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Abstract. We present an approach that significantly enhances the capabilities of traditional image mosaicking.
The key observation is that as a camera moves, it senses each scene point multiple times. We rigidly attach to the
camera an optical filter with spatially varying properties, so that multiple measurements are obtained for each scene
point under different optical settings. Fusing the data captured in the multiple images yields an image mosaic that
includes additional information about the scene. We refer to this approach as generalized mosaicing. In this paper
we show that this approach can significantly extend the optical dynamic range of any given imaging system by
exploiting vignetting effects. We derive the optimal vignetting configuration and implement it using an external
filter with spatially varying transmittance. We also derive efficient scene sampling conditions as well as ways to self
calibrate the vignetting effects. Maximum likelihood is used for image registration and fusion. In an experiment we
mounted such a filter on a standard 8-bit video camera, to obtain an image panorama with dynamic range comparable
to imaging with a 16-bit camera.

Keywords: sensors, inverse problems, image fusion, mosaicing, mosaicking, machine vision, physics based
vision, SNR, vignetting, panorama

1. Generalized Mosaics

Image mosaicing1 is a common method to obtain a
wide field of view (FOV) image of a scene (Hsu
et al., 2002; Irani et al., 1996; Smolić and Wiegand,
2001). The basic idea is to capture images as a cam-
era moves and stitch these images together to obtain
a larger image. Image mosaicing has been applied to
consumer photography (Peleg et al., 2001; Sawhney
et al., 1998; Shum and Szeliski, 2000), and in optical
remote sensing of the Earth (Bernstein, 1976; Hansen
et al., 1994) and of other objects in the solar system
(Batson, 1987; Soderblom et al., 1978; Vasavada et al.,
1998). It has also been used in various other scien-
tific fields, such as optical observational astronomy
(Lada et al., 1991; Uson et al., 1990), radio astronomy

(Reynoso et al., 1995), remote sensing by synthetic
aperture radar (SAR) (Curlander, 1984; Kwok et al.,
1990), and underwater research (Ballard, 2001; Eustice
et al., 2002; Garcia et al., 2001; Negahdaripour et al.,
1998).

As depicted in Fig. 1, traditional image mosaicing
mainly addressed the extension of the FOV, while other
imaging dimensions were not improved in the process.
We show that image mosaicing can be generalized to
extract much more information about the scene, given
a similar amount of acquired data. We refer to this ap-
proach as generalized mosaicing. The basic observa-
tion is that a typical video sequence acquired during
mosaicing has great redundancy in terms of the data
it contains; as the camera moves, each scene point is
observed multiple times. We exploit this fact to extend
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Figure 1. By stitching partly-overlapping frames, a traditional image mosaic extends the field of view of any camera without compromising
the spatial resolution. However, other imaging dimensions, such as dynamic range are usually not improved.

Figure 2. Scene point A is imaged on the detector at A′ through a spatially varying filter attached to the camera. As the imaging system moves,
each scene point is sensed through different portions of the filter, thus multiple measurements are obtained under different optical settings.

the radiometric dynamic range of the camera via its
motion. Consider the setup shown in Fig. 2. A fixed fil-
ter with spatially varying properties is rigidly attached
to the camera. Hence, as the camera moves (or sim-
ply rotates), each scene point is measured under differ-
ent optical settings.2 This simple modification of the
imaging system significantly reduces the redundancy
in the captured video stream. In return, more infor-
mation about each point is embedded in the acquired
data. Except for mounting the fixed filter, the image
acquisition in generalized mosaicing is identical to tra-
ditional mosaicing. When a filter with spatially vary-
ing transmittance is attached to the camera, each scene
point is effectively measured with different exposures

as the camera moves, although the global exposure
settings of the system are fixed. These measurements
are combined to obtain a high dynamic range (HDR)
mosaic.

In the following sections we describe the extension
of the dynamic range and the FOV in a unified frame-
work.3 We review the previous approaches to HDR
imaging in this framework, and show that they cover
only part of the spatio-intensity space which is intro-
duced here. We then discuss the optimal filter config-
uration and efficient sampling criteria. Figure 3 shows
prototype systems we built. In an experiment, a stan-
dard 8-bit black-and-white video camera and a spatially
varying transmittance filter were combined to form a
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Figure 3. Two generalized mosaicing systems. (Left) A system composed of a Sony black/white video camera and an extended arm which
holds the filter. (Right) A system that includes a Canon Optura digital video camera and a cylindrical attachment that holds the filter. In both
cases, the camera moves with the attached filter as a rigid system.

mosaicing system with dynamic range comparable to a
16-bit camera. Moreover, the vignetting effects of the
system were self calibrated from the image sequence
that composed the mosaic.

2. Mosaicing in the Spatio-Intensity Space

In many scenarios, object radiance changes by many
orders of magnitude across the FOV. For this reason,
there has recently been an upsurge of interest in obtain-
ing HDR image data, as we detail in Section 3, and in
their representation (Durand and Dorsey, 2002; Fattal
et al., 2002; Larson et al., 1997; Pardo and Sapiro, 2002;
Socolinsky, 2000). On the other hand, raw images have
a limited optical dynamic range (Ogiers, 1997), set
by the limited dynamic range of the camera detector.
Above a certain detector irradiance, the images become
saturated and their content at the saturated region is lost.
Attenuating the irradiance by a shorter exposure time, a
smaller aperture, or a neutral (space invariant) density
filter can ensure that all the image points will be unsat-
urated. However, at the same time other information is
lost since light may be below the detection threshold
in regions of low irradiance.

In our approach to extend the dynamic range, we
mount a fixed filter on the camera whose intensity trans-
mittance varies across the filter’s extent, as in Figs. 2
and 3. This causes an intended vignetting. Including
vignetting effects originating from the lens, the overall
effect is equivalent to spatially attenuating the image
by a mask M(x), where x is the axis along which the
mask is changing.4

Now, let the scene be scanned by a general motion
of the camera. For example, the camera can be rotated
manually or using a motorized turntable. The moving
system attenuates the light from any scene point dif-

ferently in each frame. Effectively, the camera cap-
tures each point with different exposures during the se-
quence. Therefore, the system acquires both dark and
bright areas with high quality while extending the FOV.
It may be viewed as introducing a new dimension to
the mosaicing process (Fig. 4) for better describing
the plenoptic function (Adelson and Bergen, 1991).
This dimension leads to the introduction of the con-
cept of the spatio-intensity space. In Fig. 4, the spatio-
intensity support of a single frame occupies a diago-
nal region in the spatio-intensity space. This occurs if
the log of the transmittance varies linearly across the
FOV.

