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1. Introduction and Preliminaries

Let E be a real Banach space and let E∗ be the dual space of E. Let SE be the unit sphere of E. Recall
that E is said to be uniformly convex if for any ε ∈ (0, 2] there exists δ > 0 such that for any x, y ∈ SE ,

‖x− y‖ ≥ ε implies ‖x+ y‖ ≤ 2− 2δ.

E is said to be a strictly convex space if and only if ‖x + y‖ < 2 for all x, y ∈ SE and x 6= y. It is known
that a uniformly convex Banach space is reflexive and strictly convex.

Recall that E is said to have a Gâteaux differentiable norm if and only if

lim
t→0

‖x‖ − ‖x+ ty‖
t
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exists for each x, y ∈ SE . In this case, we also say that E is smooth. E is said to have a uniformly Gâteaux
differentiable norm if for each y ∈ SE , the limit is attained uniformly for all x ∈ SE . E is also said to have
a uniformly Fréchet differentiable norm if and only if the above limit is attained uniformly for x, y ∈ SE . In
this case, we say that E is uniformly smooth. It is known that a uniformly smooth Banach space is reflexive
and smooth.

Recall that E is said to have the KKP if limm→∞ ‖xm− x‖ = 0, for any sequence {xm} ⊂ E, and x ∈ E
with {xm} converges weakly to x, and {‖xm‖} converges strongly to ‖x‖. It is known that every uniformly
convex Banach space has the KKP; see [11] and the references therein.

Recall that normalized duality mapping J from E to 2E
∗

is defined by

Jx = {y ∈ E∗ : ‖x‖2 = 〈x, y〉 = ‖y‖2}.

It is known if E is uniformly smooth, then J is uniformly norm-to-norm continuous on every bounded subset
of E; if E is a smooth Banach space, then J is single-valued and demi-continuous, i.e., continuous from the
strong topology of E to the weak star topology of E; if E is a smooth, strictly convex and reflexive Banach
space, then J is single-valued, one-to-one and onto.

Let C be nonempty convex and closed subset of E. Let B : C × C → R be a bifunction, Y : C → R
be a real valued function and S : C → E∗ be a nonlinear mapping. Consider that the following generalized
mixed equilibrium problem is to find x̄ ∈ C such that

B(x̄, x) + 〈Sx̄, x− x̄〉+ Y x− Y x̄ ≥ 0,∀x ∈ C. (1.1)

The solution set of the generalized mixed equilibrium problem is denoted by Sol(B,S, Y ).
The generalized mixed equilibrium problem, which finds a lot of applications in physics, economics,

finance, transportation, network and structural analysis, elasticity and optimization, provides a natural,
novel and unified framework to study fixed point problems, variational inequality, complementarity problems,
and optimization problems; see [2], [12], [13], [19], [18], [20] and the references therein.

If S = 0, then the generalized mixed equilibrium problem is reduced to the following mixed equilibrium
problem: find x̄ ∈ C such that

B(x̄, x) + Y x− Y x̄ ≥ 0,∀x ∈ C. (1.2)

The solution set of the mixed equilibrium problem is denoted by Sol(B, Y ).
If B = 0, then the generalized mixed equilibrium problem is reduced to the following mixed variational

inequality of Browder type: find x̄ ∈ C such that

〈Sx̄, x− x̄〉+ Y x− Y x̄ ≥ 0,∀x ∈ C. (1.3)

The solution set of the mixed equilibrium problem is denoted by V I(C,B, Y ).
If Y = 0, then the generalized mixed equilibrium problem is reduced to the following generalized equi-

librium problem: find x̄ ∈ C such that

B(x̄, x) + 〈Sx̄, x− x̄〉 ≥ 0, ∀x ∈ C. (1.4)

The solution set of the generalized equilibrium problem is denoted by Sol(B,S).
If S = 0 and Y = 0, then the generalized mixed equilibrium problem is reduced to the following

equilibrium problem in the terminology of Blum and Oettli [4]: find x̄ ∈ C such that

B(x̄, x) ≥ 0,∀x ∈ C. (1.5)

The solution set of the equilibrium problem is denoted by Sol(B).
The following restrictions on bifunction B are essential in this paper.
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(R-1) B(a, a) ≡ 0,∀a ∈ C;

(R-2) B(b, a) +B(a, b) ≤ 0,∀a, b ∈ C;

(R-3) B(a, b) ≥ lim supt↓0B(tc+ (1− t)a, b), ∀a, b, c ∈ C;

(R-4) b 7→ B(a, b) is convex and weakly lower semi-continuous, ∀a ∈ C.

