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Abstract. We prove a comparison principle for viscosity solution with finite speed for its 

level set, which solves degenerate parabolic equations with discontinuity. We also prove 

the (global) existence of solution in the class of viscosity solution with finite speed for the 

initial value problem. Our comparison and existence results yield a unique global-in-time 

generalized solution to interface evolution equations whose speed grows superlinearly in 

curvature tensors. 

1. Introduction. Let F(t) be an interface bounding the whole space RN 

(N ~ 2) into two phases at time t ~ 0. To write down the equation of F(t) we 

temporarily assume that r(t) is the smooth boundary of the open set D(t). The 

evolution of r(t) that we consider here depends locally on its normal vector field 

and curvature tensors. 

Let n = n(t, x) denote the unit exterior normal vector field to F(t) = 8D(t) at 

X E r(t). It is convenient to extend n to a vector field, still denoted by n, on a 

tubular neighborhood of r(t) such that n is constant in the normal direction of 

F(t). Let V = V(t, x) denote the growth speed of F(t) at ·x E F(t) in the exterior 

normal direction. In this paper, as a continuation of [5] and [14], we study the 

evolution equation of form 

v = f(n, Y'n) on r(t), t > 0. (l.la) 

Here f is a given continuous function and \1 stands for spatial derivatives. We 

are interested in constructing global-in-time solutions (family) {F(t)}t>o to the 
evolution equation (l.la) under the initial condition -

F(t)lt=O =To, (l.lb) 

where ro is an arbitrary given (compact) initial interface. 
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Since the solution of (1.1a,b) may develop singularities in a finite time, even for 

the mean curvature flow equation 

v = -divn (1.2) 

with smooth initial data (see [20], and also [1], [2], [29]), we are forced to introduce 

a notion of generalized solution in order to track down the evolution of F(t) at all 

time. 

The generalized solution was introduced by Chen, Giga and the author (see [5], 

and also [14]), and independently by Evans and Spruck (see [9] where only (1.2) is 

discussed). The basic idea in both approaches is to describe the interface F(t) in 

the form of a level set of some function u, called a definition function of F(t), and 

then to discuss the evolution of u. We call this the level set approach. 

If equation (1.1a) is degenerate parabolic and iff grows linearly in Vn, then we 

can claim the unique global existence of the generalized solution for (l.la,b) (see 

[5]). A typical example is the mean curvature flow equation (1.2). Our goal is to 

extend these results to the case of the function f which is superlinear in Vn, for 

example 

(1.3) 

so we only assume here that (1.1a) is degenerate parabolic. 

Other important examples were found in two-phase thermomechanics by Gurtin 

(see [21] and references therein): · 

N 

f3(n, V)V = -(~ >lo. ~~ (n) +c), 
i=l UXt UPt 

(1.4) 

where f3 is a positive function, H is positively homogeneous of degree one and c is 

a constant. If f3 = 1, H = IPI and c = 0, then (1.4) is the mean curvature flow 

equation (1.2). When f3 is independent of V, equation (1.4) is linear in Vn (see 

[5] and [26]). We are interested in the case of f3 depending on V. For example, if 

f3 = v-213 ) H = IPI and c = 0, then equation (1.4) is equal to (1.3). 

To explain the diffi~ulty in solving (1.3), we recall the level set approach (see e.g. 

[ 14]). Let us assume the existence of the (smooth) interface r ( t) for all t E [ 0, oo). 
Let u be a real valued (continuous) function over [0, oo) x RN such that 

F(t) = {x ERN: u(t,x) = 0} and D(t) = {x ERN: u(t,x) > 0}. (1.5) 

If the function u is 0 2 and Vu =/= 0 near F(t), then the relation 

n = -Vu/IVul and Vn = -Qq(V'2u)/1Vul; q = Vu/IVul (1.6) 

holds on r(t). Here and hereafter we use the notation 

Qq(X) = (I- q Q9 q)X(I- q Q9 q), 

where X is an N x N matrix, I is the N x N identity matrix and Q9 stands for the 

tensor product of two vectors. By using (1.6) and V = 8tu/1Vul on F(t), equation 

(l.la) is formally equivalent to 

Btu+ F(Vu, V2u) = 0 on F(t), 
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called the level set equation, with 

F(p,X) = -IPI!(-p,-Qp-(X)/IPI); p=p/IPI· 

In our strategy, we first consider the initial value problem 

8tu+ F(\Tu, \12u) = 0 in (0, oo) x RN, 

u(O,x) = a(x) for x ERN, 

for some continuous function a satisfying 

Fo = {x ERN: a(x) = 0} and Do= {x ERN: a(x) > 0}. 
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(1.7a) 

(1.7b) 

Here Do is a (initial) domain whose boundary is Fo = 8Do (or Fo ::J 8Do in general). 

Since equation (1.7a) is degenerate parabolic with singularity at \Tu = 0, we apply 

the theory of viscosity solution to the initial value problem (1.7a,b). Viscosity 

solution is a kind of weak solution of fully nonlinear degenerate parabolic equations 

for which the comparison principle holds (see [7] and references therein). 

When F(p, X) is continuously extended to (p, X) = (0, 0), the comparison prin

ciple holds without any restrictive conditions (see [5], and also [17]). In the super

linear case, for example (1.3), F is not extended to (p, X) = (0, 0) continuously, 

because a direct calculation shows 

F*(O, 0) = -oo and F*(O, 0) = oo, 

where F* and F* denote, respectively, the lower semicontinuous and the upper 

semicontinuous relaxations (envelopes) of F. In this case, the comparison principle 

does not necessarily hold for all solutions which solve (1.7a) in the sense of viscosity 

solution, since the class of viscosity solutions is too big. 