Let the minimal irradiance that can be sensed by
the detector above its noise at darkness (for the given
camera specifications) be I detector

min . This determines the
minimal irradiance that can be sensed by the entire sys-
tem for max M = 1 (transparency). Let the maximum
irradiance that the detector can measure without sat-
uration be I detector

max . The optical dynamic range of the
detector in base 2 (bits) is then

DRdetector = log2
I detector
max

I detector
min

. (1)

Typically, DRdetector = 8 bits. The maximum irradiance
that the entire system can sense without being saturated
is when the detector yields its maximum output under
the strongest attenuation (that is, with the smallest value
of the mask M): I system

max = I detector
max /min M . Therefore,

the optical dynamic range of the system is

DRsystem = log2
I system
max

I detector
min

= DRdetector − log2(min M)

= DRdetector + log2[max(1/M)]. (2)
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Figure 4. The same procedure of image mosaicing coupled with exploiting vignetting effects yields HDR image mosaics. Besides the FOV, it
also extends the camera intensity dynamic range, without compromising the definition (quantization level density) at any intensity range. The
dynamic range is extended at all scene points, irrespective of the intensity of their surroundings.
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Figure 5. Outside the main region of interest the mosaic provides additional information about the scene periphery, whose quality gradually
coincides with that of a single frame. This figure, as in Fig. 4, describes a system where each frame occupies a diagonal region in the spatio-intensity
space.

High definition intensity may be obtained for all
the pixels in a wide FOV image mosaic. In addi-
tion, information becomes available about the periph-
ery of the central region of interest: the periphery has
a smaller dynamic range, but at least the standard dy-
namic range of the detector (Fig. 5). Such a structure
is analogous to foveated imaging systems, in which
the acquisition quality improves from the periphery to-
wards the center of the FOV. The periphery is at most
one frame wide, and it diminishes in 360◦ panoramic
mosaics.

3. High Dynamic Range: Previous Approaches

A common approach to avoid saturation and extend
the dynamic range is to take multiple exposures of
the scene. Note that there is an analogy between the
extension of the FOV and the extension of dynamic
range. Each is dealing with a different dimension of
the spatio-intensity space depicted in Figs. 1 and 4–6.
Traditional mosaicing addresses the spatial dimension.
On the other hand, fusion of differently exposed images
(Burt and Kolczynski, 1993; Debevec and Malik, 1997;
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Figure 6. Previous approaches to HDR imaging as represented in the spatio-intensity space. (Left) Fusing differently exposed images taken
with a static camera improves the dynamic range in a limited FOV. (Right) If the camera gain adapts to the global scene radiance by AGC, the
dynamic range is extended over the global mosaic, but not at each point. Scene points may still be saturated or dark if their intensity resides
below or above the local intensity range covered by the mosaic.

Mann and Picard, 1995; Mitsunaga and Nayar, 1999)
addresses the intensity dimension (see the left side of
Fig. 6). In that method, images are acquired sequen-
tially with a static camera, hence the dynamic range is
extended in a fixed FOV. A related approach to HDR
is based on specialized hardware, where a mosaic of
neutral density filters is placed on the detector (Nayar
and Mitsunaga, 2000). This configuration trades the
spatial resolution for the extension of the optical dy-
namic range. Moreover, it requires the modification of
the inner parts of the imaging system.

It is possible to enlarge the captured FOV without
mosaicing using a wide FOV lens. In analogy, there
are ways to have extended dynamic range at each point
and time, without combining images taken with dif-
ferent exposures. CMOS detectors may be manufac-
tured to yield an electronic output logarithmic to the
light intensity (C-Cam sensors; Davis, 1998; Ogiers,
1997; Schwartz, 1999). Nonlinear transmittance hard-
ware (Khoo et al., 1999; Tabiryan and Nersisyan, 2002)
can extend the dynamic range of any given detector
by having a lower transmittance for higher light in-
tensities. In these ways, high intensity can be sensed
unsaturated. However, just as using a wider FOV lens
with a given camera reduces the spatial resolution at
which the scene is captured, using nonlinear response
reduces the resolution at which the intensity is mea-
sured. The intensity information is compressed, since
some quantization levels devoted to the lower inten-
sities are traded for sparse samples of the high in-
tensity range. Thus, extending the optical dynamic
range in images without compromising the resolution
of the intensity measurement requires fusion of several
images.

In the realm of mosaicing, simultaneous extension of
the FOV and dynamic range by exploiting the automatic
gain control (AGC) feature of a camera was proposed in
Mann (1996). However, AGC has a global (or, at best
regional) effect and does not guarantee the required
measurements at all scene points. For instance, a very
bright scene point may remain saturated throughout
the image sequence if it happens to be surrounded by
a large dark area. Similarly, a dim point may remain
dark throughout the sequence when it is surrounded by
a bright area (see the right side of Fig. 6).

The generalized mosaicing approach extends the
FOV and the dynamic range simultaneously, without
compromising the spatial or intensity resolution. In
addition, the amount of data gathered is similar to
that gathered for a traditional image mosaic. General-
ized mosaicing can be combined with some of the ap-
proaches mentioned above. Cameras that incorporate
detectors having a logarithmic response (CMOS cam-
eras), and/or nonlinear transmittance filter (as in Khoo
et al. (1999) and Tabiryan and Nersisyan (2002)) placed
on the sensor, and/or electronic AGC mechanisms can
also exploit the proposed method to further extend the
optical dynamic range of the overall system. Gener-
alized mosaicing results in HDR information at each
scene point. Therefore, different exposures of the scene
can then be artificially rendered as if the scene was
acquired multiple times in a traditional (not filtered)
mosaicing process. In addition, the HDR information
can be processed for high fidelity display, by one of
the methods described in Burt and Kolczynski (1993),
Durand and Dorsey (2002), Fattal et al. (2002), Larson
et al. (1997), Pardo and Sapiro (2002), and Socolinsky
(2000).
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4. Image Acquisition

Although data acquisition in generalized mosaicing is
similar to that of traditional mosaicing, the raw data
is unlike any other video sequence. This is due to the
spatially varying properties of the optical attachment.
We are thus confronted with the following questions:

1. Which configuration of the optical filter is most suit-
able to gather the information?

2. What is the efficient sampling rate of the scene scan
to acquire each point at high intensity definition in
a minimal number of frames?

3. How can such images be registered?
4. How can the information from all the registered im-

ages be fused to give a single, high definition value
to each scene point?

5. How can we achieve auto-calibration of the light
modulation of the entire system, given the acquired
sequence?

We address the first two questions in this section, while
the other ones will be addressed in Sections 5–7.

