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Abstract—This paper examines the class of generalized Morse
wavelets, which are eigenfunction wavelets suitable for use in
time-varying spectrum estimation via averaging of time-scale
eigenscalograms. Generalized Morse wavelets of order(the cor-
responding eigenvalue order) depend on a doublet of parameters
( , ); we extend results derived for the special case = = 1
and include a proof of “the resolution of identity.” The wavelets
are easy to compute using the discrete Fourier transform (DFT)
and, for ( ) = (2 2), can be computed exactly. A correction
of a previously published eigenvalue formula is given. This shows
that for 1, generalized Morse wavelets can outperform the
Hermites in energy concentration, contrary to a conclusion based
on the = 1 case.

For complex signals, scalogram analyses must be carried out
using both the analytic and anti-analytic complex wavelets or odd
and even real wavelets, whereas for real signals, the analytic com-
plex wavelet is sufficient.

Index Terms—Scalograms, spectrograms, time–frequency anal-
ysis, wavelet transforms.

I. INTRODUCTION

T HE continuous wavelet transform provides a method for
analysis of a signal ; working with a single, possibly

complex-valued, wavelet function , we can consider the
time-scale decomposition of a signal through the scalogram
(modulus-squared of the continuous wavelet transform)

which expresses the energy of the signal at any scale and
time . Here, denotes the complex conjugate of .

Consider for a moment the field of spectrum analysis of sta-
tionary stochastic and/or noisy signals. Research has shown [1]
that much can be gained by the following steps. A set of or-
thogonal data tapers is created, each giving rise to a different
spectrum estimate. These spectrum estimates can then be aver-
aged, and the resulting estimate is more interpretable since the
variance is much reduced. The same general approach can be
considered for scalogram estimation of stochastic and/or noisy
signals. We wish to use several orthogonal wavelets from which
we can create a set of different scalograms, which may be aver-
aged together to produce a low variance scalogram estimate.

This paper considers the genesis and properties of a set
of such orthogonal wavelets. We will approach the problem
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via solving a relevant eigenvalue problem and findtime-scale
eigenscalograms. An eigenscalogram is a scalogram, where the
wavelet is an eigenfunction derived from a time/frequency con-
centration problem. For an eigenproblem, a set of orthogonal
eigenfunctions are obtained, and we may label the firstof
these, ordered by corresponding eigenvalue, as having “orders”

. Using these eigenfunctions, a set of
eigenscalograms can be computed and averaged to produce the
time-varying spectrum estimate.

A classical concentration problem is to look for the signal
that loses the least energy after a truncation first in time and
then in frequency, and the concentration region is the Carte-
sian product . The solutions (eigen-
functions) of the resulting eigenequation are the prolate sphe-
roidal wave functions. Thomson [1] proposed the use of mul-
tiple discrete taper estimators of stationary spectra based on dis-
crete prolate spheroidal sequences. Frazer and Boashash [2] ex-
tended Thomson’s approach by segmenting the signal into qua-
sistationary portions and computing the stationary spectrum es-
timator for each portion.

This energy concentration problem is posed “in two times
one dimension,” and a general joint time-frequency perspec-
tive should relate to “one times two dimensions” (see [3, p.
315]). Bayram and Baraniuk [4], [5] treated the concentration
problem in this latter form, looking at time-varying spectrum
estimation via averaging oftime-frequency eigenspectrograms
(a spectrogram being the modulus-squared of sliding-windowed
complex sinusoids), using a set of Hermite eigenfunction win-
dows derived in [6] and optimally concentrated in a region of
the time–frequency domain.

Bayram and Baraniuk also looked at affine class time-scale
eigenscalograms, using a set of Morse eigenfunction wavelets,
which is discussed in [9] and optimally concentrated in a
region of the time–frequency domain, excluding zero fre-
quency. Generalized Morse eigenfunction wavelets of orders

depend on the choice of a doublet of
parameters (, ); when , the zeroth-order wavelet
is known as a Cauchy wavelet ([10, p. 29]). Bayram and
Baraniuk concentrated on the Morse eigenfunction wavelets
for .