To overcome this difficulty we introduce a notion of solution with finite speed 

for its level set; in other words, each level set of the solution does not disappear 

suddenly. We establish a comparison principle by reductive absurdity. Although we 

use Crandall-Ishii's lemma (see e.g. [7]) instead of using sup and inf convolutions, 

the flavor of our proof is closer to that of [5] than that of [17]. We use a family of 

test functions parameterized by a vector of RN. To handle F(p, X) at the point 

(p, X) = (0, 0), we invoke a notion of finite speed together with a geometric lemma 
(due to Y.Giga) on balls touching a closed set. 

We then establish the existence of solution in the class of viscosity solution with 

finite speed for the initial value problem (1.7a,b). Since it is not clear whether Per

ron's method applies to construct a solution with finite speed, we rather approxi

mate the discontinuous function F by a continuous one Fk to get an approximate 

solution uk. It turns out that our approximate solution uk has a uniform bound of 

speed (independent of k = 1, 2, · · ·). Since a uniform limit of approximate solution 

uk yields a viscosity solution u of (1.7a,b), this implies that u has a finite speed. 

Our comparison and existence results extend the previous work in (5) to more 

general geometric equations of form (1.7a). Although we do not state explicitly, our 

theory applies to the case when F continuously depends on the time variable as in 

(5). 
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It is now rather standard that the comparison principle and the existence result 

yield a unique global-in-time generalized solution to our original problem (1.1a,b), 

via the relation (1.5). Since the equation (1.7a) is geometric, as shown in (5], the 

interface r(t) is determined independently of the choice of the definition function 

a of ro. 
In Section 2 we introduce a notion of solution with finite speed. We state our 

main comparison and existence results of solutions with finite speed. In Section 3 

we prepare to prove the comparison principle. Its proof is completed in Section 4 

except a geometric lemma on balls touching a closed set which is proved in Section 

6. In Section 5 we prove the existence of solution for the initial value problem 

(1.7a,b). 

After this work was completed, Ishii and Souganidis introduced a restrictive 

condition for solution of the same problem (1.7a,b) (see [25]), which is different 

from ours. Their results can be applied to the case of noncompact interfaces; on 

the other hand, our comparison principle holds for more general nongeometric F 

than theirs. They assume that F is positively homogeneous of degree one. 

After the level set approach was introduced, the generalized motion of hypersur

faces was studied by many authors using this method. Evans and Spruck proved 

several interesting results (see [10], (11], [12]) for generalized solutions of the mean 

curvature flow equation, and Ilmanen defined the level set flow on a manifold (see 

[22], (23]). We refer to [1], [2] and [29] for breaking out of singularities. Recently, 

Sternberg and Ziemer studied the Dirichlet problem for the mean curvature flow 

equation (see (30]). Giga and Sato proved the comparison principle under the Neu

mann boundary condition for the generalized equations of form (1.7a) (see [18], [19] 

and [27]). We also refer to [3], [15], [16], [26] and [28] for more developments. 

Recently, three types of generalized solutions, Brakke's solution (see (4]), a singu

lar limit solution of the Allen-Oahn equation and a solution by the level set approach 

are well-compared (see [8], [24]). 

There are several examples of motion by speed depending super linearly on prin

cipal curvatures. For example, Tso discussed the motion of convex surfaces by the 

Gauss-Kronecker curvature (see [31], also see [13] and [32] for the other examples of 

curvature flows). However, these works restrict themselves to classical evolutions. 

2. Statement of results. In this paper we are concerned with the evolution in 

time for an interface r(t) in RN (N;:::: 2) satisfying 

v = f(n, \Tn) on r(t), t > 0, 

F(t)lt=O = Fo. 

(2.1a) 

(2.1b) 

According to the level set approach, F(t) is described by the (zero) level set of the 

definition function u : [0, oo) -+ R. We then study the initial value problem for the 

level set equation 

Here F is defined by 

OtU + F(Vu, \72u) = 0 in (0, oo) x RN, 

u(O,x) = a(x) for x ERN. 

F(p,X) = -lplf(-p, -Q:p(X)/IPI); p = P!IPI 

(2.2a) 

(2.2b) 

(FO) 



GENERALIZED MOTION OF HYPERSURFACES 327 

and the initial data a satisfies 

To= {x ERN: a(x) = 0} and Do= {x ERN: a(x) > 0}, (2.3) 

where Do is a domain whose boundary is To = aDo or contained to T0 in general, 

i.e., T0 :::> aD0 . This paper studies the case when To is compact, then we may 

assume that a E Ka(RN) for some a < O, i.e., 

a( x) - a is a continuous function with compact support in RN. 

We introduce a weak notion of solution in order to get a global-in-time solution 

{T(t)}t~o of the problem (2.la,b). Since F(p,X) is not continuously extended to 

(p, X) = (0, 0) in general, we introduce a restrictive condition for viscosity solution 

of (2.2a,b). 

Definition (Finite speed condition). Let u be a function on Q = (0, T) x n, where 

T > 0 and [2 is a domain in RN. Suppose that for each R > 0 there is v = v(R) ~ 0 

such that 

sup u(t, x)::::; c with .6v = {(t, x) : t ~to, Jx- xol ::::; R- v(R)(t- to)} 
(t,x)ELI.v 

whenever c E R and (to, xo) E Q satisfy sup u( to, x) .:S c. We then say u has an 
Jx-xoJ::s;R 

upper speed bound v(R) (for its level set). If u and -u have upper speed bounds, 

we say u has finite speed. 

Definition (Generalized solution). Let To be a compact set in RN. Let a E 

Ka(RN) for some a< 0 satisfying (2.3). If u is a viscosity solution with finite speed 

(for its level set) of the initial value problem (2.2a,b) such that u E Ka([O,T] xRN) 

for all T > 0, then {T(t)}t~o defined by (1.5) is called a generalized solution of the 

original problem (2.la,b). 