4.1. The Filter Modulation

The filter has to significantly change the attenuation of
light across the camera FOV. From the unlimited possi-
bilities for such filters, we mainly consider two config-
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Figure 7. The simple occluder blocks all the light that comes from C , part of the light that comes from B, but doesn’t block A. The transition
is gradual. Therefore, the system has a strong vignetting effect. This vignetting can be exploited to enhance the dynamic range as the system
moves.

urations: The simple occluder, and the linear variable
density filter. The simple occluder is a piece of opaque
material that completely blocks the light rays hitting
it. Since it doesn’t occlude all the rays that enter the
lens (Fig. 7), and because of the finite aperture of the
lens, its effect on the light coming from the scene to
the detector is gradual. Therefore this is a simple way
to obtain intended vignetting.

If the occluding edge is along the y axis, the trans-
mittance varies along the x direction. Let us model
the occluder’s transmittance as a step edge: f = 1 for
x < 0, and f = 0 otherwise. Following (Marshall et al.,
1996) the scene radiance undergoes a spatially varying
attenuation by a mask M that can be modeled5 as

M(x, y) = f (x, y) ∗ h(x, y). (3)

Here h(x, y) is the defocus blur point spread func-
tion of the camera for objects as close as the filter,
when the system is focused at the distant scene. For
circularly symmetric point spread functions the mask
is practically a one dimensional function of x , and
f is convolved with h̃, the Abbel transform of h.
For example, if the kernel is modeled by a Gaussian
(Rajagopalan and Chaudhuri, 1995; Surya and
Subbarao, 1993) then h̃ is a Gaussian of standard devia-
tion �x , and M(x) = erf(−x/�x), as plotted at the top
of Fig. 8. Since M(x) takes any value between 0 and 1,
then in principle any scene point can be imaged unsatu-
rated, no matter how bright it is, if it is seen through
the filter at the appropriate location. Therefore, this
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Figure 8. (Top) The effective transmittance mask of a blurred simple occluder (solid line), and the transmittance of a linear variable density
filter (dashed). (Bottom) The blurred simple occluder does not change significantly the order of magnitude of the transmittance across a large
part of the field of view. The most significant changes occur in a narrow part. In contrast, the order of magnitude of the transmittance changes
at a constant rate if a linear density filter is used.
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simple system can have, theoretically, an infinite
dynamic range.6

However, the simple occluder has significant disad-
vantages. Most notably, the attenuation order of mag-
nitude is not constant across the mask. When we view a
scene having high contrast we are interested in the def-
inition of the intensity in orders of magnitude. Camera
f# stops are ordered so that each stop increase leads
to doubling of the measured intensity. In digital cam-
era detectors, this corresponds to a shift of 1 bit in the
binary representation of the measurement: If the mea-
surement of the light intensity in a 8 bit camera is,
say, 00011010, then an increase of one stop will lead
to a corresponding readout of 0011010(0), where the
new least significant bit is the information added by the
new image. However, the simple occluder mask does
not give us such an equal division of the attenuation
by orders of magnitude (see the bottom of Fig. 8). In
fact, most of the spatial extent of the mask will yield
a very slow change in the order of magnitude of M ,
while most of the change will occur in a rather narrow
region.

The optimal mask for achieving an equal distribu-
tion of orders of magnitude is one in which the atten-
uation changes exponentially across the camera FOV.
Then, log2 M(x) ∝ x . In this configuration, a constant
scanning increment will yield a constant change in the
order of magnitude of the measured intensity, and all
intensity ranges are sampled equally (Fig. 8). Such a
behavior can be approximately achieved by attaching
a linear variable density filter (Edmund Industrial Op-
tics, 2002) to the camera at some distance in front of the
lens.7 This is because the filter transmittance (Edmund
Industrial Optics, 2002) is 10−density.

As in the case of the simple occluder, the characteris-
tics of the mask M are a blurred version of those of the
filter. This actually adds to the flexibility of the setup:
the filter’s characteristics can effectively be tuned by
changing its smoothing via controlling the lens aper-
ture. Moreover, the linear variable density filter can be
approximated by a stepped density filter (Edmund In-
dustrial Optics, 2002), since the defocus blur of the
steps will make the effective mask have characteristics
similar to those of the continuous filter.

4.2. Efficient Sampling Criteria for Still Images

Overlapping corresponding areas in different frames
can increase the dynamic range, but decrease the rate

of FOV expansion. Thus at first sight, it may appear
that there is a tradeoff between the FOV and the en-
hancement of dynamic range. In this section we show
that the price paid in FOV expansion is limited. We
can distinguish between two cases: video streams and
still images. In video, inter-frame motion is typically
very small, otherwise motion blur degrades the images.
Thus, video cameras move slowly in order to create
high quality mosaics. Then, extension of the FOV re-
quires the acquisition of a lot of raw images, even if
only a small part of them is actually used for mosaic-
ing. Consequently, generalized mosaicing and dynamic
range enhancement do not cause an increase in the num-
ber of acquired images.

Raw still images, such as those acquired for remote
sensing and astronomy applications, can have arbi-
trary magnitudes of mutual displacement, or other co-
ordinate transformations. We thus cannot assume that
frame displacements are small. Nevertheless, signifi-
cant areas in the FOV of each frame overlap with other
frames in order to facilitate image registration. This
overlap can then be exploited for extending the ra-
diometric dynamic range. Nevertheless, there may be
cases in which the overlap region between frames is in-
significant. Then, indeed, extension of the FOV can be
achieved with a smaller number of frames, while HDR
measurements across the FOV are not performed. In
such scenarios we will need more images to extend
the dynamic range, than in traditional mosaicing. The
question is, how many more frames are needed? Alter-
natively, we may ask, what should the frame displace-
ments be, or, how many times should each scene point
be seen?

Let I be the light intensity that falls on the de-
tector (irradiance) when the transmittance is maximal
(M = 1). We assume it satisfies I detector

min ≤ I ≤ I system
max ,

i.e., that it is within the dynamic range of the entire sys-
tem. We need at least one measurement of this point in
a state that is not saturated, and at the same time above
the detector’s threshold (not dark) under the mask op-
eration. We term this state the effective state.

We may use a scan for which there is either 1
or 2 effective states for each point in the entire se-
quence. Consider the spatio-intensity space depicted
in Fig. 9. In order to have no point saturated, or too
dark at the end of the scan, this space should be cov-
ered completely by the spatio-intensity support of the
frames. The most efficient way to cover the space is by
tiling the frames with minimal spatio-intensity overlap.
This yields the most efficient scan, where the optical
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Figure 9. All frames have the same spatio-intensity support. They are tiled with minimal overlap, hence the intensity dynamic range of the
measurements is extended maximally between consecutive frames. Most scene point are imaged only once in a state that is unsaturated and at
the same time not dark: Points A and B in Frame I, Point C in Frame II, and Point D in Frame III. The other measurements of these points are
either too dark or too bright.

dynamic range of the measurements is extended maxi-
mally at each increment. Each point should be sampled

DRsystem/DRdetector� times.