Recently, the above nonlinear problems have been extensively studied based on iterative techniques; see
[3], [6]-[10], [14]–[17], [19], [22]-[26] and the references therein. In this paper, we study generalized mixed
equilibrium problem (1.1) based on a monotone projection technique without any compactness assumption.
Let T be a mapping on C. T is said to be closed if for any sequence {xn} ⊂ C such that limn→∞ xn = x′

and limn→∞ Txn = y′, then Tx′ = y′. From now on, we use ⇀ and → to stand for the weak convergence
and strong convergence, respectively. Recall that a point p is said to be a fixed point of T if and only if
p = Tp. p is said to be an asymptotic fixed point of T if and only if C contains a sequence {xn}, where

xn ⇀ p such that xn − Txn → 0. From now on, We use Fix(T ) to stand for the fixed point set and F̃ ix(T )
to stand for the asymptotic fixed point set.

Next, we assume that E is a smooth Banach space which means mapping J is single-valued. Study the
functional

φ(x, y) := ‖x‖2 + ‖y‖2 − 2〈x, Jy〉, ∀x, y ∈ E.

Let C be a closed convex subset of a real Hilbert space H. For any x ∈ H, there exists an unique nearest
point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.

The operator PC is called the metric projection from H onto C. It is known that PC is firmly nonexpansive.
In [1], Alber studied a new mapping ProjC in a Banach space E which is an analogue of PC , the metric
projection, in Hilbert spaces. Recall that the generalized projection ProjC : E → C is a mapping that
assigns to an arbitrary point x ∈ E the minimum point of φ(x, y).

Recall that T is said to be relatively nonexpansive [5] if Fix(T ) = F̃ ix(T ) 6= ∅ and

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C,∀p ∈ Fix(T ).

T is said to be quasi-φ-nonexpansive [17] if Fix(T ) 6= ∅ and

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C,∀p ∈ Fix(T ).

Remark 1.1. The class of quasi-φ-nonexpansive mappings is more desirable than the class of relatively
nonexpansive mappings because of strong restriction Fix(T ) = F̃ ix(T ).

Remark 1.2. The class of quasi-φ-nonexpansive mappings is reduced to the class of quasi-nonexpansive
mappings in the framework of Hilbert spaces.

The following lemmas also play an important role in this paper.

Lemma 1.3 ([21]). Let r be a positive real number and let E be uniformly convex. Then there exists a
convex, strictly increasing and continuous function g : [0, 2r]→ R such that g(0) = 0 and

‖(1− t)b+ ta‖2 + t(1− t)g(‖b− a‖) ≤ t‖a‖2 + (1− t)‖b‖2

for all a, b ∈ Br := {a ∈ E : ‖a‖ ≤ r} and t ∈ [0, 1].

Lemma 1.4 ([1]). Let E be a strictly convex, reflexive, and smooth Banach space and let C be a nonempty,
closed, and convex subset of E. Let x ∈ E. Then

φ(y,ΠCx) ≤ φ(y, x)− φ(ΠCx, x), ∀y ∈ C,

and x0 = ΠCx if and only if
〈y − x0, Jx− Jx0〉 ≤ 0, ∀y ∈ C.
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Lemma 1.5 ([18]). Let E be a strictly convex and uniformly smooth Banach space which also has the KKP.
Let T be a closed quasi-φ-nonexpansive mappings on C. Then F (T ) is closed and convex.

Lemma 1.6 ([4], [17]). Let E be a strictly convex, smooth, and reflexive Banach space and let C be a closed
convex subset of E. Let B be a function with restrictions (R-1), (R-2), (R-3) and (R-4), from C ×C to R.
Let x ∈ E and let r > 0. Then there exists z ∈ C such that

rB(z, y) + 〈z − y, Jz − Jx〉 ≤ 0,∀y ∈ C.

