2}+\left\|x_{1}\right\|^{2}-2\left\langle x_{n}, J x_{1}\right\rangle\right) \\
& =\liminf _{n \rightarrow \infty} \phi\left(x_{n}, x_{1}\right) \\
& \leq \limsup _{n \rightarrow \infty} \phi\left(x_{n}, x_{1}\right) \\
& \leq \phi\left(\bar{x}, x_{1}\right) .
\end{aligned}
$$

Hence, one has $\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{1}\right)=\phi\left(\bar{x}, x_{1}\right)$. It follows that $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\|\bar{x}\|$. Using the KKP, one obtains that $\left\{x_{n}\right\}$ converges strongly to \bar{x} as $n \rightarrow \infty$. Since $x_{n+1} \in C_{n+1} \subset C_{n}$, we find that $\phi\left(x_{n+1}, x_{1}\right) \geq \phi\left(x_{n}, x_{1}\right)$, which shows that $\left\{\phi\left(x_{n}, x_{1}\right)\right\}$ is nondecreasing. It follows that $\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{1}\right)$ exists. Since

$$
\phi\left(x_{n+1}, x_{1}\right)-\phi\left(x_{n}, x_{1}\right) \geq \phi\left(x_{n+1}, x_{n}\right) \geq 0
$$

one has $\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=0$. Using the fact $x_{n+1} \in C_{n+1}$, one sees

$$
\phi\left(x_{n+1}, y_{n}\right) \leq \phi\left(x_{n+1}, x_{n}\right)
$$

It follows that $\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, y_{n}\right)=0$. Therefore, one has $\lim _{n \rightarrow \infty}\left(\left\|y_{n}\right\|-\left\|x_{n+1}\right\|\right)=0$. This implies that

$$
\lim _{n \rightarrow \infty}\left\|J y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}\right\|=\|\bar{x}\|=\|J \bar{x}\|
$$

This implies that $\left\{J y_{n}\right\}$ is bounded. Without loss of generality, we assume that $\left\{J y_{n}\right\}$ converges weakly to $y^{*} \in E^{*}$. In view of the reflexivity of E, we see that $J(E)=E^{*}$. This shows that there exists an element $y \in E$ such that $J y=y^{*}$. It follows that

$$
\phi\left(x_{n+1}, y_{n}\right)+2\left\langle x_{n+1}, J y_{n}\right\rangle=\left\|x_{n+1}\right\|^{2}+\left\|J y_{n}\right\|^{2}
$$

Taking $\lim \inf _{n \rightarrow \infty}$, one has

$$
\begin{aligned}
0 & \geq\|\bar{x}\|^{2}-2\left\langle\bar{x}, y^{*}\right\rangle+\left\|y^{*}\right\|^{2} \\
& =\|\bar{x}\|^{2}+\|J y\|^{2}-2\langle\bar{x}, J y\rangle \\
& =\phi(\bar{x}, y) \\
& \geq 0 .
\end{aligned}
$$

That is, $\bar{x}=y$, which in turn implies that $J \bar{x}=y^{*}$. Hence, $J y_{n} \rightharpoonup J \bar{x} \in E^{*}$. Since E is uniformly smooth, hence, E^{*} is uniformly convex and it has the KKP, we obtain $\lim _{n \rightarrow \infty} J y_{n}=J \bar{x}$. Since $J^{-1}: E^{*} \rightarrow E$ is demi-continuous and E has the KKP, one gets that $y_{n} \rightarrow \bar{x}$, as $n \rightarrow \infty$.