In Fig. 9, all frames have the same spatio-intensity
support as Frame IV. There is some overlap in the tiling
at the regions corresponding to max M and min M (the
lower and upper intensity ranges). However, for most
intensities, each scene point is acquired only once in
the effective state. For example, Points A and B are
in this state in Frame I, are saturated in Frames II
and III, and outside the camera FOV in Frame IV.
Point C is in the effective state in Frame II, while be-
ing too dark in Frame I and saturated in Frames III
and IV.

However, this sampling has obvious shortcomings.
A point measured closely above the detector thresh-
old is indeed in an effective state, but is relatively very
noisy. This is because the mask attenuated its inten-
sity to be of similar order of magnitude as the detector
noise. On the other hand, a point measured closely be-
low the detector saturation (thus also in an effective
state8 ) is much more intense than the detector noise.
Therefore, this measurement has a high quality, and
contains a maximal number of significant bits. For ex-
ample, in Fig. 9, Points C and D have the same in-
tensity. However, the only effective state measurement

of Point C is very dark, hence relatively very noisy.
This is in contrast to Point D for which the effective
state is bright and thus has high signal to noise ratio.
Moreover, the fact that the redundancy between the
frames is so minimal may make it hard, if not impos-
sible, to register them. Therefore, it may be better to
use a somewhat more dense sampling rate, as described
below.

Each change of a full stop (attenuating by 2) is equiv-
alent to a 1 bit shift in the binary representation of the
measurement within DRdetector. An increment of a fac-
tor of 2 between consecutive measurements yields, for
each scene point, one measurement relatively close to
saturation. The representation of this bright measure-
ment contains a maximal number of significant bits.
This leads to a “high quality scan”.

To clarify, consider an example in which DRdetector =
8 bits and min M = 1/64, hence DRsystem = 14 bits.
Let a scene point yield the binary value 11111111 when
M = 1 and 10111001 when M = 1/2. Then the former
measurement is saturated while the latter is not. Obvi-
ously for M = 1/64 (shift of 5 more bits to the right) the
measurement will yield 00000101. The 14 bits repre-
sentation of the irradiance is thus 0000010111001(0),
where the unknown least significant bit is in paren-
thesis. On the other hand, in the most efficient scan in
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Figure 10. The frames are similar to those in Fig. 9. However, their spatial displacement is smaller, leading to smaller increments of exposures
for each scene point. For each point, the best frame is that at which it is brightest, but not saturated. For Point A it is Frame II. For Point B it is
Frame IV, since it is sensed darker in the other frames.

which the optical dynamic range is extended maximally
at each increment, only the measurements correspond-
ing to M = 1 and M = 1/64 are used. Then, the result-
ing 14 bits representation is 00000101(000000) with
many more unknown bits (in parenthesis), thus with
much lower quality than the result obtained using the
high quality scan.

This high quality scan of the spatio-intensity space
is depicted in Fig. 10. It is similar to Fig. 9, but the spa-
tial displacement between the frames is smaller, lead-
ing to a denser sampling of the intensity range. Point
A is in an effective state both in Frame I (dotted cir-
cumference) and in Frame II. However, in Frame II
it appears bright and thus in high quality. Point B is
in an effective state in all frames. However, it is best
captured in Frame IV (solid circumference), less so in
Frames II and III (dashed circumference) and least in
Frame I.

The maximal number of valuable bits is obtained
with factor 2 increments of the transmittance. Us-
ing the linear variable density filter the high qual-
ity sampling increment can be linearly translated to
the actual displacement between consecutive frames.
When max M = 1 each scene point is imaged at
least

1 − log2(min M) (4)

times. In practice it is desirable to regard Eq. (4) just as
a rule of thumb, and use a somewhat denser sampling
rate. Redundancy will not only enable less noisy irra-
diance estimation but is essential for stable registration
of image sequences. Moreover, we stress that the mo-
tion is general (i.e., not limited to rotation about the
camera’s center of projection) thus the transformation
between frames is generally not periodic translation.

Finally, we would like to point out the possibility for
“super-resolution” in the intensity domain. The mask
acts as an analogue computational device, and can
therefore provide better quantization accuracy than a
single measurement in many cases. For example, the
image values 96.8 and 97.2 are indistinguishable by
the integer quantizer of the camera, and both will yield
the output value of 97. However, using M = 1/2 the
camera yields the integer values 48 and 49, respectively,
hence giving the required discrimination. In another
example, 95.8 and 96.2 can be distinguished using the
result of sensing with M = 2−6, that is, using 7 images.
In general, the more images used, the better the inten-
sity resolution of the fused estimate. This is another
advantage of dense sampling of the scene intensity. In
the fusion method which we describe in Section 6, all
the multiple measurements of each scene point are in-
deed fused to improve the accuracy of the estimated
image value.
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5. Self Calibration of the Effective Mask

5.1. Crude Estimation

Even if the properties of the mask are not calibrated
before the image sequence has been acquired, it is pos-
sible to calibrate it “on the fly”, from the sequence
itself, even during the acquisition. We assume that the
intensity readout is linearly related to the intensity, and
discuss the implications of nonlinear radiometric re-
sponse in Appendix A.2. Let I be the intensity of light
that falls on the detector (irradiance) had the mask been
totally transparent (M = 1). In the presence of the mask
the intensity readout9 is

g(x, y) = M(x, y)I (x, y). (5)

Imaging a very large ensemble of scenes, the expecta-
tion of the readout at each pixel (x, y) is

〈g(x, y)〉 = M(x, y)〈I (x, y)〉, (6)

where 〈I (x, y)〉 is the expectation of the intensity at
pixel (x, y). We assume that 〈I (x, y)〉 is a constant
across the camera FOV. This is because spatial radio-
metric effects such as foreshortening and vignetting
are accounted for by the mask M(x, y). Therefore the
estimated mask is

M̂(x, y) ∝ 〈g(x, y)〉. (7)

Since we have a finite sequence of frames gk(x, y),
the expectation is estimated by averaging over the se-
quence of frames at each pixel. We may get more stable
results by incorporating the assumption that the mask
variations are mainly along the x axis. Hence the mask
is estimated by the average horizontal profile of the
frame readouts:

M̂(x) ∝
frames∑
k=1

∑
y

gk(x, y). (8)

We demonstrated this method in an experiment.
We used an off-the-shelf linear variable density filter
(Edmund Industrial Optics, 2002), 3 inches long,
rigidly attached to a CCD camera ≈30 cm in front
of its 25 mm lens. The filter has a maximum density
of 2 (attenuation by 100). We expected the effective
mask to have a wider dynamic range due to additional
vignetting effects in the system. According to Eq. (4)

we had to sample each point 8 times across the range
of change of M . Using that as a guideline, the camera
was rotated about its center of projection so that each
point was actually imaged 14 times10 across the cam-
era FOV. Some images of this 36 frames sequence are
presented in Fig. 11. The radiometric response of the
CCD camera was linear.