In this paper, we carefully analyze the generalized Morse
wavelets (GMWs) for general and . Section II reprises the
time–frequency concentration problem for which the Hermite
eigenfunctions are the solution and shows that the energy con-
centration of the operator in the specified domain is given by the
squaresof the eigenvalues and not the eigenvalues themselves
(unlike in the prolate spheroidal wave function case). Section III
proves the “resolution of identity” and derives the operator asso-
ciated with the GMWs; the energy concentration is again given
by the squares of the eigenvalues. The form of the eigenvalues of
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the operator given here corrects the erroneous formula stated in
[9, p. 680]. Most importantly, from a practical perspective, we
show that the GMWs can outperform the Hermites in energy
concentration when ; this is contrary to the conclusion
in [5], which was based on the GMWs. The section con-
cludes by noting that for each eigenvalue,, ,
a pair of eigenfunctions (wavelets) are obtained, where one is
an analytic function and the second its (anti-analytic) complex
conjugate, and a computational method is given for their com-
putation from the frequency-domain formula. Section IV is con-
cerned with the fact that since the pair of wavelets can also be
written as an even and an odd wavelet, two alternative orthog-
onal partitions of are achieved. Evenness and oddness
are also interpreted in terms of time direction through the con-
tinuous wavelet transform. For the special case of even and posi-
tive and , it is shown that the zeroth-order even wavelets
can be found explicitly, in fact, in terms of Hermite polynomials
and the odd wavelets by Hilbert transformation.

Section V is concerned with the effect of the orthogonal sub-
spaces (even/odd or analytic/antianalytic) on the computation
of time-scaleeigenscalograms, which decompose the energy of
the signal. It is shown that for real-valued signals, a scalar ap-
proach is sufficient, using only the analytic wavelet, whereas
for complex-valued signals, a vector approach is needed, using
wavelets from both subspaces. With the results of this paper,
we conclude that the GMWs are a very useful multiple wavelet
class with wide applicability (e.g., [11]).

A. Important Notation and Definitions

The inner product of two complex functions is given
by , where denotes the com-
plex conjugate. We will need to work with both ordinary
frequency and angular frequency; the Fourier transform
of a function in terms of frequency or angular fre-
quency is here defined as
and , respectively. The inverse
Fourier transform is given by and

, respectively.

II. TIME–FREQUENCYDOMAINS

A. Operator

In order to deal with domains that are more general than
Cartesian products, Daubechies [6] used an approach based on
localization operators, and similar results can be found by con-
sidering related operators [7], [8]. The “coherent state” asso-
ciated with a point (, ) in time–frequency space is

. The choice (the Gabor wave
function) attains the Heisenberg–Gabor inequality: has
the best localization around a point (, ) and is used here. The
following “resolution of identity” holds for

Restricting the signal to a domain of time–frequency space
defines the operator , where

The ratio of the energy of the signal limited to the domain
, to that of the original is a real-valued quantity

, say

is positive and bounded by unity, and if is bounded, then
(see [6]) the operator is of trace class [12, pp. xvii, 37]. The
operator is also self-adjoint, i.e., , and
therefore, by the Hilbert–Schmidt theorem [13, pp. 203, 209],
there is a complete orthonormal basis for so that

.
Then, any function can be written

Let have unit energy .
As the spectrum of is purely discrete [6], we can order the
eigenvalues in size . Then

Clearly, is maximized for unit energy by taking
and . Hence, takes

its maximum value of for or a complex mul-
tiple thereof. If we want to find a function that maximizes

while retaining the normalization and such that
, , then results, with

maximized at .

B. Hermite Eigenfunctions

When corresponds to the disc of radiusabout the origin
in time-angular frequency space, i.e.,

, then the eigenfunctions take the form of scaled
Hermite polynomials [6]. Given the first two Hermite polyno-
mials and , subsequent ones can be gen-
erated from the recursion
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The orthonormal Hermite eigenfunctions take the form

(1)

(see [14, p. 93]). The corresponding eigenvalues are in
terms of the incomplete Gamma function

where denotes the usual gamma function, and the final
equality can be found in [15, eqn. 6.5.13].

If corresponds to a disc of radius about a point ( ,
2 ) in time-angular frequency space, then the eigenfunctions
become , .

