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Abstract. The Mongue-Elkan method is a general text string compar-
ison method based on an internal character-based similarity measure
(e.g. edit distance) combined with a token level (i.e. word level) similar-
ity measure. We propose a generalization of this method based on the
notion of the generalized arithmetic mean instead of the simple aver-
age used in the expression to calculate the Monge-Elkan method. The
experiments carried out with 12 well-known name-matching data sets
show that the proposed approach outperforms the original Monge-Elkan
method when character-based measures are used to compare tokens.

1 Introduction

Approximate string similarity measures are used in many natural language pro-
cessing (NLP) tasks such as term identification in information extraction, infor-
mation retrieval, word sense disambiguation, etc. Probably the most well known
character-level measure is the edit distance proposed by Levenshtein in 1965
[11]. The character-based measures consider the strings to be compared merely
as character sequences, which makes this approach affordable when the strings
to be compared are single words having misspellings, typographical errors, OCR
errors, or even some morphological variations. However, in most human lan-
guages, character sequences are split into words (tokens). This property of natu-
ral language texts is exploited by token-based measures such as the resemblance
coefficients [1] (e.g., Jaccard, Dice, overlap). The token-based measures compare
text strings as sequences of tokens instead of sequences of characters. Such an
approach is successful when it is used to compare text strings with many tokens
and with different order of the tokens or missing tokens.

All previously mentioned measures based on character or tokens are static.
Static string-similarity metrics as they were defined by Bilenko et al. [3] are
those that compare two character or token sequences in an algorithmic way
using solely the information contained into the sequences. Most of the character-
based measures are static, that is, the characters into two strings are compared
among them with a strategy in order to return a final similarity value. Some
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adaptive approaches [19,4] use labeled corpus as additional information to affine
the parameters of static metrics such as edit distance.

The static token-based measures compare the words between and into the
strings in order to return compute similarity. However, there are a wide set of
approaches that uses additional information about words in order to compare
the sequences. For instance, the use of corpus statistics such as TF-IDF, or
combinations with static character-based metrics as it was proposed by Cohen
et al. [7]. Although, the similarity between tokens is mainly measured using other
word-space methods [2] and information sources such as WordNet [17], the static
methods have importance in pattern matching, text searching, record linkage,
information integration, dictionary and name matching among others particular
tasks.

Additionally to the resemblance coefficients, there are others static token-
based measures that compare tokens using an internal static character-based
measure [5,15,12,13,16]. Monge and Elkan [15] proposed one of those hybrid
measures that has been used in many name-matching and record linkage com-
parative studies [4,7,6,18] obtaining a competitive performance versus other non-
static measures. The Monge-Elkan method preserves the properties of the inter-
nal character-based measure (e.g. ability to deal with misspellings, typos, OCR
errors) and deals successfully with missing or disordered tokens. In fact, the
Monge-Elkan method is a general and recursive token similarity method that
can combine any token comparison measure, which captures semantics, transla-
tions, etc.

In this paper, we propose a generalization to the Monge-Elkan method, based
on the notion of the generalized arithmetic mean, in order to control the balance
between higher and lower values of the similarity between the pairs of tokens
being compared. The basic Monge-Elkan method uses a simple arithmetic av-
erage to combine internal similarities, the proposed generalization provides the
ability to apply heuristics that promotes more similar token pairs. Our exper-
iments with twelve name-matching data sets show that this heuristic leads to
improvement of the results.

This paper is organized as follows. In Section 2, the original Monge-Elkan
method is presented. Section 3 introduces the proposed generalization. Experi-
mental evaluation is discussed in Section 4, and concluding remarks are given in
Section 5.

2 The Monge-Elkan Method

Monge and Elkan [15] proposed a simple but effective method to measure the
similarity between two text strings that contains several tokens, using an in-
ternal similarity function sim′(a, b) able to measure the similarity between two
individual tokens a and b. Given two texts A, B, with |A| and |B| being their re-
spective number of tokens, and an external inter-token similarity measure sim′,
the Monge-Elkan measure is computed as follows:



Generalized Mongue-Elkan Method 561

simMongeElkan(A, B) =
1
|A|

|A|∑

i=1

max {sim′(ai, bj)}|B|
j=1 (1)

Informally, this measure is the average of the similarity values between the more
similar token pairs in both strings. In fact, the Monge-Elkan measure approx-
imates the solution to the optimal assignment problem in combinatorial op-
timization [10] with time complexity of O(|A| × |B|). This approximation is a
reasonable tradeoff between accuracy and complexity, because known exact solu-
tions to this combinatorial problem have the time complexity of O(min(|A|, |B|)3)
and require much more sophisticated algorithms [10].