The frames were simply averaged using Eq. (8),
without the need for registration. The estimated mask
is shown as a dashed line in Fig. 12. It is apparent in
the logarithmic plot, that the estimated mask values are
very low in the right (dark) regions of sequence. These
values should be taken with caution. The reason is that
when g < 0.5, the intensity is less than the detector’s
threshold, and the readout is rounded to g = 0 by the de-
tector’s integer quantizer. Since many such points exist
in the right hand side of the camera FOV, this method
tends to underestimate the relative transmittance in this
area. Problems are also introduced by saturated areas
which clearly violate the linearity expressed in Eq. (5).

5.2. Estimation by Consistency

We now show how to estimate the transmission mask,
without relying on the assumption of a large ensemble
of frames. The method avoids the problems related to
saturated or too dim measurements, encountered with
the method described in Section 5.1. We assume for a
moment that the images are registered (automatic im-
age registration is discussed in Section 7). Let a scene
point be seen in frame k at image point xk , with unsat-
urated intensity readout

gk = IM(xk). (9)

Then, this same scene point is measured without sat-
uration in frame p at image pixel x p, with intensity
readout

gp = IM(x p). (10)

Assuming scene radiance is constant between frames,
these points should satisfy

M(xk)gp − M(x p)gk = 0. (11)

Tracking some of the scene points in several images
provides many such linear equations, which the mask
should satisfy at each image pixel x . This set of equa-
tions can be written as FM = 0. For example, F may
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Figure 11. Frames 4, 9, 11, 15, 17, 23, and 31 from a sequence taken with a linear variable density filter. Scene features become brighter as
they move leftwards in the frame. Bright scene points gradually reach saturation. Dim scene points, which are not visible in the right hand side
of the frames, become visible when they appear on the left.
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Figure 12. (Top) The effective transmittance mask, self calibrated from the image sequence. The mask function drops on the left due to
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average horizontal profile yields similar results but underestimates the transmittance at the areas of strong attenuation.



258 Schechner and Nayar

look like

F =


0 0 gx=50

p=1 0 .. .. .. 0 gx=3
p=2 0 .. .. 0 0 0

0 .. 0 .. 0 gx=87
p=1 0 .. .. .. 0 gx=40

p=2 0 .. 0
...

...

gx=144
p=15 0 .. .. .. .. 0 gx=1

p=18 0

, (12)

where the frame number is indexed by p.
In addition, we impose smoothness on the estimated

mask, by penalizing for 2nd order variations in M
(e.g., the Laplacian). The smoothest mask would sat-
isfy LM = 0, where

L =



1 −2 1 0 .. .. .. .. .. .. 0

0 1 −2 1 0 .. .. .. .. .. 0

0 0 1 −2 1 0 .. .. .. .. 0
...

...

0 .. .. .. .. .. .. 0 1 −2 1


.

(13)

The result of Eqs. (12) and (13) is an overconstrained
system of equations. The least squares solution of this
system of equations is

M̂ = arg min
M

(M tAtAM), (14)

where

A =
[

F

βL

]
, (15)

and β is a parameter that weights the penalty for un-
smooth solutions relative to the penalty for disagree-
ment with the data.

Singular value decomposition yields the nontrivial
solution up to a scale factor. The scale is set by letting
max M̂ = 1. These equations also enable the estimation
(Chapra and Canale, 1998) of the covariance matrix
of M :

Cov(M) = (AtA)−1 M̂ tAtAM̂(n + 1 − l)−1, (16)

where l is the number of elements of M , and n is
the number of rows in A. This can be viewed as a
weighted least squares problem: rows that belong to
L are weighted by β, while the rows that belong to F

are generally more accurate for more intense pixels
(larger g). This is equivalent to using normalized rows,
and then weighting each row r by

√∑
c A2(r, c), where

c is the column index. To accommodate this, we actu-
ally used n = ∑

r,c A2(r, c), i.e., summing the squared
weights of each row.

The variance of M given by the diagonal of Cov(M)
leads to the uncertainty estimates �M̂(x) of the mask
M̂(x). Note that this formulation is not in the log M
domain. Thus, it does not penalize strongly for relative
disagreements with the data at very low M , or fluctu-
ations which may be relatively significant at low M .
So, a final post-processing, smoothing of log M̂ is also
performed.

This self-calibration method was demonstrated on
the same sequence, samples of which are shown in
Fig. 11. We registered the sequence of frames using
the method described in Section 7. There are millions
of corresponding pixel pairs in the sequence. From
them we obtained about 50,000 equations as Eq. (11)
based on randomly picked corresponding pairs, to de-
termine the mask. To avoid the problems encountered in
Section 5.1, each image point used for this estimation
was unsaturated and also non-dark (i.e., in an effec-
tive state). The self-calibrated mask is plotted by the
solid line in Fig. 12. The mask enables the extension
of dynamic range by about 8 bits beyond the intrin-
sic dynamic range of the detector. Therefore, using an
ordinary 8 bit camera we can obtain image mosaics
with dynamic range close to that produced by a 16 bit
camera.

6. Fusing the Measurements

We now describe the method we used to estimate the
intensity at each mosaic point, given its multiple cor-
responding measurements. As in Section 5.2, this is
done after the images have been registered. Let a mea-
sured intensity readout at a point be gk with uncertainty
�gk , and the estimated mask be M̂ with uncertainty
�M̂ . Compensating the readout for the mask, the scene
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point’s intensity is

Ik = gk

M̂
(17)

and its uncertainty is11

�Ik =
√(

∂ Ik

∂gk
�gk

)2

+
(

∂ Ik

∂ M̂
�M̂

)2

. (18)

We assumed the readout uncertainty to be �gk = 0.5,
since the intensity readout values are integers. Any im-
age pixel considered to be saturated (gk close to 255
for an 8 bit detector) is treated as having high uncer-
tainty, thus its corresponding �gk is set to be a very
large number.

Assuming the measurements Ik to be Gaussian and
independent, the log-likelihood for a value I behaves
like −E2, where

E2 ≡
∑

k

(
I − Ik

�Ik

)2

. (19)

The maximum likelihood (ML) solution12 for the in-
tensity I of this scene point is the one that minimizes
E2:

Î = �̂I
2 ∑

k

Ik

�I 2
k

, (20)

Figure 13. An image mosaic of 51◦ horizontal FOV, created with a generalized mosaicing system having dynamic range of 16 bits. It is based
on a single rotation about the center of projection of an 8 bit video camera. Contrast stretching in the selected squares reveals the details that
reside within the computed mosaic. The numbers near the squares are the actual (unstretched) brightness ranges within the squares. Note the
shape of the filament of the lamp in its reflection from the computer monitor. The periphery regions are left of the L mark and right of the R
mark.

where

�̂I =
(

0.5 ∗ d2 E2

dI 2

)−1/2

=
(√∑

k

1

�I 2
k

)−1

. (21)

Although Eq. (20) suffices to determine the value at
each point, annoying seams may appear at the bound-
aries of the frames that compose the mosaic. At these
boundaries there is a transition between points that have
been estimated using somewhat different sources of
data. Seams appear also at the boundaries of saturated
areas, where there is an abrupt change in the uncer-
tainty �g, while the change in g is usually small. These
seams are removed by feathering techniques discussed
in Appendix A.3.