III. T IME-SCALE DOMAINS

A. Operator

We will now develop the more complicated framework of
the generalized Morse wavelets. We begin with a version of the
Cauchy wavelets [10, p. 29] given by ( )

which has a Fourier transform of [16, eqn.3.382(7)]

if
otherwise.

Now, we introduce parameters , and let
. First, define a weight function associated

with a change of variables by

and, second, the frequency domain function

if
otherwise.

It follows from [16, sec.3.478(1)] that

or

(2)
Let us introduce translation and dilation parametersand

, respectively. (When the dilation parameter can only be
positive we will denote it by .) Now, we have (3), shown
at the bottom of the page.

In addition

Note that

(4)

Let denote the inverse Fourier transform of .
Then

where

Therefore, is a function that transforms the time param-
eter, and after this transformation has taken place, our new time
variable is dilated and translated. Note that when , time is
not altered before scaling and translating. Furthermore

if

if
(5)

and from (2) and (3), we see that has norm unity.
The following “resolution of identity” holds for

:

(6)

if
otherwise.

(3)
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where . This is proved in the Fourier
transform domain, i.e., we show in the Appendix that

(7)

Consider a symmetric bounded setof . Using the corre-
spondence

sign

for constants and , which will be defined later, we have

and define the operator , where , by

The positive self-adjoint operator is trace class since if we take
any basis of , then for finite

where we have made use of (5).
The ratio of the energy of the signal limited to the domain

to that of the original is . Then, by
the Hilbert–Schmidt theorem, there is a complete orthonormal
basis for so that and,
as shown in Section II-A, when the maximum energy
is . The function that maximizes while
retaining the normalization and such that ,

is simply , and is maximized at .

B. Area of Concentration

The resolution of identity can be rewritten in terms of the
positive parameter using (6)

or, because of (4) and (7), as

(8)

Then, in terms of and , if we have

we can rewrite our operator as

The domain over which the operator can
be characterized [9, p. 678] is given by

where and are

The region consists of two parts symmetrically placed
about the line, but the region never includes
since a wavelet is a bandpass filter; the wavelet transform treats
frequencies in a logarithmic fashion, and hence, cannot
include zero frequency, however largeis.

Under the change of variables

the set corresponds exactly to , i.e.,
in the half-plane defined by

, .
The area of may be derived as

The factor of 2 takes into account that both the equal-sized pos-
itive and negative frequency segments of are mapped to

with . We note that
when , agreeing with this special case given in [9,
eq. (3.11)].

When , is also zero, and then,satisfies
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Fig. 1. Left: Hermite eigenvalues� (R) (dashed) and Morse eigenvalues
� (C) for � =  = 1 (solid) for domains of area 10 (top) and 150 (bottom).
Right: Matching domainsD andD .

For , we have so that

As varies between and , the corresponding
value on the boundary of is given by ,
where , and . For ,
the boundary of the region is given by the obvious symmetry.

Fig. 1 shows the shapes of the domains and for
domain areas of 10 and 150, whereas Fig. 2 comparesand

.

C. Eigenvalues

The form of each eigenvalue of depends on and
(through ) and on . Unfortunately, the formula for the

th-order eigenvalues , say, stated in [9, p. 680], is in-
correct and may have led Bayram and Baraniuk [5, p. 306] to
conclude that “no closed form expression exists for the eigen-
values for any choices of and other than .” A
rederivation shows that in fact

The incomplete beta function is defined as [15, eqn. 6.6.1]

Fig. 2. Left: Hermite eigenvalues� (R) (dashed) and Morse eigenvalues
� (C) for � = 20,  = 3 (solid) for domains of area 10 (top) and 150
(bottom). Right: Matching domainsD andD .

so that . Further, when
is an integer, we can write [15, eqn. 25.5.7]

agreeing with the special case (or ) given in
[9, eqn.4.6].

The energy concentration corresponding to theth Hermite
eigenfunction and theth Morse eigenfunction is, as we have
seen, given by the square of theth eigenvalue. With ,
which is the nongeneralized Morse case, we see in Fig. 1 that the
Hermite eigenfunctions outperform the Morse ones, agreeing
with [5]. However, it is easy to find many values ofand
from the generalized Morse forms, for which the reverse is true:
an example being and , as shown in Fig. 2. It is
the property that is crucial to obtaining high energy con-
centrations, in particular, exceeding that of the Hermite eigen-
functions; therefore, the generalized Morse forms with
are critically required for this reason.