On the other hand, we find from Lemma 1.3 that

$$
\begin{aligned}
\phi\left(z, y_{n}\right) \leq & \|z\|^{2}+\alpha_{n}\left\|T x_{n}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|J z_{n}\right\|^{2} \\
& -2\left(1-\alpha_{n}\right)\left\langle z, J z_{n}\right\rangle-2 \alpha_{n}\left\langle z, J T x_{n}\right\rangle \\
& -\alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|J T x_{n}-J z_{n}\right\|\right) \\
\leq & \alpha_{n} \phi\left(z, T x_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(z, C^{G, r_{n}} x_{n}\right) \\
& -\alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|J T x_{n}-J z_{n}\right\|\right) \\
\leq & \phi\left(z, x_{n}\right)-\alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|J T x_{n}-J z_{n}\right\|\right) .
\end{aligned}
$$

Since

$$
\phi\left(z, x_{n}\right)-\phi\left(z, y_{n}\right) \leq\left(\left\|x_{n}\right\|+\left\|y_{n}\right\|\right)\left\|y_{n}-x_{n}\right\|+2\left\langle z, J y_{n}-J x_{n}\right\rangle
$$

we find

$$
\lim _{n \rightarrow \infty}\left(\phi\left(z, x_{n}\right)-\phi\left(z, y_{n}\right)\right)=0, \quad \forall z \in F i x(T) \cap \operatorname{Sol}(B)
$$

This implies $\lim _{n \rightarrow \infty}\left\|J z_{n}-J T x_{n}\right\|=0$. Hence, one has $J T x_{n} \rightarrow J \bar{x}$ as $n \rightarrow \infty$. Since $J^{-1}: E^{*} \rightarrow E$ is demi-continuous, one has $T x_{n} \rightharpoonup \bar{x}$. Using the fact

$$
\left|\left\|T x_{n}\right\|-\|\bar{x}\|\right|=\left|\left\|J T x_{n}\right\|-\|J \bar{x}\|\right| \leq\left\|J T x_{n}-J \bar{x}\right\|,
$$

one has $\left\|T x_{n}\right\| \rightarrow\|\bar{x}\|$ as $n \rightarrow \infty$. Since E has the KKP, one has $\lim _{n \rightarrow \infty}\left\|\bar{x}-T x_{n}\right\|=0$. Using the closedness of T, we find $T \bar{x}=\bar{x}$. This proves $\bar{x} \in \operatorname{Fix}(T)$. Since $\left\{z_{n}\right\}$ converges strongly to \bar{x} and G is a monotone bifunction, one has $r_{n} G\left(z, z_{n}\right) \leq\left\|z-z_{n}\right\|\left\|J z_{n}-J x_{n}\right\|$. Since $\lim \inf _{n \rightarrow \infty} r_{n}>0$, we may assume there exists $\mu>0$ such that $r_{n} \geq \mu$. It follows that

$$
G\left(z, z_{n}\right) \leq\left\|z-z_{n}\right\| \frac{\left\|J z_{n}-J x_{n}\right\|}{\mu}
$$

Hence, one has $G(z, \bar{x}) \leq 0$. For $0<s<1$, define $z^{s}=(1-s) \bar{x}+s z$. This implies that $0 \geq G\left(z^{s}, \bar{x}\right)$. Hence, we have

$$
0=G\left(z^{s}, z^{s}\right) \leq s B\left(z^{s}, z\right)
$$

It follows that $G(\bar{x}, z) \geq 0, \forall z \in C$. This implies that $\bar{x} \in \operatorname{Sol}(G)=\operatorname{Sol}(B, S, Y)$. Using Lemma 1.4, we find

$$
\left\langle x_{n}-z, J x_{1}-J x_{n}\right\rangle \geq 0, \forall z \in F i x(T) \cap \operatorname{Sol}(B, S, Y)
$$

Let $n \rightarrow \infty$, one has $\left\langle\bar{x}-z, J x_{1}-J \bar{x}\right\rangle \geq 0$. It follows that $\bar{x}=\operatorname{Proj}_{F i x(T) \cap S o l(B, S, Y)} x_{1}$. This completes the proof.

Remark 2.2. Theorem 2.1 mainly improve the corresponding results in [14, [15], [17] and [18]. The framework of the space is weak which do not require the uniform convexness.