We remark that this notion of the generalized solution requires T(t) to be a 

closed set, not necessarily a hypersurface. 

Our final goal in this paper is to prove 

Theorem 2.1. Suppose that (2.la) is degenerate parabolic and f is continuous. 

If To is compact, then there exists a global-in-time unique generalized solution 

{T(t)}t~o of the initial value problem (2.la,b). 

The key tool is the comparison principle for viscosity solution of (2.2a). We 

recall properties of the function F, which naturally follow from the hypotheses on 

the function f of Theorem 2.1, via the relation (FO). 

F = F(p, X) : (RN \ {0}) X SN -t R is continuous, (Fl) 

where sN is the space of N X N real symmetric matrices. F is degenerate elliptic, 

i.e., 

F(p, X) .:S F(p, Y) if X ~ Y (F2) 

F is geometric, i.e., 

F(>-.p, >-.X+ op ® p) = >-.F(p,X) for all>-.> 0 and a- E R. (F3) 

We state the comparison principle under (Fl), (F2) and 

{ 
~Nsup{F()..p, AI) : m .:S JpJ .:S M} = 0 for all m, M > 0, 

liminf{F()..p, ->-.I) : m .:S JpJ .:S M} = 0 for all m, M > 0. (F3') 
>.,J.o 

The property (F3') is fulfilled if F is geometric. 
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Theorem 2.2 (Comparison principle). Assume (F1), (F2) and (F3'). Suppose that 

T > 0 and n is a bounded domain in RN. Let u and v be real valued functions 

over Q and a viscosity subsolution and a supersolution, respectively, of (2.2a) in Q. 
Suppose that u* and -v* have upper speed bounds for all points in Q. If u* ::::; v* 

on BpQ, then u* ::::; v* on Q. 

Here BpQ is the parabolic boundary of Q = (0, T) x Jl denoted by BpQ = [0, T) x 

an u {0} X n. Our comparison principle can be applied to nongeometric equations, 

for example 

Ut = Uxx/iuxia (0::::; a< 1). 

Note that this yields a porous medium type equation, Vt = ((1- a)-1v1-a)xx, with 

fast diffusion if we set v = Ux. 

In Section 3 we recall the definition of viscosity solution and prepare to prove 

Theorem 2.2 whose proof is completed in Section 4. 

Proposition. The conditions (F1)-(F3) yield 

(F4) 

for some positive functions C± E 0 1 (0, oo). 

Proof. By (F1) and (F2) we see that M(cr) = sup[q[=l F(q, -I jcr) is a lower semi

continuous and nonincreasing function over (0, oo). We find a positive function 

M' E 0 1 (0, oo) with M::::; M'. By setting c_(cr) = crM'(cr) and (F3) we see 

F(p, -I)= IPIF(p/IPI, -I/IPI)::::; IPI sup F(q, -I/IPI)::::; c-(lpl). 
[q[=l 

Similarly, F(p,I) ~ -c+(IPI) holds for some c+ E 0 1 (0,oo). D 

We remark that the functions C± control the growth speed of the level set of 

spherically symmetric solutions of (2.2a). 

In Section 5 we show the existence result. 

Theorem 2.3 (Existence). Suppose that F satisfies (F1)-(F3). Let a E Ka(RN) 

for some a E R. Then there exists a global-in-time viscosity solution u of (2.2a,b) 

satisfying u E Ka([O, T] x RN) for all T > 0. Moreover, u has finite speed depending 

only on c±. 

The support of u(t, ·)-a is compact in a (finite) time interval [0, T), so contained 

in a sufficiently large ball. Then we can apply Theorem 2.2 to the solution u of 

Theorem 2.3, which implies that the viscosity solution of (2.2a,b) with finite speed 

is unique. 

The generalized solution {F(t)}t>o of (2.1a,b), defined by (1.5), is independent 

of the choice of the definition function a of F0 . Indeed, if u has an upper speed 

bound, so does 8(u) for nondecreasing, continuous 8 : R -r R. Since we have the 

comparison Theorem 2.2, this together with [5, Theorem 5.6) yields the uniqueness 

of {F(t)}t:2;0 as in the proof of [5, Theorem 7.1]. The proof of Theorem 2.1 is now 

complete. 
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3. Preliminaries. For the reader's convenience, we state here the definition 

of viscosity solution for our problem (see [7] for the details). We consider the 

degenerate parabolic equation with singularity at 'Vu = 0, i.e., 

Btu+ F('Vu, '112u) = 0 in Q = (0, T) X [2, (3.1) 

where T is a positive number and [2 is a (bounded) domain in RN. 

Let L c Rd be a set and h~c be a real valued function over L (k = 1, 2, · · · ). For 

the sequence {h~ch=l,z, ... , we define 

(lim*h~c)(z) = lim inf inf{hz(() : lz- (I < e, ( E L} for z E L. 
k-+oo e-+0 l~k 

k-+oo 

In particular, when h~c = h for all k, the limit h* = lim*hk is called a lower 
k-+oo 

. semicontinuous relaxation (envelope) of h to L. Clearly, we have 

h*(z) = liminf{h((): lz- (I< e, ( E L} for z E L. 
e-+0 

Similarly, we define 

(lim* h~c)(z) = lim supsup{hz((): lz- (I< e, ( E L} for z E L, 
k-+oo e-+0 l>k 

k-+oo -

and an upper semicontinuous relaxation (envelope) h* =lim* h~c, when h = h~c for 
k-+oo 

all k. Clearly, we have 

h*(z) =lim sup{h((): lz- (I< e, ( E L} for z E L. 
e-+0 

Definition (Viscosity solution). A function u : Q -+ R is called a viscosity sub

(resp. super-) solution of (3.1) on Q if u* < oo (resp. u* > -oo) on Q and 

r + F(p,X) ~ 0 for all (t, x) E Q and (r,p,X) E p~+u*(t,x) with p # 0 

(resp. r+F(p,X) 2::0 for all (t,x) E Q and (r,p,X) E P~-u*(t,x) withp # 0). 