Define a mapping CB,r by

CB,rx = {z ∈ C : rB(z, y) + 〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.

The following conclusions hold:

(1) CB,r is single-valued quasi-φ-nonexpansive;

(2) Sol(B) = Fix(CB,r) is closed and convex.

2. Main results

We are now in a position to state our main results.

Theorem 2.1. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP. Let
C be a convex and closed subset of E and let B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let
S : C → E∗ be a continuous and monotone mapping and let Y : C → R be a lower semi-continuous and
convex function. Let T be a quasi-φ-nonexpansive mappings on C. Assume that Sol(B,S, Y ) ∩ Fix(T ) is
nonempty and T is closed. Let {αn} be real sequence in (0,1) such that lim infn→∞ αn(1 − αn) > 0. Let
{xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ProjC1x0,

rnB(zn, z) + rn(Y z − Y zn) + rn〈Szn, z − zn〉 ≥ 〈zn − z, Jzn − Jxn〉, ∀z ∈ Cn,

Jyn = αnJTxn + (1− αn)Jzn,

Cn+1 = {z ∈ Cn : φ(z, xn) ≥ φ(z, yn)},
xn+1 = ProjCn+1x1,

where {rn} is a real sequence such that lim infn→∞ rn > 0. Then {xn} converges strongly to a special common
solution x̄, where x̄ = ProjSol(B,S,Y )∩Fix(T )x1.

Proof. Define
G(a, b) = B(a, b) + 〈Sa, b− a〉+ Y b− Y a, ∀a, b ∈ C.

Next, we prove that bifunction G satisfies (R-1), (R-2), (R-3) and (R-4). Therefore, the generalized mixed
equilibrium problem is equivalent to the following equilibrium problem: find a ∈ C such that G(a, b) ≥ 0,
∀b ∈ C. First, we prove G is monotone. Since S is a continuous and monotone operator, we find from the
definition of G that

G(b, c) +G(c, b) = B(b, c) + 〈Sb, c− b〉+ Y c− Y b+B(c, b)

+ 〈Sc, b− c〉+ Y b− Y c
= B(c, b) + 〈Sc, b− c〉+B(b, c) + 〈Sb, c− b〉
≤ 〈Sc− Sb, b− c〉 ≤ 0.

It is clear that G satisfies (R-2). Next, we show that for each a ∈ C, b 7−→ G(a, b) is a convex and lower
semicontinuous. For each a ∈ C, for all t ∈ (0, 1) and for all b, c ∈ C, since Y is convex, we have
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G(a, tb+ (1− t)c)
= B(a, tb+ (1− t)c) + 〈Sa, tb+ (1− t)c− a〉+ Y (tb+ (1− t)c)− Y a
≤ t
(
B(a, b) + Y b− Y a+ 〈Sa, b− a〉

)
+ (1− t)

(
B(a, c) + Y c− Y a+ 〈Sa, c− a〉

)
= (1− t)G(a, c) + tG(a, b).

So, b 7−→ G(a, b) is convex. Similarly, we find that b 7−→ G(a, b) is also lower semicontinuous. Since S is
continuous and Y is lower semicontinuous, we have

lim sup
t↓0

G(tc+ (1− t)a, b) = lim sup
t↓0

B(tc+ (1− t)a, b)

+ lim sup
t↓0

(
Y b− Y (tc+ (1− t)a)

)
+ lim sup

t↓0
〈S
(
tc+ (1− t)a

)
, b−

(
tc+ (1− t)a

)
〉

≤ B(a, b) + Y b− Y a+ 〈Sa, b− a〉
= G(a, b).

Using Lemma 1.6, one sees that Sol(G) = Sol(B,S, Y ) is closed and convex. Using Lemma 1.5, one sees
that Fix(T ) is also convex and closed. Hence, Sol(B,S, Y ) ∩ Fix(T ) is convex and closed.