The images from the sequence, of which samples
are shown in Fig. 11, were fused into a mosaic using
this method. The histogram equalized version of log Î
is shown in Fig. 13. Contrast stretching of Î in selected
regions shows that the mosaic is not saturated any-
where, and details are seen wherever I ≥ 1. The HDR
of this mosaic is expected due to the fact that it was cre-
ated by a generalized mosaicing system with dynamic
range of 16 bits.

The periphery parts of the mosaic are left of the L
mark and right of theRmark, having a width of a single
frame. These parts were not exposed at the full range
of attenuation. Still, in most of these areas there is no
noticeable deterioration in the dynamic range. HDR is
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observed there as well, as the range gradually decreases
to DRdetector towards their outer boundaries. Only right
of the R mark it is possible that points with I ≥ 1 are
not detected.

7. Image Registration

A scene point has different coordinates in each im-
age of the sequence. The measurements correspond-
ing to this point should be identified before they can
be fused. Traditional registration methods are typically
based on optimizing the sum of square or absolute dif-
ference (Coorg and Teller, 2000; Irani et al., 1996; Irani
and Anandan, 1998b), correlation (Duplaquet, 1998;
Hansen et al., 1994; Kwok et al., 1990) or mutual in-
formation (Thevenaz and Unser, 2000; Viola and Wells
III, 1997) between frames, over the general motion pa-
rameters. For generalized mosaicing, the image reg-
istration algorithm should cope with the phenomena
induced by the filtering.

When still images are taken with large displace-
ments, the spatially varying but temporally static ef-
fects of the filter become significant. Consider the im-
ages shown in Fig. 11. Although features appear to
be moving through the camera’s FOV, the static mask
clearly dominates the images. This would bias tradi-
tional algorithms towards estimating a motion slower
than the true one, as demonstrated in Fig. 14(a). The
mask varies gradually across the image, thus high-
pass filtering the raw images as in Irani and Anandan
(1998a) and Sharma and Pavel (1997) reduces the bias-
ing effect. Nevertheless, even then it isn’t completely
removed, according to our experience.

Measurements of scene points that become too dark
due to strong attenuation are relatively noisy after quan-
tization and other processes undergone during image
capture. Therefore, instead of matching the original
image readouts, we use a transformed version of them
that takes into account the attenuation-dependent un-
certainties. We adapted a traditional technique so it can
cope with the spatially varying filtering effects. The al-
gorithm maximizes the likelihood of the matched data,
and does not suffer from the biasing problem. Simi-
larly to traditional algorithms, the optimization can be
done over any number of motion parameters (which
depends on the complexity of motion we wish to de-
scribe). We note that registering ordinary (not filtered)
images by minimizing their mean squared difference is
obtained as a special case of this algorithm. The follow-
ing is a brief description of the aspects of the algorithm,

that were different from those of traditional registration
methods.

1. Each frame g(x, y) is roughly flat fielded using
1/M̂(x) to estimate I (x, y) as in Eq. (17). This is
done given a rough estimate of the mask M̂ . We es-
timated M using Eq. (8) with the method described
in Section 5.1, and initially set the mask uncertainty
to be �M̂ = 0.01. Alternatively, M can be grossly
estimated by the information supplied by the fil-
ter’s manufacturer, or by interpolating a few mea-
surements beforehand. Given �M̂ and the readout
uncertainty �g, �I is estimated using Eq. (18). In
case a spatially varying filter is not present (no vi-
gnetting exists), M ≡ 1, thus �I is constant. Note
that if we attempt to register the images I (x, y) by
minimizing their mean squared difference, we may
fail. This is demonstrated in Fig. 14(b). To counter
that, we should incorporate the spatially varying un-
certainties as follows.

2. Let I1 and I2 be the intensity measurements at can-
didate corresponding pixels in two images, with re-
spective uncertainties �I1 and �I2. As in Eq. (19),
the squared distance between this pair of pixel mea-
surements is

Ê2
pixel pair =

(
Î − I1

�I1

)2

+
(

Î − I2

�I2

)2

. (22)

where

Î = �̂I
2 ∑

k=1,2

Ik

�I 2
k

, (23)

and

�̂I
2 =

( ∑
k=1,2

1

�I 2
k

)−1

(24)

as in Eqs. (20) and (21). The distance measure for
the entire images is

Ê2
total =

∑
all pixels

Ê2
each corresponding pair. (25)

The best registration between two frames (or be-
tween a new frame and an existing mosaic) accord-
ing to this objective function is the one that mini-
mizes Ê2

total. If the measurements are Gaussian and
independent, this is the most likely match. When the
spatially varying filter is not present, �I1 = �I2 and
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Figure 14. Corresponding mosaic regions. (a) Attempting to register the raw images by minimizing their squared difference fails. (b) Compen-
sating for the spatially varying attenuation without accounting for uncertainty amplification does not lead to a good registration. (c) Accounting
for spatially varying uncertainties due to the attenuation compensation leads to successful image registration.
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Eq. (22) becomes proportional to the squared dif-
ference between the measurements, hence Eq. (25)
is proportional to the sum of square difference be-
tween the images.

Note that Ê2
total will generally increase with the

number of pixels. This may bias the registration to-
wards minimizing the number of pixels in the sum,
hence reducing the overlap between the images. To
counter that, Eq. (25) may be normalized by the
number of pixels in the overlap area. However, also
when defining this normalization, it is worth noting
that some pixels in the overlap are significant, while
others make negligible contribution to Ê2

total due to
their high uncertainty. Thus we may normalize Ê2

total
by dividing it by �I −2

total, where we define

�I −2
total ≡

∑
all pixels

1

�̂I
2
each pixel pair

, (26)

while for each corresponding pixel pair �̂I
2

is given
by Eq. (24). When the spatially varying filter is not
present, �̂I

2
is the same for all the pixel pairs, so

�I −2
total is proportional to the number of pixels in the

overlap area. In this case this normalization makes
Eq. (25) proportional to the mean square difference
between the images.

If the statistical dependence between different
measurements or between different pixels cannot
be neglected, then Eqs. (22) and (25) can be gener-
alized to use the covariance matrix of the measure-
ments, rather than just their variances.