Moreover, if u is both a viscosity sub- and a supersolution of (3.1) on Q, u is called 

a viscosity solution of (3.1) on Q. 

Here p~+ and p~- denote the spaces of the parabolic super and sub 2-jets, re

spectively, i.e., for a function v defined near (t, x) E Q, p~+v(t, x) (resp. p~-v(t, x)) 

is the set of all (r,p, X) E R x RN x sN satisfying, as (s, y)-+ (t, x) in Q, 

1 
v(s,y):::; v(t,x) +r(s -t) + (p,y- x) + 2(X(y- x),y- x) + o(ls- tl + IY- xl2 ) 

(resp. 

1 
v(s, y) 2:: v(t, x) + r(s- t) + (p, y- x) + 2(X(y- x), y- x) + o(ls- tl + IY- xl2)). 
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In what follows, we assume that the hypothesis of Theorem 2.2 holds. Replacing 

u (resp. v) by u* (resp. v*) we may assume that u (resp. v) is upper (resp. lower) 

semicontinuous on Q. We remark here, since u and v are originally defined over Q, 

that its value at t = T is denoted by relaxation, i.e., 

{ 
u(T,x) = ~sup{u(t,y): T- e::::; t < T, lx- Yi::::; e,y E .n}, 

v(T, x) = lifD-inf{v(t, y) : T- e::::; t < T, ix- Yi ::::; e, y E .Q}. (3·2) 
co~-0 

We study about the point which attains the (locally) maximum of an upper semicon

tinuous function. Settingw(t, x, y) = u(t, x)-v(t, y) for (t, x, y) E U = (0, T) x.Qx.Q 

and 

a= limsup{w(t, x, y); lx- Yi < (), (t, x, y) E U}, 
OLD 

since w is upper semicontinuous and U is compact, we see a< oo. We also set for 

e > 0 and 'Y > 0, 

!P(t, x, y) = w(t, x, y)- ¢(t, x, y); 
lx- Yi 2 'Y 

¢(t, x, y) = 2e + T- t · 

The function¢ controls the maximum point of !1.5 over U. 

Proposition 3.1. Suppose that a> 0. Then, 

(i) there exists a constant 'Yo > 0 such that supu!P > a/2 holds for all e > 0 

and 0 < 'Y < 'Yo. 

(ii) There exists a constant eo > 0 such that !1.5 attains a {positive) maximum 

over U at an interior point of U for all 0 < e < eo and 0 < 'Y < 'Yo. 

Proof. Since w is upper semicontinuous, by the definition of a and (3.2) there 

exists a point (to, xo, xo) E U such that to < T and w(to, xo, xo) > 3af4. If 'Yo 

satisfies 0 < 'Yo < (T - to)a/ 4, then we see 

lxo- xol2 'Y 3a a a 
!P(to,xo,xo) = w(to,xo,xo)- 2e - T _to > 4-0-4 = 2 

for all e > 0 and 0 < 'Y <'Yo, which proves (i). 

Let (t, x, Y) E U be a maximum point of !1.5, i.e., SUPU!P = !P(i, x, f)). By the 

definition of !1.5 we easily see t < T. Let M be an upper bound of w over U. Since 

!P(t, x, f)) is positive (by (i)), it follows that 

I ~ ~ 1 2 I~ ~ 1 2 
M > w(t x y~) > x- y + ~ > x - y . 

- ' ' 2e T-t 2e 

This leads to !x- f)!< .../2Me uniformly in 0 < 1 <'YO· By the hypothesis, w ~ 0 

on apQ, of Theorem 2.2 and boundedness of .n we get a modulus function m (i.e., 

m: [0, oo)--+ [0, oo) is continuous, nondecreasing and m(O) = 0) such that 

w(t, x, y) ::::; m(lx- yl) on apU. 
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If there are sequences { E:j} with E:j t 0 and {'Yj} C (0, /o) such that <JJ (for E:j and 

/j) attains the maximum over U at (ij, Xj, ih) E 8pU, then it follows that 

This contradicts the assumption, a> 0, of this proposition, then (ii) is proved. 0 

Section 4 also needs more general cases in order to prove Theorem 2.2. We set 

for c > 0, 1 > 0, 8 2: 0, 'f/ E RN and t E (0, T), 

"" (t ) (t ) "- (t ) "-,(t, x, y) = lx- ~E:- 'f/12 + Tl- t + ;:(t- ti.\2. '±'ry ,x,y =w ,x,y -'+'TJ ,x,y; '+'., u "J 

Proposition 3.2. Suppose that a> 0. Then) 

(i) there are constants /o > OJ 8o > 0 and K-c: > 0 (depending on s) such that 

supu<JJTJ > a/2 holds for all c >OJ 0 < 1 </OJ 0:::; 8 < 8o and 'f) ERN with 

I'T/1 < K-c:· 

(ii) There is a constant E:o > 0 such that <JJTJ attains a (positive) maximum over 

U at an interior point of U for all 0 < E: < E:o) 0 < 1 </OJ 0:::; 8 < 80 and 

'f/ ERN with l'f/1 < K-c:· 

Proof. For a point (to, xo, xo) E U satisfying to< T and w(to, x 0 , x0 ) > 3a/4, we 

choose /o and K-c: such that /o/(T- to) < a/16 and "'~/2s < a/16. If 80 < T-2aj8, 
then we see 

lxo - xo - 'f/12 I i.\2 
<JJTJ(to, xo, xo) = w(to, xo, xo)- 2 - -T - 8(to- t; 

c -to 

3a a a a a 
>-------=-

4 16 16 8 2 

for all E: > 0, 0 < 1 < /o, 0 :::; 8 < 8o and 'f) E RN with I'T/1 < K-c:, which proves (i). 