D. Analytic and Anti-Analytic Eigenfunctions

The space can be written as the direct sum of two
closed subspaces and

(9)

Here, elements of the projection are defined
by , and elements of the projection

are defined by
[10, p. 28], where denotes the Hilbert transform. We see
that the subspace contains “analytic signals,” i.e., func-
tions for which the imaginary part is the Hilbert transform of
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the real part. A key property of an analytic signal is that its
Fourier transform is supported by the positive frequencies only.
The subspace contains “anti-analytic signals,” that are
supported on the negative frequencies only.

The th eigenvalue of has multiplicity two with as-
sociated Hermitian eigenfunctions , which is an ana-
lytic wavelet, and , which is an anti-analytic wavelet,
both of norm unity. The Fourier transforms of these functions
arereal-valuedon the positive and negative frequency axes, re-
spectively, with [9, p. 679]

(10)

for and zero otherwise, and

for and zero otherwise. Here, and
, and denotes the generalized

Laguerre polynomial

Notice that and since the Fourier
transforms are real, this means that and are
complex conjugates, as expected. We will call and

the th-order generalized Morse eigenfunctions or
wavelets.

E. Computation of

To get a finely sampled representation of the complex wavelet
, we first find a frequency value that is up to twice

as large as the frequency at which dies down to zero.
Next, define for a suitably large power of 2 (such as 512)

for

for

where is a larger power of 2 than , e.g., take .
Then, for , a periodic representation of the
complex wavelet is given by

with . Since , it is found

that . Finally, is found by

rotating to be centered on zero, and is found by
complex conjugation.

IV. GENERALIZED MORSEWAVELETS

A. CWT and Even and Odd Wavelets

The function to be analyzed and the wavelet are
both assumed to be finite-energy functions, i.e., ,

. The continuous wavelet transform (CWT) is defined as
[12, p. 24]

Negative scales correspond to time-reversed wavelets, e.g., for

We can write any wavelet as

say

i.e., a sum of an even wavelet
and an odd wavelet . Reversing
time when using an even wavelet has no effect, and thus, the
odd part of the wavelet picks up any asymmetry in time. For the
CWT with

corresponds to time flowing in the same direction
for and ; corresponds to time flowing in op-
posite directions.

B. Generalized Morse Wavelets

The two th-order generalized Morse eigenfunctions can be
combined to give two real Morse wavelets—one even and one
odd—for each eigenvalue, with Fourier transforms

The corresponding even and oddth-order generalized Morse
wavelets are given by

with , , and analytic wavelet

The real part of being even and the imaginary part
being odd, of course, results in its Fourier transform
being real-valued, as already noted.

For a real function , the even and odd wavelet transform
components can be recovered from the real and imaginary parts
of the complex CWT.
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Fig. 3. Left: Even (solid) and odd (dashed) generalized Morse wavelets for
� = 5,  = 2, for (top)k = 0, (middle)k = 1, and (bottom)k = 2. Right:
Corresponding frequency function	 (f).

We have already obtained a partition of in terms of
the analytic and anti-analytic wavelets and

[see (9)]. The even and odd wavelets and
enable us to create a different orthogonal partition of ,
which can be considered to be the direct sum of a time direction
invariant space (even functions) and a time direction sensitive
space (odd functions). The advantage of this partition is that

and are real functions. An example of even
and odd generalized Morse wavelets is given for and

in Fig. 3, along with the corresponding frequency function
defined in (10).

C. Time-Domain Eigenfunctions

For the special case of , , and , we can
explicitly find the eigenfunctions in the time domain. We look
at the case ; for , the same approach can be used,
but it will be more complicated. Consider

We know from [16, sec.3.462] that

where is the parabolic cylinder function. In addition, from
[16, sec.9.253], we have ,
where are again the Hermite polynomials (see Section II-B).

Hence

so that

From (1), we can see that is proportional to
, where is the th orthonormal

Hermite eigenfunction introduced in Section II-B. A finely
sampled version of can be computed by applying
a numerical Hilbert transform (e.g., [17, p. 361]) to a finely
sampled version of .