In the framework of Hilbert spaces, we have the following result.
Theorem 2.3. Let E be a Hilbert space. Let C be a convex and closed subset of E and let B be a bifunction with ($R-1$), (R-2), (R-3) and (R-4). Let $S: C \rightarrow E$ be a continuous and monotone mapping and let $Y: C \rightarrow \mathbb{R}$ be a lower semi-continuous and convex function. Let T be a quasi-nonexpansive mappings on C. Assume that $\operatorname{Sol}(B, S, Y) \cap \operatorname{Fix}(T)$ is nonempty and T is closed. Let $\left\{\alpha_{n}\right\}$ be real sequence in $(0,1)$ such that $\liminf _{n \rightarrow \infty} \alpha_{n}\left(1-\alpha_{n}\right)>0$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in E \text { chosen arbitrarily, } \\
C_{1}=C, \\
x_{1}=P_{C_{1}} x_{0}, \\
r_{n} B\left(z_{n}, z\right)+r_{n}\left(Y z-Y z_{n}\right)+r_{n}\left\langle S z_{n}, z-z_{n}\right\rangle \geq\left\langle z_{n}-z, z_{n}-x_{n}\right\rangle, \forall z \in C_{n}, \\
y_{n}=\alpha_{n} T x_{n}+\left(1-\alpha_{n}\right) z_{n}, \\
C_{n+1}=\left\{z \in C_{n}:\left\|z-x_{n}\right\| \geq\left\|z-y_{n}\right\|\right\}, \\
x_{n+1}=P_{C_{n+1}} x_{1},
\end{array}\right.
$$

where $\left\{r_{n}\right\}$ is a real sequence such that $\liminf _{n \rightarrow \infty} r_{n}>0$. Then $\left\{x_{n}\right\}$ converges strongly to a special common solution \bar{x}, where $\bar{x}=\operatorname{Proj}_{S o l}(B, S, Y) \cap F i x(T) x_{1}$.

Proof. The generalized projection is reduced to the metric projection and the class of quasi- ϕ-nonexpansive mappings is reduced to the class of quasi-nonexpansive mappings. Using Theorem 2.1, we find the following results.

From Theorem 2.1, we also have the following result on generalized equilibrium problem 1.4 .
Corollary 2.4. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP. Let C be a convex and closed subset of E and let B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let $S: C \rightarrow E^{*}$ be a continuous and monotone mapping and let T be a quasi- ϕ-nonexpansive mappings on C. Assume that $\operatorname{Sol}(B, S) \cap \operatorname{Fix}(T)$ is nonempty and T is closed. Let $\left\{\alpha_{n}\right\}$ be real sequence in $(0,1)$ such that $\liminf _{n \rightarrow \infty} \alpha_{n}\left(1-\alpha_{n}\right)>0$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in E \text { chosen arbitrarily, } \\
C_{1}=C \\
x_{1}=\operatorname{Proj}_{C_{1}} x_{0} \\
r_{n} B\left(z_{n}, z\right)+r_{n}\left\langle S z_{n}, z-z_{n}\right\rangle \geq\left\langle z_{n}-z, J z_{n}-J x_{n}\right\rangle, \forall z \in C_{n} \\
J y_{n}=\alpha_{n} J T x_{n}+\left(1-\alpha_{n}\right) J z_{n} \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, x_{n}\right) \geq \phi\left(z, y_{n}\right)\right\} \\
x_{n+1}=\operatorname{Proj}_{C_{n+1}} x_{1}
\end{array}\right.
$$

where $\left\{r_{n}\right\}$ is a real sequence such that $\liminf _{n \rightarrow \infty} r_{n}>0$. Then $\left\{x_{n}\right\}$ converges strongly to a special common solution \bar{x}, where $\bar{x}=\operatorname{Proj}_{\text {Sol }(B, S) \cap F i x(T)} x_{1}$.