Consider the following example using as internal measure sim′ a normalized
edit distance converted to a similarity measure (subscripts denote tokens within
the strings ):

A =“Lenovo inc.”; a1 =“Lenovo”; a2 =“inc.”
B =“Lenovo corp.”; b1 =“Lenovo”; b2 =“corp.”
sim′(a1, b1) = 1 − 0

6 = 1; sim′(a1, b2) = 1 − 5
6 = 0.1666

sim′(a2, b1) = 1 − 5
6 = 0.1666; sim′(a2, b2) = 1 − 4

4 = 0
simMongeElkan(A, B) = 1

2 (max(sim′(a1, b1), sim′(a1, b2))+
max(sim′(a2, b1), sim′(a2, b2)))

simMongeElkan(A, B) = 1
2 (1 + 0.1666) = 0.5833

The Monge-Elkan measure it is not symmetrical, consider the example shown
in Figure 1-1. The method iterates the tokens in string A looking for the most
similar token in string B in order to make pairs (linked with arrows in Figure
1), then their similarities are averaged. Clearly, the averaged similarity values
are different when the content of the strings A and B are swapped. This asym-
metry is also evident when the number of tokens is different in both strings (see
Figure 1-2). However, this behavior captures the redundancy of the string “aaaa
xaaa yaaa” at the first case in Figure 1-2. Additionally, at the second case in
the same figure, the tokens “xaaa” and “yaaa” are ignored because of the high
similarity between the two tokens “aaaa”. Both cases unintentionally implements
heuristics convenient for matching. Monge noticed [14] that symmetry may be

A aaaa xaaa yaaa=“ ”

B aaaa xxxx yyyy=“ ”

A aaaa xxxx yyyy=“ ”

B aaaa xaaa yaaa=“ ”

A aaaa xaaa yaaa=“ ”

B aaaa=“ ”

A aaaa=“ ”

B aaaa xaaa yaaa=“ ”

1)

2)

Fig. 1. Asymmetry examples of the Monge-Elkan measure
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a natural requirement for many matching applications but not for all. For in-
stance, the name “Alvaro E. Monge” matched “A. E. Monge” while the reverse
is not necessarily true.

In the following subsections, for the sake of completeness some character-based
string measures that we used as the internal measure sim′ in our experimental
evaluation are briefly described.

2.1 Bigrams

Q -grams [20] are substrings of length q of a longer string. Depending on q,
q-grams are called unigrams, bigrams (or 2-grams), trigrams, and so on. For
instance, all bigrams of the string laptop are la, ap, pt, to, op. One way to
compute the similarity between two strings is the Dice coefficient

sim′(a, b) = 2
|B(a) ∩ B(b)|
|B(a)| + |B(b)|

where B(x) is the set of bigrams of a string x, i.e., the measure is obtained
by dividing the number of bigrams common to the two strings by the average
number of bigrams in each string. There are several variants of the measures
in the q-grams family such as skip-grams, positional q-grams, etc.; see [6] for a
comparative study. We used bigrams with one padding character at the beginning
and ending of the string because empirical results [9] have shown that padding
increase the matching performance.

2.2 Edit Distance

The edit distance was originally proposed by Levenshtein [11]. It is equal to
the minimum number of editing operations required to transform one sequence
into the other. The three basic editing operations are insertion, deletion, and
substitution. Several modifications to the original edit distance have been pro-
posed, varying cost schemes and adding more edit operations such as transpo-
sitions, opening, and extending gaps; see [8] for a recent survey. The solution
[21] for computing the edit distance is a dynamic programming algorithm that
stores in a matrix the counts of edit operations for all possible prefixes of both
strings. This algorithm computes the edit distance between two strings a and b
of length |a| and |b| with a time complexity of O(|a| × |b|) and space complexity
of O(min(|a||b|)).