We are now in a position to show that Cn is convex and closed. It is obvious that C1 = C is convex
and closed. Assume that Ci is convex and closed for some i ≥ 1. Let p1, p2 ∈ Ci+1. It follows that
p = sp1 + (1− s)p2 ∈ Ci, where s ∈ (0, 1). Since

φ(p1, yi) ≤ φ(p1, xi),

and
φ(p2, yi) ≤ φ(p2, xi),

one has
2〈p1, Jxi − Jyi〉 ≤ ‖xi‖2 − ‖yi‖2

and
2〈p2, Jxi − Jyi〉 ≤ ‖xi‖2 − ‖yi‖2.

Using the above two inequalities, one has φ(p, yi) ≤ φ(p, xi). This shows that Ci+1 is closed and convex.
Hence, Cn is a convex and closed set.

Next, one proves Fix(T ) ∩ Sol(B,S, Y ) ⊂ Cn. It is obvious Fix(T ) ∩ Sol(B,S, Y ) ⊂ C1 = C. Suppose
that Fix(T )∩Sol(B,S, Y ) ⊂ Ci for some positive integer i. For any z ∈ Fix(T )∩Sol(B) ⊂ Ci, we see that

φ(z, yi) = ‖z‖2 + ‖αiJTxi + (1− αi)Jzi‖2

− 2〈z, αiJTxi + (1− αi)Jzi〉
≤ ‖z‖2 + αi‖Txi‖2 + (1− αi)‖Jzi‖2

− 2(1− αi)〈z, Jzi〉 − 2αi〈z, JTxi〉
≤ αiφ(z, Txi) + (1− αi)φ(z, CG,rixi)

≤ φ(z, xi),

where
CG,rix = {z ∈ C : riG(z, y) + 〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ Ci}.

This shows that z ∈ Ci+1. This implies that Fix(T ) ∩ Sol(B,S, Y ) ⊂ Cn. Using Lemma 1.4, we find

〈xn − z, Jx1 − Jxn〉 ≥ 0, ∀z ∈ Cn.
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It follows that
〈xn − z, Jx1 − Jxn〉 ≥ 0, ∀z ∈ Fix(T ) ∩ Sol(B,S, Y ) ⊂ Cn.

Using Lemma 1.4, one has

φ(xn, x1) ≤ φ(ProjFix(T )∩Sol(B,S,Y )x1, x1)− φ(ProjFix(T )∩Sol(B,S,Y )x1, xn)

≤ φ(ProjFix(T )∩Sol(B)x1, x1),

which shows that {φ(xn, x1)} is bounded. Hence, {xn} is also bounded. Without loss of generality, we assume
xn ⇀ x̄. Since every Cn is convex and closed. So x̄ ∈ Cn. Since x̄ ∈ Cn, one has φ(xn, x1) ≤ φ(x̄, x1). This
implies that

φ(x̄, x1) ≤ lim inf
n→∞

(‖xn‖2 + ‖x1‖2 − 2〈xn, Jx1〉)

= lim inf
n→∞

φ(xn, x1)

≤ lim sup
n→∞

φ(xn, x1)

≤ φ(x̄, x1).

Hence, one has limn→∞ φ(xn, x1) = φ(x̄, x1). It follows that limn→∞ ‖xn‖ = ‖x̄‖. Using the KKP, one obtains
that {xn} converges strongly to x̄ as n→∞. Since xn+1 ∈ Cn+1 ⊂ Cn, we find that φ(xn+1, x1) ≥ φ(xn, x1),
which shows that {φ(xn, x1)} is nondecreasing. It follows that limn→∞ φ(xn, x1) exists. Since

φ(xn+1, x1)− φ(xn, x1) ≥ φ(xn+1, xn) ≥ 0,

one has limn→∞ φ(xn+1, xn) = 0. Using the fact xn+1 ∈ Cn+1, one sees

φ(xn+1, yn) ≤ φ(xn+1, xn).

It follows that limn→∞ φ(xn+1, yn) = 0. Therefore, one has limn→∞(‖yn‖ − ‖xn+1‖) = 0. This implies that

lim
n→∞

‖Jyn‖ = lim
n→∞

‖yn‖ = ‖x̄‖ = ‖Jx̄‖.

This implies that {Jyn} is bounded. Without loss of generality, we assume that {Jyn} converges weakly to
y∗ ∈ E∗. In view of the reflexivity of E, we see that J(E) = E∗. This shows that there exists an element
y ∈ E such that Jy = y∗. It follows that

φ(xn+1, yn) + 2〈xn+1, Jyn〉 = ‖xn+1‖2 + ‖Jyn‖2.