3. The registration is done hierarchically, from coarse
to fine resolution similar to Hansen et al. (1994),
Irani and Anandan (1998a, 1998b), Sawhney et al.
(1998), and Sharma and Pavel (1997). We create a
Maximum Likelihood pyramid, where not only the
image value is stored at each scale, but also its un-
certainty. The weights used in the construction of
the pyramid structure depend also on the uncertain-
ties of the pixels in each neighborhood, so that more
reliable pixels contribute more to their coarse rep-
resentation. If all the uncertainties are the same, the
result is the same as in a traditional image pyramid.
Details on this structure are given in Appendix A.1.
The representation of I1, I2, �I1, �I2 at each scale
enables robust image registration by maximizing the
likelihood of the match at a coarse scale and gradu-
ally in a finer scale.

4. Registering only pairs of frames leads to the accu-
mulation of errors of the estimated image positions

in the global coordinate system. To reduce the ac-
cumulation of matching errors, each new sequence
frame is registered to the current mosaic (Irani et al.,
1996; Sawhney et al., 1998), and then fused into it
(see Section 6). The consecutive frame is registered
to the updated mosaic.

5. In HDR data, we prefer to penalize for relative errors
rather than absolute ones. To do that, the log of each
measured scene radiance is calculated:

s(x, y) = log[I (x, y)] (27)

with the uncertainty

�s =
∣∣∣∣ ds

dI

∣∣∣∣�I = �I

I
. (28)

Therefore, we applied the above algorithm to the
s(x, y) images rather than the intensity images
I (x, y).

Figure 14(c) shows that the registration by our ML
algorithm leads to much better results, than cases where
the spatially varying uncertainties are not accounted
for.

8. Discussion

We propose generalized mosaicing as a framework for
capturing additional information about the scene, while
requiring a similar or even the same amount of data as
in the case of traditional mosaicing. Here we used this
framework to compute HDR mosaics. However, gen-
eralized mosaicing is not limited to this dimension of
imaging but is a general concept that can be applied
to other valuable dimensions. In particular (Schechner
and Nayar, 2002) used a spatially varying spectral filter
to obtain wide FOV multispectral mosaics. The infor-
mation gathered during the acquisition of images for a
mosaic can be done in additional dimensions (e.g., po-
larization, focus) using other kinds of spatially varying
filters.

This paper shows a novel and simple way to create
image mosaics while significantly extending the opti-
cal dynamic range of cameras. The dynamic range is
extended at each scene point, irrespective of the bright-
ness of its surroundings. The system has no internally
moving parts, and its rigid motion is the same as that
required to create a traditional image mosaic. It can be
applied also to cameras that use other means to enhance
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the dynamic range, such as active CMOS detectors or
AGC.

Since any video or still camera can have its dynamic
range extended simply by attaching such a filter in front
of the lens (or exploiting vignetting effects) along with
automatic image analysis, we expect this to have direct
applications in amateur and professional photography.
The usefulness of the approach is especially relevant
due the increasing interest in image mosaics (Hsu et al.,
2002; Irani et al., 1996; Peleg et al., 2001; Shum and
Szeliski, 2000). Note that mosaicing is used extensively
in various scientific fields (Ballard, 2001; Hansen et al.,
1994; Kwok et al., 1990; Lada et al., 1991; Reynoso
et al., 1995; Vasavada et al., 1998). Therefore, also
these fields can benefit from this generalization. For
example, mosaicing is a common technique in obser-
vational astronomy. However, the stars are very bright
while their surrounding matter is very faint. It is there-
fore beneficial if the brightness dynamic range of the
imaging system can be extended by the motion used to
scan the sky for the mosaic creation.

Generalized mosaicing can also be used in conjunc-
tion with structure from motion (Tomasi and Kanade,
1992) methods. In current algorithms for structure from
motion, the imaged points are not attenuated during the
motion, thus there exists a significant redundancy in
the sequence. Using a spatially varying filter will re-
move some of this redundancy, extending the dynamic
range of the sensed scene in conjunction with its struc-
ture estimation. Therefore, better data is made available
for later texture mapping on the computed depth map
to render new views of the scene. The vignetting effects
may be further exploited in conjunction with the geo-
metric self-calibration of the camera (Kang and Weiss,
2000).

The method described in this paper is very flexible.
If the user wants to change the characteristics of the
filtering, he may simply change the external filter. For
example, using a filter with a wider range of transmit-
tance order of magnitude can easily extend further the
dynamic range. Hence if M ∈ [10−4, 1] the dynamic
range of the camera is enhanced by ≈13 bits beyond the
detector’s intrinsic range (equivalent to 80 dB improve-
ment). Note that neutral density is an additive quantity,
so stacking two identical filters to one another can dou-
ble their density (Edmund Industrial Optics, 2002). For
example, the filter we used in the experiment had a
maximum density of 2. Two such filters stacked have a
maximum density of 4, and since the transmittance is
10−density such a dynamic range is easy to obtain.

The filtering characteristics may also be easily
changed by inclining the filter relative to the optical
axis. Due to the projective transformation that the in-
clined filter plane undergoes, we may vary the part of
the camera FOV that corresponds to one end of the fil-
ter, relative to the other parts. For example, a larger area
in the frames can be dedicated to the stronger attenua-
tion region, hence more information can be gathered on
the brighter light sources than on the dim ones. Since
the filter is external it can be set at any azimuthal angle
around the optical axis. Note that the spatially varying
filter may reflect the light into the camera rather than
transmitting it, which may find use in catadioptric sys-
tems. More complicated implementations of the con-
cept presented in this paper can be made by mounting
the filter inside the camera or among its imaging optics.
However, this may limit the flexibility of changing the
generalized mosaicing system characteristics.

Appendix

A.1. The Maximum Likelihood Pyramid

To make image registration more robust and efficient,
it is done hierarchically, from coarse to fine resolution.
For the algorithm described in Section 7 we need an
estimate of the intensity I and its uncertainty �I at
each pixel and each scale. A coarse representation of
an image at a specific pyramid level can be obtained
(Burt and Adelson, 1983b) by sub-sampling it, after it is
lowpass filtered with a kernel whose width depends on
the level (the higher/coarser the level, the wider is the
kernel that operates on the original image). The value
of a pixel in this representation is a weighted sum of
the measured pixels13:

I =
∑

k ωk Ik∑
k ωk

. (29)

In a conventional pyramid, the weights ωk are equal to
the values of a Gaussian kernel ak (Burt and Adelson,
1983b).