From Theorem 2.1, we also have the following result on mixed equilibrium problem 1.2 .
Corollary 2.5. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP. Let C be a convex and closed subset of E and let B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let $Y: C \rightarrow \mathbb{R}$ be a lower semi-continuous and convex function and let T be a quasi- ϕ-nonexpansive mappings on C. Assume that $\operatorname{Sol}(B, Y) \cap \operatorname{Fix}(T)$ is nonempty and T is closed. Let $\left\{\alpha_{n}\right\}$ be real sequence in $(0,1)$ such that $\liminf _{n \rightarrow \infty} \alpha_{n}\left(1-\alpha_{n}\right)>0$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in E \text { chosen arbitrarily } \\
C_{1}=C \\
x_{1}=\operatorname{Proj}_{C_{1}} x_{0} \\
r_{n} B\left(z_{n}, z\right)+r_{n}\left(Y z-Y z_{n}\right) \geq\left\langle z_{n}-z, J z_{n}-J x_{n}\right\rangle, \forall z \in C_{n} \\
J y_{n}=\alpha_{n} J T x_{n}+\left(1-\alpha_{n}\right) J z_{n} \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, x_{n}\right) \geq \phi\left(z, y_{n}\right)\right\} \\
x_{n+1}=\operatorname{Proj}_{C_{n+1}} x_{1}
\end{array}\right.
$$

where $\left\{r_{n}\right\}$ is a real sequence such that $\liminf _{n \rightarrow \infty} r_{n}>0$. Then $\left\{x_{n}\right\}$ converges strongly to a special common solution \bar{x}, where $\bar{x}=\operatorname{Proj}_{\text {Sol }(B, Y) \cap F i x(T)} x_{1}$.

Finally, we give a result on equilibrium problem 1.5).
Corollary 2.6. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP. Let C be a convex and closed subset of E and let B be a bifunction with ($R-1$), (R-2), (R-3) and (R-4). Let T be a quasi- ϕ-nonexpansive mappings on C. Assume that $\operatorname{Sol}(B) \cap F i x(T)$ is nonempty and T is closed. Let $\left\{\alpha_{n}\right\}$ be real sequence in $(0,1)$ such that $\liminf _{n \rightarrow \infty} \alpha_{n}\left(1-\alpha_{n}\right)>0$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in E \text { chosen arbitrarily } \\
C_{1}=C \\
x_{1}=\operatorname{Proj} C_{1} x_{0} \\
r_{n} B\left(z_{n}, z\right) \geq\left\langle z_{n}-z, J z_{n}-J x_{n}\right\rangle, \forall z \in C_{n} \\
J y_{n}=\alpha_{n} J T x_{n}+\left(1-\alpha_{n}\right) J z_{n} \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, x_{n}\right) \geq \phi\left(z, y_{n}\right)\right\} \\
x_{n+1}=\operatorname{Proj}_{C_{n+1}} x_{1}
\end{array}\right.
$$

where $\left\{r_{n}\right\}$ is a real sequence such that $\liminf _{n \rightarrow \infty} r_{n}>0$. Then $\left\{x_{n}\right\}$ converges strongly to a special common solution \bar{x}, where $\bar{x}=\operatorname{Proj}_{S o l(B) \cap F i x(T)} x_{1}$.

Remark 2.7. Corollary 2.5 and Corollary 2.6 mainly improve the corresponding results in [22]. We relax the uniform convexness and the class of relatively nonexpansive mappings is also improved to the class of quasi- ϕ-nonexpansive mappings.

Acknowledgement

The author is grateful to the editor and the reviewers for useful suggestions which improve the contents of this paper.