Taking lim infn→∞, one has
0 ≥ ‖x̄‖2 − 2〈x̄, y∗〉+ ‖y∗‖2

= ‖x̄‖2 + ‖Jy‖2 − 2〈x̄, Jy〉
= φ(x̄, y)

≥ 0.

That is, x̄ = y, which in turn implies that Jx̄ = y∗. Hence, Jyn ⇀ Jx̄ ∈ E∗. Since E is uniformly smooth,
hence, E∗ is uniformly convex and it has the KKP, we obtain limn→∞ Jyn = Jx̄. Since J−1 : E∗ → E is
demi-continuous and E has the KKP, one gets that yn → x̄, as n→∞.

On the other hand, we find from Lemma 1.3 that

φ(z, yn) ≤ ‖z‖2 + αn‖Txn‖2 + (1− αn)‖Jzn‖2

− 2(1− αn)〈z, Jzn〉 − 2αn〈z, JTxn〉
− αn(1− αn)g(‖JTxn − Jzn‖)
≤ αnφ(z, Txn) + (1− αn)φ(z, CG,rnxn)

− αn(1− αn)g(‖JTxn − Jzn‖)
≤ φ(z, xn)− αn(1− αn)g(‖JTxn − Jzn‖).
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Since
φ(z, xn)− φ(z, yn) ≤ (‖xn‖+ ‖yn‖)‖yn − xn‖+ 2〈z, Jyn − Jxn〉,

we find
lim
n→∞

(
φ(z, xn)− φ(z, yn)

)
= 0, ∀z ∈ Fix(T ) ∩ Sol(B).

This implies limn→∞ ‖Jzn − JTxn‖ = 0. Hence, one has JTxn → Jx̄ as n → ∞. Since J−1 : E∗ → E is
demi-continuous, one has Txn ⇀ x̄. Using the fact

|‖Txn‖ − ‖x̄‖| = |‖JTxn‖ − ‖Jx̄‖| ≤ ‖JTxn − Jx̄‖,

one has ‖Txn‖ → ‖x̄‖ as n→∞. Since E has the KKP, one has limn→∞ ‖x̄−Txn‖ = 0. Using the closedness
of T , we find T x̄ = x̄. This proves x̄ ∈ Fix(T ). Since {zn} converges strongly to x̄ and G is a monotone
bifunction, one has rnG(z, zn) ≤ ‖z− zn‖‖Jzn−Jxn‖. Since lim infn→∞ rn > 0, we may assume there exists
µ > 0 such that rn ≥ µ. It follows that

G(z, zn) ≤ ‖z − zn‖
‖Jzn − Jxn‖

µ
.

Hence, one has G(z, x̄) ≤ 0. For 0 < s < 1, define zs = (1− s)x̄+ sz. This implies that 0 ≥ G(zs, x̄). Hence,
we have

0 = G(zs, zs) ≤ sB(zs, z).

It follows that G(x̄, z) ≥ 0, ∀z ∈ C. This implies that x̄ ∈ Sol(G) = Sol(B,S, Y ). Using Lemma 1.4, we
find

〈xn − z, Jx1 − Jxn〉 ≥ 0, ∀z ∈ Fix(T ) ∩ Sol(B,S, Y ).

Let n→∞, one has 〈x̄− z, Jx1 − Jx̄〉 ≥ 0. It follows that x̄ = ProjFix(T )∩Sol(B,S,Y )x1. This completes the
proof.

Remark 2.2. Theorem 2.1 mainly improve the corresponding results in [14], [15], [17] and [18]. The framework
of the space is weak which do not require the uniform convexness.

In the framework of Hilbert spaces, we have the following result.