The edit distance measure can be normalized in the range [0,1] dividing the
total number of operations by the number of characters in the longer string.
Once normalized, the edit distance can be converted to similarity subtracting
the distance value to the number 1.

2.3 Jaro Similarity

The Jaro similarity measure [22] between two strings of length |a| and |b| char-
acters, has the space and time complexity of only O(|a| + |b|). It considers the
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number c of characters in common in the two strings and the number of trans-
positions t as follows:

simJaro(a, b) =
1
3

(
c

|a| +
c

|b| +
c − t

c

)
.

If c = 0 then simJaro = 0 by definition. The common characters are considered
only in a sliding window of size max(|a|, |b|)/2. In addition, the common char-
acters cannot be shared and are assigned with a greedy strategy. In order to
compute the transpositions t between the two strings, the common characters
are ordered according to their occurrences in the strings being compared. The
number of non-coincident characters at the same positions in both strings is the
number of transpositions t. The values returned by the Jaro similarity are in the
range [0, 1].

3 Proposed Method

Since the Monge-Elkan method uses the arithmetic mean to average all the sim-
ilarities measured between the selected token pairs, those similarities have the
same weight in the final measure. However, it is possible to think that higher
values in the internal sim′ values may be more informative as lower ones. We
believe that promoting the members with higher similarities in the average cal-
culated according to the equation 1 leads to a more natural similarity measure,
more suitable for at least some applications. One way of implementation of such
promoting can be the use of a generalized mean instead of the arithmetic mean:

x̄(m) =
(

1
n
· ∑xm

i

) 1
m

(2)

Different values of m result in different known “means”: m = 1 gives the arith-
metic mean; m = 2, quadratic mean; m → 0, geometric mean; m → −1, har-
monic mean, m → ∞, maximum, and m → −∞, minimum. The arithmetic
mean assigns equal weights to all values of xi in the mean; values of m > 1
promote greater values in the mean. The higher the value of m, the stronger the
promotion of higher values of xi in the mean. The generalized-mean concept is
closely related to the Minkowski distance in Euclidean spaces and the values of
m = 1 and 2 are known as City-block and Euclidean distances respectively.

The proposed generalized Monge-Elkan measure is then expressed as follows:

simMongeElkanm (a, b) =

⎛

⎝ 1
|a|

|a|∑

i=1

(
max {sim′(ai, bj)}|b|j=1

)m

⎞

⎠

1
m

(3)

Other approaches implement similar heuristics such as soft-TF-IDF [7,16] and
the combination of the Dice coefficient with the Jaro-Winkler measure proposed
by Michelson and Knoblock [12]. Those approaches uses also an internal measure
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sim′ in order to determine the “soft” intersection A ∩ B between two sets of
tokens A and B, selecting pairs of tokens [ai, bi] having sim′(ai, bi) > θ. The
proposed generalization to the Monge-Elkan method avoids the need to establish
an a priori threshold for the internal measure sim′, implementing the promoting
heuristic without assumptions about the range of values of sim′.

Consider again the proposed example in Section 2. Whereas the final measure
of 0.5833 obtained with the original Monge-Elkan method seems to be very low
taking into account that sim′(a1, b1) is equal to 1. Consider using m = 2 (i.e.
quadratic mean or Euclidean distance) in the same pair of strings:

simMongeElkan2 (A, B) =
(

1
2

(
12 + 0.16662

)) 1
2 = 0.7168

This quadratic mean gives greater importance to the number 1 than to 0.1666.
The intuition behind the proposed approach is that values of m greater than 1
can improve the performance of the matching measure giving greater importance
to those pairs of tokens [ai, bi] that are more similar.

4 Experimental Evaluation

The aim of the experiments is to determine which values of m improve the perfor-
mance of the basic Monge-Elkan measure in a specific string-matching task. For
this, we take several name-matching data sets, establish a performance metric
for the matching task, select character-based measures, experiment with differ-
ent m, and evaluate the statistical evidence to assess the possible improvement
in the matching performance.