Suppose, however, that we let the weight ωk assigned
to a pixel decrease linearly both as its Gaussian weight
ak decreases, and as its squared uncertainty �I 2

k in-
creases. Thus

ωk = ak

�I 2
k

(30)
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and we set

�I =
(√∑

k

ωk

)−1

. (31)

In the special case for which the uncertainty �Ik is
the same for all pixels k, ωk is proportional to the
Gaussian coefficients ak . Thus Eq. (29) yields the tradi-
tional Gaussian pyramid representation for the pixels.
On the other hand, in the special case for which ak ≡ 1
for all pixels k, Eqs. (29) and (31) become equal to
Eqs. (20) and (21), respectively. Thus Eq. (29) yields
the ML representation of the pixels, assuming them to
be Gaussian and independent.

Therefore, Eqs. (29) and (30) generalize both the
pyramid structure and the ML estimation. The influ-
ence of a pixel in a patch on its coarse representation
increases the closer it is to the patch center (as in usual
pyramids), and the more reliable it is. In this kind of
a Maximum Likelihood pyramid, the representation at
each resolution level consists not only of the weighted-
averaged value at each pixel, but also of its uncertainty.
Since points that have smaller uncertainties get more
weight in this pyramid, the uncertain areas (such as the
saturated regions) shrink at the coarser levels. The rep-
resentation of such areas is more influenced by adjacent
stable points. Thus, the representation of a region by
one value is more reliable.

A.2. Nonlinear Response of the Detector

The analysis in this paper was based on the assumption
that the intensity readout g is proportional to the ir-
radiance that falls on the detector. The following are
some modifications in case the response of the de-
tector is nonlinear and known. Let the response func-
tion be R. This response can be estimated a priori by
one of the methods described in Debevec and Malik
(1997), Grossberg and Nayar (2002), Mann and Picard
(1995), and Mitsunaga and Nayar (1999). Then, the
image readout at the pixel is

g̃ = R(g). (32)

Linearizing the response, the estimated intensity read-
out at the detector is

ĝ = R−1(g̃), (33)

and thus

�ĝ =
∣∣∣∣dR−1

dg̃

∣∣∣∣ �g̃. (34)

In section 6 we assumed the readout uncertainty to be
�g = 0.5 since the intensity readout values are integers.
In the nonlinear response case, we set �g̃ = 0.5 for
unsaturated points, and use �ĝ in Eq. (18). Saturation is
determined by the vicinity of g̃ to the saturated readout.
We use ĝ in Eqs. (9)–(12) and (17).

Note that in Item 5 of Section 7 we actually did not
use the intensity but its log in the registration process.
Thus, if the response R of the detector is logarithmic
as in C-Cam sensors, Davis (1998), Ogiers (1997), and
Schwartz (1999), we may set s = g̃ and �s = �g̃.

A.3. Removal of Seams

At the boundaries of the frames that compose the mo-
saic there is an abrupt transition between the data
sources of the computed mosaic. This causes seams
to appear in the mosaic. There are numerous ways
to remove the seams. One approach is based on
searching for an optimal seam line, as in Duplaquet
(1998). The other approach is to use feathering, as
in Burt and Adelson (1983a) and Shum and Szeliski
(2000), in which the images are weighted accord-
ing to the pixel position from the image centers or
boundaries. This weighting fits easily into our ML es-
timation; the uncertainty �Ik is multiplied by a fac-
tor that smoothly increases to ∞ towards the image
boundaries.

Seams appear also at the boundaries of saturated ar-
eas, where there is an abrupt change in the uncertainty
�g, while the change in g is usually small. These seams
may also be removed by feathering. For this purpose
we needed a smooth transition towards areas consid-
ered saturated. Therefore, we created a fuzzy definition
of the saturated areas. The areas treated for this phe-
nomena were either saturated or in the neighborhood
of such points. The principle we used is as follows: We
define “low” and “high” saturation values, L and H ,
respectively. If g > H it is saturated. If H ≥ g > L and
this point is connected (a neighbor) to a saturated point,
it is considered a “saturation-associated”. It is also con-
sidered a “saturation-associated” if it is a neighbor of
another “saturation-associated” point and H ≥ g > L .
Eventually, points that are “saturation-associated”
are formed in groups that are always connected to
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a saturated point. On the other hand, intense points
(g > L) that are not related to saturated points are not
treated for saturation feathering, just as less intense
points (g ≤ L). In our experiment we used an 8-bit
camera, so we set H = 250 and L = 230.

After all the “saturation-associated” points have
been found, their uncertainty is multiplied by
(H − L)/(H − g). This gradually makes a transition
from a regular uncertainty (multiplied by a factor of
1, if g ≤ L or if not connected to a saturated area),
to a very large uncertainty as g reaches the saturated
value H .
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Notes

1. In different communities the terms mosaicing (Capel and
Zisserman, 1998; Peleg et al., 2001) and mosaicking (Batson,
1987; Duplaquet, 1998; Eustice et al., 2002; Garcia et al., 2001;
Kwok et al., 1990) are used.

2. The filter is not placed right next to the lens, as this would only
affect the aperture properties (Farid and Simoncelli, 1998), with-
out producing spatially varying effects in the image.

3. We presented partial results of this work in a conference paper
(Schechner and Nayar, 2001), which was published in parallel
to Aggarwal and Ahuja (2001).

4. For simplicity we assumed filter variations along one spatial di-
mension. The results can be generalized to 2D filter variations.
In the experiment, vignetting effects along the y axis were neg-
ligible due to the filter’s aspect ratio.

5. For simplicity we ignore the reflection transformation the object
points undergo when projected to the image plane. Inverting the
coordinate system is straightforward.

6. As the dimensions of the light bundle allowed into the camera
decrease, diffraction effects eventually become dominant. This
significantly complicates the later image analysis. Thus, practi-
cally the optical dynamic range of the system is limited.

7. Due to vignetting in the lens, perspective and lens distortions,
the linearity of log f (x) will not be accurately conserved in
log M(x).

8. Assuming it is not under the effect of blooming from adjacent
pixels.

9. We make the intensity I unit-less by normalizing it by the min-
imal irradiance that the detector can sense above its noise level,

I detector
min . Thus also the readout g is unit-less and has the same

normalization.
10. Some measurements were redundant since the filter’s transmis-

sion was constant across part of the camera FOV.
11. This estimate for �Ik assumes that the estimated mask is inde-

pendent of the signal. Even if the mask is estimated using many
points from the sequence, its dependence on a single intensity
measurement is small.

12. An improved solution may be obtained using maximum a poste-
riori (MAP) estimation. However, such estimation requires the
prior probability of an intensity value I . We are not aware of a
prior reliable enough.

13. Please note that we refer here to the construction of the pyramid
levels from the original, full resolution image, where the pixels
may be considered as independent. This is done to keep the
derivation simple. However, usually pyramids are constructed
iteratively and then the pixels in the intermediate levels are not
statistically independent. If accuracy is sought in the iterative
process, the weighting should rely not only on the pixel variance
in the intermediate levels, but on their full covariance matrix with
their neighbors. This matrix should be thus be propagated up the
pyramid as well.
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