V. EVEN, ODD, AND COMPLEX WAVELETS AND SCALOGRAMS

A. Eigenscalograms

For a set of wavelet eigenfunctions , ,
we can define a multiple window time-varying spectrum esti-
mate derived from a real-valued function as the eigenscalo-
gram [4], [5]

where the are weights. For example, using Morse wavelets,
we could set (the energy concentration measure)
for chosen values of , (and, hence,), and .

B. Real Signals

Let . Then, with real-valued, the use of
the complex-valued Morse wavelet means that

so that

so the eigenscalogram can be viewed asimplicitly making use
of both the wavelet and the wavelet. It is also
straightforward to show that may be alternatively
written as
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Fig. 4. Top row, left to right:jW (a; b; x;  )j , jW (a; b;x;  )j , and their sum. Bottom row, left to right:jW (a; b;x;  )j , jW (a; b;x;  )j ,
and their sum.

via the other partition of . Note for real-valued

The even/odd partition is illustrated in Fig. 4, which shows
the analysis of the real-valued signal shown
in Fig. 3. With weights of unity, the figure first shows (for
order ) and ,
illustrating that the even and odd components occupy
separate parts of time/scale space and, second, shows
their sum, with energy distributed over a domain of form

(see Section III-B).
Corresponding plots for order are also shown; we notice
that because of the orthogonality of the eigenfunctions, there is
now a “hole” at the point where the order eigenscalogram
showed highest energy concentration. The higher order also
leads to more dissipated energy concentration.

C. Complex Signals

If is complex-valued, i.e., , say,
then we find that in this case

This illustrates that when dealing with the most general form
of signals (complex) and using orthogonal subspace representa-
tions, we need to makeexplicit use of both orthogonal compo-
nents for . (Note that .) If is the
direct sum of two orthogonal subspaces, we can composite our

eigenfunctions into

For example, we could have

or

The integrated norm of equals unity. We then consider a
vector form of the CWT; for

Now, the vector components here can be considered to be the
function s contribution at each point (, ) in each orthog-
onal subspace. These contributions are orthogonal and, hence,
cannot be added. The scalogram at (, ) can be considered to be
the “energy” of the function at ( , ). Therefore, if we have
decomposed into orthogonal subspaces of , then we
must add each contribution of the energy. The energy is thus
simply the norm squared of the vector :

VI. EXAMPLE

To illustrate the improved interpretability and lower variance
resulting from using several wavelets in a scalogram computa-
tion, we consider the following model for the real-valued signal

:

where is Gaussian noise with mean zero and variance unity.
One realization of 256 samples at unit sample interval starting
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Fig. 5. From left to right, the noisy signalx(t), log of the scalogram of the noisy signal using the single Morse wavelet (t), andlog of the average
scalogram using the three Morse wavelets (t),  (t), and (t), with � = 2 and = 1:1.

from zero is shown in Fig. 5. The scalograms (on a scale) of
thenoisysignalusing thesingleMorsewaveletand thesimple
average scalogram using the three Morse wavelets, , and

are also shown. The average scalogram using the multiple
wavelets produces a much cleaner and more interpretable image,
revealing the noise-free components of .

VII. CONCLUSIONS

Our results show that the GMWs have a considerable po-
tential in digital signal processing. A set of orthogonal (eigen-
function) wavelets are exactly what is required for scalograms
formed by weighted averaging. For complex signals, scalogram
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analyzes must be carried out using both the analytic and anti-an-
alytic complex wavelets or odd and even real wavelets, whereas
for real signals, the complex analytic wavelet is sufficient. The
wavelets are easy to compute using the DFT and, for

, can be computed exactly. Our correction of the previ-
ously published eigenvalue formula shows that for , they
can outperform the Hermites in energy concentration.

The complex nature of the wavelets makes them ideal for an-
alyzing phase relationships in vector-valued or multicomponent
time series [11].

APPENDIX

RESOLUTION OFIDENTITY

Recall that is defined as

if
otherwise.

Hence, our integral over in and will collapse to two in-
tegrals: one over in and and one over in and .
Let , where . Then, we
have the equation at the bottom of the previous page, and the
last integral follows from [16, eqn.3.478(1)].
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