The proof of (ii) is the same as Proposition 3.1, so it is omitted here. 0 

In the notion of viscosity solution, it is basic to study the maximum point of <JJ 

(and also <15ry)· If supu<JJ = <JJ(t, x, y) and (t, x, y) is an interior point of U, then 

The following is a variant of Orandall-Ishii's lemma (cf. Lemma 2.10 in [17], and 

also see [7]) . 

Lemma 3.3. Let Ui (i = 1, · · · , k) be an upper semicontinuous function on (0, T) x 
niJ where ni is an open set in RNi 0 Let w be a function on u = (0, T) X nl X 0 0 0 X nk 

given by 

w(t, x) = u 1 (t, x1) + · · · + u~o(t, x~o); x = (x1 , ... , x~o). 

Let Fi : RNi X sN; -t R u { ±oo} ( i = 1, 0 0 0 
, k) be a lower semicontinuous function. 

For (s, z) E UJ suppose that (T,p, A) E p?J+w(s, z)) where p = (p1 , · · · ,p~o) and 

z = (z1 , · · · , z~o). If Ui is a viscosity subsolution of (3.1) for Fi in a neighborhood 
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of (s, Zi) E (0, T) X Di fori= 1, · · · , k. Then for each A> 0 there exist Xi E SNi 

such that 
k 

T + LFi(Pi,Xi)::::: 0 

i=l 

and 

(
xl 

-(1/>. + IAI)I::::: ~ 

where I is theN X N identity matrix (N = N1 + · · · + Nk) and IAI denotes the 

operator norm of A. 

4. Proof of Theorem 2.2. The basic strategy is similar to [5). Suppose 

a > 0, which means the conclusion, u :::; v on Q, of Theorem 2.2 is false. Here 

Q = (0, T) X [2 for a bounded domain [2 in RN, U = (0, T) X [2 X [2 and 

a= limsup{w(t, x, y) = u(t, x)- v(t, y) : lx- Yl < B, (t, x, y) E U}. 
lilO 

To get a contradiction, we find a nice (parabolic) super 2-jet of the function w at 

some point in U. For c > 0 and 1 > 0 we set 

<P(t, x, y) = w(t, x, y)- ¢(t, x, y); 

By Proposition 3.1 we see that <P attains a (positive) maximum over U at an interior 

point (f, x, f)) E U for all 0 < c <co and 0 < 1 < lo· Then it holds that 

where ¢t = 8t¢(t,x,f)), ¢x = 'lx¢(t,x,f)), (/Jy = Vy¢(t,x,f)) and ¢x,y = (¢x, (/Jy)· It 

is obvious that 

Case 1: We first discuss the case x-I- f). Lemma 3.3 states that there exist X and 

Y E SN such "that 

1 j(T- f)-2 + F(c-1(x- f)),X)- F(c-1(x- f)), -Y):::; 0, (4.1) 

and 

(4.2) 

since u and v are, respectively, viscosity sub-- and supersolutions of 

(4.3) 
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By choosing 

A= v;,y¢(£, x, fl) = ~ ( !_1 -f) 
and using (4.2) we see that X:::; -Y. Applying (F2) to (4.1), we obtain 

which leads to a contradiction. 

Case 2: When x = y, we cannot use ( 4.1) to get a contradiction, because F(p, X) 
has a singularity at p = 0. For c > 0, ry > 0, 6 > 0 and 'TJ E RN we set 

<J?r/t, x, y) = w(t, x, y)- </Yry(t, x, y); rl. (t X y) = lx- y- 'TJI2 + _"(_ + o(t- f\2 
'Pry ' ' 2c T - t "1 · 

By Proposition 3.2 we see that if>ry attains a (positive) maximum over U at an 

interior point (try, xry, Yry) E U for all 0 < c < co, 0 < ry < "(o, 0 :::; 6 < 60 and 

I'TII < "'g· 
Case 2a: When there is a sequence { 'T/j} C RN such that 'T/j --+ 0 and Xryi - Yryi -=f. 'T/j 

for all 0 < I'T/jl < /'\,6 , we get a contradiction similarly to Case 1. 

Case 2b: In the opposite case to Case 2a, there is a positive constant "' < /'\,6 such 

that Xry- Yry = 'TJ for alli'TJI < /'\,. Since iJj has a positive maximum at (£, x, x), we get 

w(t, x, x) > 0. Suppose that 

w(t, x, X) = w(t, x, x) for all X E [2. ( 4.4) 

Then for each sequence { xz} C [2 and x E 8[2 satisfying Xz --+ x, we see that 

0 < limsupw(t,xz,xz):::; w(i,x,x), 
l->oo 

since w is upper semicontinuous. This contradicts the hypothesis, w :::; 0 on BpQ, 
of Theorem 2.2. 

It is enough to prove ( 4.4) in Case 2b. We set 

f('TJ) = sup{w(try, x, y)- -T 'Y - o(try- i)2; X- y = 'TJ}. 
-try 

Since (try, xry, Yry) is a maximum point of <Pry and xry- Yry = 17, it follows that 

( ) lx - Y- 1712 'Y .:( ry2 ( ) 'Y ( ryz wtxy- ----ut-t <wt x y ----ot-t 
' ' 2c T - t - ry' ry' ry T - t ry ry 

for all (t, x, y) E U and 1171 < K This yields If(~)- f('TJ)I :::; I~- 1712 /2c by taking 

t = t~; and x-y =~for 1~1 < "'· Hence, f('TJ) is a constant for ITJI <"''which implies 

sup {w(t 17 , x,y)- -T 'Y - o(t17 - £) 2 } 

lx-yl<~< - t1) 

~ 'Y } (~ ~ ~) 'Y =sup{w(t,x,x)- --~ =w t,x,x - --~, 
xE.f? T- t T- t 
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since try---+ t as ry---+ 0. We set E~ = {(x, y) En x f2; lx- Yl < ~~;}. Since (try, xry, Yry) 
attains a maximum of ?Pry on (0, T) x E~ for lrJI < ~~; and x 11 - y11 = ry, we have 

sup { w(t, x, y)- T'Y - 8(t- t)2} = w(t, x, x)- __J___,__ ( 4.5) 
(O,T)xil,. - t T- t 

We now set 

A= {(x, y) E E~; w(t, x, y) = w(t, x, x)}. 