References

[1] Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, Lecture Notes in Pure and Appl. Math., 178 (1996), 15-50.1. 1.4
[2] A. Barbagallo, Existence and regularity of solutions to nonlinear degenerate evolutionary variational inequalities with applications to dynamic network equilibrium problems, Appl. Math. Comput., 208 (2009), 1-13. 1
[3] B. A. Bin Dehaish, X. Qin, A. Latif, H. Bakodah, Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal., 16 (2015), 1321-1336. 1
[4] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123-145. 1, 1.6
[5] D. Butnariu, S. Reich, A. J. Zaslavski, Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal., 7 (2001), 151-174. 1
[6] S. Y. Cho, X. Qin, On the strong convergence of an iterative process for asymptotically strict pseudocontractions and equilibrium problems, Appl. Math. Comput., 235 (2014), 430-438. 1
[7] Y. J. Cho, X. Qin, S. M. Kang, Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems, Nonlinear Anal., 71 (2009), 4203-4214.
[8] S. Y. Cho, X. Qin, L. Wang, Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl., 2014 (2014), 15 pages.
[9] B. S. Choudhury, S. Kundu, A viscosity type iteration by weak contraction for approximating solutions of generalized equilibrium problem, J. Nonlinear Sci. Appl., 5 (2012), 243-251.
[10] W. Cholamjiak, P. Cholamjiak, S. Suantai, Convergence of iterative schemes for solving fixed point problems for multi-valued nonself mappings and equilibrium problems, J. Nonlinear Sci. Appl., 8 (2015), 1245-1256. 1
[11] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, (1990). 1
[12] S. Dafermos, A. Nagurney, A network formulation of market equilibrium problems and variational inequalities, Oper. Res. Lett., 3 (1984), 247-250. 1
[13] R. He, Coincidence theorem and existence theorems of solutions for a system of Ky Fan type minimax inequalities in FC-spaces, Adv. Fixed Point Theory, 2 (2012), 47-57. 1
[14] J. K. Kim, Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi- ϕ-nonexpansive mappings, Fixed Point Theory Appl., 2011 (2011), 15 pages. 1. 2.2
[15] B. Liu, C. Zhang, Strong convergence theorems for equilibrium problems and quasi- ϕ-nonexpansive mappings, Nonlinear Funct. Anal. Appl., 16 (2011), 365-385. 2.2
[16] X. Qin, S. S. Chang, Y. J. Cho, Iterative methods for generalized equilibrium problems and fixed point problems with applications, Nonlinear Anal. Real World Appl., 11 (2010), 2963-2972.
[17] X. Qin, Y. J. Cho, S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math., 225 (2009), 20-30. 11.6, 2.2
[18] X. Qin, S. Y. Cho, S. M. Kang, Strong convergence of shrinking projection methods for quasi-image-nonexpansive mappings and equilibrium problems, J. Comput. Appl. Math., 234 (2010), 750-760. 1, 1.5 .2 .2
[19] X. Qin, S. Y. Cho, L. Wang, A regularization method for treating zero points of the sum of two monotone operators, Fixed Point Theory Appl., 2014 (2014), 10 pages. 1. 1
[20] T. V. Su, Second-order optimality conditions for vector equilibrium problems, J. Nonlinear Funct. Anal., 2015 (2015), 31 pages. 1
[21] W. Takahashi, Nonlinear Functional Analysis, Yokohama-Publishers, Yokohama, (2000). 1.3
[22] W. Takahashi, K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal., 70 (2009), 45-57. 12.7
[23] Z. M. Wang, X. Zhang, Shrinking projection methods for systems of mixed variational inequalities of Browder type, systems of mixed equilibrium problems and fixed point problems, J. Nonlinear Funct. Anal., 2014 (2014), 25 pages.
[24] L. Zhang, H. Tong, An iterative method for nonexpansive semigroups, variational inclusions and generalized equilibrium problems, Adv. Fixed Point Theory, 4 (2014), 325-343.
[25] J. Zhao, Strong convergence theorems for equilibrium problems, fixed point problems of asymptotically nonexpansive mappings and a general system of variational inequalities, Nonlinear Funct. Anal. Appl., 16 (2011), 447-464.
[26] L. C. Zhao, S. S. Chang, Strong convergence theorems for equilibrium problems and fixed point problems of strict pseudo-contraction mappings, J. Nonlinear Sci. Appl., 2 (2009), 78-91. 1

[^0]: Email address: ooly61@hotmail.com (Sun Young Cho)