Theorem 2.3. Let E be a Hilbert space. Let C be a convex and closed subset of E and let B be a bifunction
with (R-1), (R-2), (R-3) and (R-4). Let S : C → E be a continuous and monotone mapping and let
Y : C → R be a lower semi-continuous and convex function. Let T be a quasi-nonexpansive mappings on C.
Assume that Sol(B,S, Y ) ∩ Fix(T ) is nonempty and T is closed. Let {αn} be real sequence in (0,1) such
that lim infn→∞ αn(1− αn) > 0. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = PC1x0,

rnB(zn, z) + rn(Y z − Y zn) + rn〈Szn, z − zn〉 ≥ 〈zn − z, zn − xn〉,∀z ∈ Cn,

yn = αnTxn + (1− αn)zn,

Cn+1 = {z ∈ Cn : ‖z − xn‖ ≥ ‖z − yn‖},
xn+1 = PCn+1x1,

where {rn} is a real sequence such that lim infn→∞ rn > 0. Then {xn} converges strongly to a special common
solution x̄, where x̄ = ProjSol(B,S,Y )∩Fix(T )x1.

Proof. The generalized projection is reduced to the metric projection and the class of quasi-φ-nonexpansive
mappings is reduced to the class of quasi-nonexpansive mappings. Using Theorem 2.1, we find the following
results.
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From Theorem 2.1, we also have the following result on generalized equilibrium problem (1.4).

Corollary 2.4. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP.
Let C be a convex and closed subset of E and let B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let
S : C → E∗ be a continuous and monotone mapping and let T be a quasi-φ-nonexpansive mappings on C.
Assume that Sol(B,S) ∩ Fix(T ) is nonempty and T is closed. Let {αn} be real sequence in (0,1) such that
lim infn→∞ αn(1− αn) > 0. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ProjC1x0,

rnB(zn, z) + rn〈Szn, z − zn〉 ≥ 〈zn − z, Jzn − Jxn〉, ∀z ∈ Cn,

Jyn = αnJTxn + (1− αn)Jzn,

Cn+1 = {z ∈ Cn : φ(z, xn) ≥ φ(z, yn)},
xn+1 = ProjCn+1x1,

where {rn} is a real sequence such that lim infn→∞ rn > 0. Then {xn} converges strongly to a special common
solution x̄, where x̄ = ProjSol(B,S)∩Fix(T )x1.

From Theorem 2.1, we also have the following result on mixed equilibrium problem (1.2).

Corollary 2.5. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP.
Let C be a convex and closed subset of E and let B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let
Y : C → R be a lower semi-continuous and convex function and let T be a quasi-φ-nonexpansive mappings
on C. Assume that Sol(B, Y ) ∩ Fix(T ) is nonempty and T is closed. Let {αn} be real sequence in (0,1)
such that lim infn→∞ αn(1− αn) > 0. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ProjC1x0,

rnB(zn, z) + rn(Y z − Y zn) ≥ 〈zn − z, Jzn − Jxn〉,∀z ∈ Cn,

Jyn = αnJTxn + (1− αn)Jzn,

Cn+1 = {z ∈ Cn : φ(z, xn) ≥ φ(z, yn)},
xn+1 = ProjCn+1x1,

where {rn} is a real sequence such that lim infn→∞ rn > 0. Then {xn} converges strongly to a special common
solution x̄, where x̄ = ProjSol(B,Y )∩Fix(T )x1.

Finally, we give a result on equilibrium problem (1.5).

Corollary 2.6. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP.
Let C be a convex and closed subset of E and let B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let
T be a quasi-φ-nonexpansive mappings on C. Assume that Sol(B) ∩ Fix(T ) is nonempty and T is closed.
Let {αn} be real sequence in (0,1) such that lim infn→∞ αn(1 − αn) > 0. Let {xn} be a sequence generated
by 

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ProjC1x0,

rnB(zn, z) ≥ 〈zn − z, Jzn − Jxn〉, ∀z ∈ Cn,

Jyn = αnJTxn + (1− αn)Jzn,

Cn+1 = {z ∈ Cn : φ(z, xn) ≥ φ(z, yn)},
xn+1 = ProjCn+1x1,
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where {rn} is a real sequence such that lim infn→∞ rn > 0. Then {xn} converges strongly to a special common
solution x̄, where x̄ = ProjSol(B)∩Fix(T )x1.

Remark 2.7. Corollary 2.5 and Corollary 2.6 mainly improve the corresponding results in [22]. We relax
the uniform convexness and the class of relatively nonexpansive mappings is also improved to the class of
quasi-φ-nonexpansive mappings.
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