Since (x, x) E A and w is upper semicontinuous, it follows from ( 4.5) that A is a 

nonempty and closed subset of E~. To prove (4.4), it suffices to show that A= E~. 

Assuming A =f E~, we will deduce a contradiction. 

To this end we prepare a geometric lemma on balls touching a closed set. Here a 

closed (hyper )ball B is called touching a closed set A if int BnA = 0 and BBnA =f 0, 
where int B is the interior of B. When the dimension of the base space is even, i.e., 

A, B c R_2N, and B = BrC:x, y) is touching A, the ball B is called obliquely touching 

A provided that x' =f x andy' =f y for all (x', y') E BB n A. 

Lemma 4.1. Let E be a connected open set in R2N and let A be a closed subset 

of E such that A =f 0 and A =f E. Then there exists a closed (hyper)ball B = 

Br(x, Y) C E satisfying one of the following properties: 

(I) B is obliquely touching A. 

If there are no balls obliquely touching A, 

(IIa) B is touching A at a point (x, y') and (x, y') E A for all x with lx-xl < r. 

(IIb) B is touching A at a point (x', y) and (x', y) E A for ally with IY- "YI < r. 

We postpone the proof of Lemma 4.1 in Section 6. According to Lemma 4.1 with 

E = E~, we have the three cases in Case 2b. 

Case 2b(I): There is a closed ball B = Br(x,y) obliquely touching A. We may 

assume that B is touching at a single point (x', y') with x1 =f x and y1 =f y by taking 

B smaller. For 1 > 0, 8 > 0 and A 2:: 0 we set 

W>.(t, x, y) = w(t, x, y)- T-=. t- 8(t- t)2 - A(lx- xl2 + IY- "YI 2). 

By (x, y) ¢. A and ( 4.5) we see w(t, x, y) < w(t, x, x). By setting w(t, x, x) -
w(t, x, y) = () > 0 and choosing X with 0 <X< (lx- xl 2 + lx- "YI 2)-1B /2, we see 

that 

ll\ (t, x, x) - !P), (t, x, y) > B /2 for all 0 ~ A <X. 

This yields that (t, x, y) is not a maximum point of lff,>.. Let (t>., X>., Y>.) be a maxi

mum point of lff>.. 
By ( 4.5) we see that (t, x, x) is a maximum point of w0 and 1ff0 attains a maximum 

only at t = t. This implies that (t>., X>., Y>.) ---+ (t, x", y") as .\ ---+ 0 for some point 

(x",y") E E~. By the definition of lff>. we see (x>.,Y>.) E Band then (x",y") = 
(x', y') E BB n A. Since B is obliquely touching A, there exist ()' > 0 and X with 

0 < .\1 ~ X such that 

lx>.- xl and IY>.- Yl 2:: ()' for all 0 ~A< A1
• 

Then we get a contradiction similarly to Case 1. 
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Case 2b(Ila): There is a closed ball B = Br(x, y) touching A at a point (x, y') 
and (x, y') E A for alljx- xl < r. First, we see that 

sup Jlio = Jlio(i, x, y') 
(O,T)xL;,. 

(= w(i,x,y')- ~) 
T-t 

= lff0 (i, x, y') for all lx- xl < r 

by ( 4.5) and the definition of the set A. This implies that there exists a constant C 

such that u(i, x) = C for alljx-xl < r. We now invoke our finite speed assumption. 

Lemma 4.2. Suppose that u has an upper speed bound v. If u( to, x) 2:: C for 

Jx- xol <Do) then there exists for all 8) a positive number r = r(8) such that 

sup u(t, x) 2:: C for to-r :S: t :S: to. 
lx-xol9 

Proof. Suppose that there is 8 > 0 such that for all numbers k 2:: ks, 

sup u(tk, x) = mk < C with tk =to- k-1 , 

lx-xol<8 

where k8 satisfies 8 > v(8)k51 . By setting R(t) = 8- v(8)(t- tk) we see that 

R(t0 ) = 8- v(8)k-1 > 0. The finite speed condition yields 

sup u(to, x) :S: mk < C, 
lx-xoi<R(to) 

which contradicts the assumption. 0 

We now return to discuss Case 2b(IIa) of the proof of Theorem 2.2. By Lemma 

4.2 there exists s = s(r) > 0 such that 

sup u(t, x) 2:: C for all i-s :S: t :S: i. 
lx-xl<r 

Since !li0 (t, x, y) :S: !li0 (i, x, y'), we see that 

v(t, y)- v(i, y') 2:: u(t, x)- u(i, x)- 8(t- i) 2 - T '__ t + T rr_ t 

2:: sup u(t,x)-C-8(t-i) 2 --~-+~ 
Jx-xJ<r T-t T-t 

> -8(t-i)2 __ 1_+~ 
- T-t T-t 

for all i- s :S: t :S: i. Hence, there is r' > 0 such that 

in£ {v(t,y)+TI +8(t-i) 2 }=v(i,y')+~, (4.6) 
(t-s,i)xV - t T- t 

where V = {y : IY- y'j < r'}. 
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We set K = {y E V;v(t,y) = v(t,y1)}. Since y1 E K and vis lower semicontin

uous, it follows from (4.6) that K is a nonempty and closed subset of V. In the 

beginning of Case 2b(Ua) we proved that u(t, x) was a constant near x. If v(f, y) is 

also a constant near y', we get a contradiction to (x, y') E a A. Then we see K '/= V, 

which implies that there is a closed ball B P (y) C V touching K at a single point 

(see Lemma 6.4). For 1 > 0, 8 > 0 and ). > 0 we set that 

1/J>..(t,y) =v(t,y)+ T~t +8(t-t)2+>.Jy-yJ2. 