4.1 Experimental Setup

The name-matching task consists of comparing two strings that contain names,
addresses, telephone numbers, etc., in order to decide whether the two strings
refer to the same entity. A data set used for testing the name matching techniques
is usually represented as two sets of strings and a subset of their Cartesian
product that defines valid matches. Table 1 describes twelve data sets we used.
For each set, we give the total number of different strings in it, the size of the two
sets of strings (set1 and set2), the size of the Cartesian product of the two sets,
the number of pairs that are valid matches, and the total number of tokens.1 The
Animal data set was not originally separated into two relations, so the relations
were obtained using the 327 valid matches and the 689 strings involved in those
matches.

The strings in the data sets were not explicitly separated into tokens, there-
fore a tokenizing process was performed. We considered as separators of tokens
(words) the following characters: blank space, parentheses, equality sign, dash,
1 The data sets are from http://www.cs.cmu.edu/∼wcohen/match.tar.gz, except for

the two last ones, which are from http://www.isi.edu/∼michelso/data/bft_data.zip
and https://sourceforge.net/projects/febrl, respectively.
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Table 1. Data sets used for our experiments.

Name # records |set1| |set2| |set1| × |set2| # matches # tokens

Birds-Scott1 38 15 23 345 15 122
Birds-Scott2 719 155 564 87,420 155 3,215
Birds-Kunkel 336 19 315 5,985 19 1,302
Birds-Nybird 985 67 918 61,506 54 1,957

Business 2,139 976 1,163 1,135,088 296 6,275
Game-Demos 911 113 768 86,784 49 3,263

Parks 654 258 396 102,168 250 2,119
Restaurants 863 331 532 176,062 112 9,125
UCD-people 90 45 45 2,025 45 275

Animals 1,378 689 689 474,721 327 3,436
Hotels 1,257 1,125 132 148,500 1,028 9,094
Census 841 449 392 176,008 327 4,083

slash, coma, colon, and semicolon, as well as their sequences; leading and trailing
blank spaces were removed. The number of tokens obtained with this tokeniz-
ing procedure in each data set is reported in Table 1. Finally, all letters were
converted to uppercase, and French diacritics were removed .

We carried out 21 experiments for each data set, combining the three mea-
sures explained in Section 2 (bigrams, edit distance, and Jaro similarity) with
seven fixed values for he exponent m in equation 3: m =0.00001, 0.5, 1 (i.e. the
standard Monge-Elkan measure), 1.5, 2, 5, and 10.

4.2 Performance Metrics

The problem of matching between two sets of strings can be viewed as a classi-
fication problem over the Cartesian product of the sets. The training or testing
data set (a gold standard) provides a subset of the Cartesian product of the
two sets of strings judged by human annotators as valid matches (positives); its
complement is the set of non-valid matches (negatives). In each experiment, a
similarity measure value in the range [0, 1] is computed for each possible string
pair in the data set. In order to decide whether a pair is a valid match, it is
necessary to establish a threshold θ; the pairs of strings with the similarity value
greater than or equal to θ are labeled as positive and the rest as negative. For a
specific value of θ and a data set, four result sets are defined:

True positives: String pairs marked as valid matches in the gold standard and
labeled by the algorithm as positive.

True negatives: String pairs not marked as valid matches in the gold standard
and labeled by the algorithm as negative.

False positives: String pairs not marked in the gold standard as valid matches
but labeled by the algorithm as positive.

False negatives: String pairs marked as valid matches in the gold standard
but labeled by the algorithm as negative.
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We measure the performance of a classification task is in terms of precision,
recall, and F-measure (the harmonic mean between precision and recall) given
by the following expressions:

Precision =
|True positives|

|True positives|+ |False positives|

Recall =
|True positives|

|True positives|+ |False negatives|

F − measure =
2 × Precision × Recall

Precision + Recall

For each experiment (a combination of a string matching method and a
dataset) the number of true positives, false positives, and false negatives were
counted ranging the threshold θ form 0 to 1 with 0.01 increment, thus obtaining
101 values of precision, recall, and F-measure. Figure 2 plots the three measures
obtained in a typical experiment, showing the trade-off between precision and
recall: recall has a decreasing tendency, while precision is generally increasing.
The maximum value reached by the F-measure is known as F1 score; it is ob-
tained at the threshold θ with the best balance between precision and recall. F1
score can also be seen as a general performance measure of the experiment. F1
score is close to the intersection point of the precision and recall curves, which
is another general performance measure for the experiment; however, the F1
score measure is more commonly used. Finally, the F1 score metric reflects the
maximum balanced performance that a string measure can reach in a specific
matching task.