Let 1/J>.. attain a minimum at (t>.., Y>..) over (t- s, t) x V. We observe that t>.. -+ f 
andY>.. -+ y" E Bp(Y) n K as ). -+ O, in particular, there is a positive constant {) 

satisfying IY>.. - yJ ~ {) for small >.. Since (t>.., Y>..) is an interior point and v is a 

viscosity supersolution of ( 4.3), we see that 

This implies a contradiction, -~T- 2 ~ 0 (as).-+ 0), by using the condition (F3'). 

In Case 2b(Ilb), which is the final case of the proof, we also get a contradiction 

similar to Case 2b(Ua). Then, the proof of Theorem 2.2 is complete except for the 

proof of Lemma 4.1. 

5. Construction of solutions. In this section we construct a viscosity solution 

with finite speed for the initial value problem 

Otu+F(Vu, \72u) = 0 in (0, oo) x RN, 

u(O, x) = a(x) for x ERN. 

(5.la) 

(5.lb) 

Here we assume that F = F(p, X) satisfies (Fl)-(F3), which implies for some 

positive functions c± E 0 1 (0, oo), 

F(p, -I)::::; c_(Jpl) and F(p,I) ~ -c+(JpJ), (F4) 

and a E Ka(RN) for some a E R, i.e., 

a( x) - a is a continuous function with compact support in RN. 

Our goal in this section is to prove 

Theorem 5.1. Suppose that F satisfies (Fl)-(F3). Let a E Ka(RN). Then there 

exists a global-in-time viscosity solution u of (5.la,b) satisfying u E Ka([O, T] X RN) 

for all T > 0. Moreover, u has finite speed depending only on C±. 

We begin with the approximated initial value problem 

OtUk +F~c(Vuk, \72uk) = 0 in (O,oo) X RN, 

uk(O,x) = a(x) for x ERN, 

where F1c is denoted by 

(5.2a) 

(5.2b) 

F~c(p, X) = (F(p, X) 1\ kJpl) V ( -kJpl) for k = 1, 2, · · · , (5.3) 
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and a 1\ b =min{ a, b}, a V b =max{ a, b}. The function Fk(p,X) is continuously 

extended to (p,X) = (O,X) for all X E SN, i.e., 

Fk : RN X sN --+ R is continuous, (Fl') 

and also satisfies (F2)-(F3) and 

Fk (p, -I) ::::; c~ (lpl) and Fk (p, I) :::::: -ci (\p\) (F4') 

for each k with c~(u) = c±(u) 1\ (ka"). When F(p,X) is continuously extended to 

(p, X)= (0, 0), the comparison and existence results hold without the finite speed 

condition (see [5], and also [17]). 

Proposition 5.2. Let u and v be a viscosity subsolution and a supersolution, re

spectively, of (5.2a) in Q = (0, T) X D, where T > 0 and D is a bounded domain in 

RN. Ifu*::::; v* on BpQ, then u*::::; v* on Q. 

Proposition 5.3. There exists a global-in-time viscosity solution uk of (5.2a,b) 

satisfying uk E Ka([O, T] X RN) for all T > 0. 

We first remark that the support of uk(t, ·)-a grows independently of k, whose 

speed bounds a value depending only on c±(l) = c±(l) 1\ k for sufficiently large k 

(see Lemma 6.5 in [5]). In other words, for each T > 0 there exists R* > 0 such 

that 

supp(uk(t, ·)-a) C BR* (0) for all t E (0, T). 

We must show that uk (and also -uk) has an upper speed bound independent of 

k, i.e., for each R > 0 we will find v = v(R) :::::: 0 independent of k such that 

sup uk(t,x):s;C with6v={(t,x):t:::C::to,\x-xoJ:s;R-v(R)(t-t0 )} (5.4) 
(t,:z:)EL\.,.. 

whenever 0 E Rand (to,xo) E (O,oo) xRN satisfies sup uk(t0 ,x)::::; C. It 
lx-xol:s;R 

suffices to discuss the case when (to, xo) E (0, T) x BR· (0) for each T > 0. 
Without loss of generality we may assume that (to, x0 ) = (0, 0). Let bk be a 

continuous and radial function satisfying 

(5.5) 

A direct calculation shows that 

l lxl u 
v"'(t,x) = t+ ~( )du 

o c+ u 
(5.6) 

is a viscosity supersolution of (5.2a). For each e, let ht; be a real valued continuous 

and nondecreasing function over R satisfying ht;(O) = b"'(e). By using the properties 

of viscosity solution we see that 

is also a viscosity supersolution of (5.2a) (see Proposition 6.4 in [5]). Proposition 

5.2 and (5.5) yield uk(t,x)::::; gk(t,x) for all t::::;: 0. 

Hence, it suffices to find an upper speed bound for each vk, which is uniform in 

k. 
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Proposition 5.4. The function vk has an upper speed bound p,(R) = 4{(R) / R, 
where 

!(R) = max{c+(o-); R/2::; a-::; R* + R}. 