The same data can be used to plot a precision vs. recall curve, as shown
for a typical experiment in Figure 3. From this curve, it is possible to obtain

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

similarity threshold

recall precision F-measure

Fig. 2. Precision/recall/F-measure vs. threshold curves for a typical experiment
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Fig. 3. Example of precision-recall curve and its interpolated version

another general performance measure called interpolated average precision (IAP)
commonly used in information retrieval [2]. The interpolated precision at recall
point r is the maximum precision obtained at points with recall greater than or
equal to r. One method for computing IAP is to interpolate the precision vs.
recall curve at 11 evenly distributed recall points (i.e., 0, 0.1, 0.2, ...,1); the area
under the interpolated precision vs. recall curve is the IAP.

IAP is a good performance measure. Indeed, consider a classifier that obtains
precision and recall values of 1 at some θ. The interpolated precision-recall curve
becomes a step (i.e. 1 × 1 square) with its elbow at the point (1, 1); the area
under that curve is 1. Such a result is the best possible performance, which is
achieved by a perfect classifier.

IAP reflects the general performance of the string matching technique consid-
ering all possible values for the θ threshold. Although, in practical applications
only one value of the θ threshold is used, the performance metrics obtained con-
sidering the whole range of values of θ give an assessment of the convenience of
the measure for a specific matching problem. In summary, the F1 score metric
assesses the maximum possible performance at a fixed threshold and the IAP
metric assesses the ability of the classifier to separate the valid matches from
non-valid matches regardless the θ threshold.

In order to report a single value for both performance metrics (F1 score and
IAP) the results obtained from each dataset are averaged with weights according
with the total number of records on each dataset.

4.3 Results

The IAP and F1 score for each internal character-level similarity measure ob-
tained matching each one of the 12 datasets are plotted in Figure 4 and Figure 5,
respectively. The natural baseline for the proposed generalization for the Monge-
Elkan method is the original method, obtained when m = 1 (highlighted in the
plots with a dotted vertical line). The results show clearly that values of m below
1 obtain lower performance than the baseline in both metrics. All curves reach
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Fig. 4. Weighted Average IAP behavior of the exponent m in extended Monge-Elkan
method for each internal character-level string similarity measure
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Fig. 5. Weighted average F1 score by the exponent m in generalized Monge-Elkan
method for different internal character-level string similarity measures

their maximum performance at values of m above 1, showing that the original
method can be improved with the proposed generalization.

Additional baselines are provided in Figures 4 and 5 using directly (with-
out the Monge-Elkan method) the string measures edit distance, bigrams and
Jaro similarity for comparing the whole records disregarding any token splitting.
Those baselines allow comparing the used character-based measures against the
proposed method using the same measure as internal sim′ measure. The results
obtained with the IAP metric show that whereas the performance of the original
Monge-Elkan method is below those baselines, their generalized versions reach
the three baselines. Regarding F1 score, those baselines are clearly outperformed.
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5 Conclusions

We proposed a generalization of the Monge-Elkan method integrating the arith-
metic generalized mean concept to the original expression. That generalization
implements a heuristic of giving greater importance in the combined measure
to the pairs of tokens whose similarity is higher in comparison with the similar-
ity of other pairs. The proposed method was tested on 12 name-matching data
sets with three representative character-based string measures: bigrams, edit
distance, and the Jaro similarity. The results showed that the performance of
the original Monge-Elkan method can be improved for values of the generalized
mean exponent (m) above 1. Particularly, the best results were obtained with
m = 2 (i.e. Euclidean distance) for the measures bigrams and edit distance, and
m = 5 for the Jaro similarity when they are used as internal similarity measure
in the proposed method.

Additionally, the proposed method reached (and clearly outperformed in some
cases) the matching performance of the three character-based measures used in-
dependently. The original Monge-Elkan method fails to reach that baseline but
provides robustness against disordered and missing tokens. The proposed gen-
eralization keeps that robustness without compromising the matching perfor-
mance.

In future work, we plan to incorporate another non-static internal similarity
measures to the proposed method and evaluate its application to other tasks such
as word sense disambiguation, information retrieval and textual entailment.
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