Proof. For each R > 0, let 0 E Rand (to, x0 ) E (0, T) x BR* (0) satisfying 

sup vk(to, x) ::; 0. 
Jx-xoJ:s;R 

By setting Ro = lxol (Ro ::; R*) and (5.6) we see that 

1
Ro+R o-

vk(to,x)::;to+ ~()do- ifix-xoi::;R. 
. o c+ a-

(5.7) 

Since the equality sign of (5. 7) is attained at some point whose length is equal to 

Ro + R, it follows that 

1
Ro+R 0" 

to+ ~( )do-::; 0. 
o c+ a-

Let p, ~ 0 be a number. For all 0 < t1 ::; R/ p,, we obtain 

1
Ro+R-p,t' o-

vk(to+t1,x)::;to+t1+ · ~()do- iflx-xoi::;R-p,t1 • 

o c+ a-

This equality sign is also attained at some point. Note that p, = p,(R) is an upper 

speed bound for vk, if and only if 

1
Ro+R-p,t' a- 1Ro+R a-

to + t1 + ~( ) do- ::; to + ~( ) da-
o c+ a- o c+ a-

(5.8) 

holds for 0 < t 1 ::; R/ p,. 

We set 11 = max{c!j_(o-);R/2::; a-::; R* + R} and 11-1 = 2{1/R. The number 

11 > 0 is independent of k for sufficiently large k. For 0 < t1 ::; R/2!1-1, we see that 

1Ro+R 0" 1 
~( )do-~ -[(Ro +R)2 - (Ro +R- p,d)2] 

Ro+R-p,1t' c+ a- 2{1 

1 ( ( ) 1] 1 1 3R 1 1 
= - 2 Ro + R - 11-1 t 11-1 t ~ - · - · 11-1 t ~ t . 

2{1 2{1 2 

Hence, (5.8) holds for all 0 < t1 ::; R/2p,1, so (5.4) holds for vk and the trapezoid 

set 

6~ 1 = {(t, x ); to ::; t::; to+ R/2!1-1, lx- xol ::; R- 11-1 (R)(t- to)}. 

By choosing p, = 2p,1, we see 6.11- C 6.~ 1 . This completes the proof. 0 

By Proposition 5.4 we get an upper speed bound for uk independent of k. Simi

larly, we also find an upper speed bound for -uk independent of k. 

Now, the relation (5.3) implies that 

lim*Fk(p,X) ~ F(p,X) and lim* Fk(p,X)::; F(p,X). (5.9) 
k~oo k~oo 

Under the assumption (5.9) the following stability result is known ( cf. Proposition 

2.4 in (5]). 
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Proposition 5.5. Suppose (5.9). Let uk be a viscosity sub- (resp. super-) solution 
of (5.2a), and let 

u = lim*uk (resp. 'Jl = lim*uk). 
k-+oo k-+oo 

Jfu < oo ( resp. 'Jl > -oo), then u ( resp. 'Jl) is a viscosity sub- ( resp. super-) solution 
of (5.1a). 

Proposition 5.2 implies that the viscosity solution uk of (5.2a,b) satisfies the 

uniform estimate 

iuk(t,x)l:::; sup ia(x)l for all k. 
xERN 

The functions u and 'Jl, defined in Proposition 5.5, satisfy u < oo and 'Jl > -oo, 

respectively. Then u and 'Jl are, respectively, a viscosity sub- and supersolution of 

(5.1a). 

We next show that u and 'Jl satisfy the initial condition (5.1b) and the hypothesis 

of Theorem 2.2. By (5.2b) we see that (lim*uk)(O, x) ;:::: a(x). Since uk has an upper 
k-+oo 

speed bound v, it follows that for all x ERN and s > 0, 

sup uk(s,y):s; sup a(y) with6c-={(s,y):s2:0,jx-yj:s;s-v(s)s}. 
(s,y)E£;. lx-yl::=;c-

Obviously, it follows that 

(lim*uk)(O, x) = lim supsup{u1(s,y): lsi:::; s, lx- Yi:::; s} 
k-+oo e-+0 l> k 

k-+oo -

:::; lim sup a(y) = a(x), 
dO lx-yl::=;c-

since a is continuous. Hence, we see that u(O,x) = a(x) and, similarly, li(O,x) = 

a(x). Proposition 5.3 implies that u and 'Jl belong to Ko:([O, T] x RN) for all T > 0. 

Then the hypothesis of Theorem 2.2 on the parabolic boundary is fulfilled. Since 

uk and -uk have upper speed bounds independent of k, it follows that u and -.1£ 

have the same bounds. 

By Theorem 2.2 we see u:::; 'Jl. Since, obviously, u 2: .1£, we see that 'Jl = u; so 

the function u = 'Jl = u is a (unique) viscosity solution of (5.1a,b), which has finite 

speed. This completes the proof of Theorem 5.1. 

6. Lemma on balls touching a closed set. This section is devoted to proving 

Lemma 4.1, which I learned from Y. Giga. 

Let k 2: 2 be an integer, Tj > 0 (j = 1, 2) and (xo, Yo) E: RN x RN. We set 

E:1 ,r2 (xo, Yo)= {(x, y) ERN X RN : (lx- xol/r1l + (IY- Yol/rz)k:::; 1}. 

When r1 = rz = r, B~(xo, Yo) = E;,r(xo, Yo) is called a closed Lk-ball. Especially, a 

closed L 2-ball B;(xo, Yo) is a usual (hyper)ball denoted by Br(xo, Yo). We also use 

the following notations: 

13k = {B:(xo, Yo) : (xo, Yo) ERN X RN, r > 0} (k = 2, 3, .. · ), 

E = {Er1 ,r2 (xo, Yo) = E;1 ,r2 (xo, Yo) : (xo, Yo) ERN X RN, rj > 0 (j = 1, 2)}, 

13 = U 13k UE. 

k:2:;2 



340 SHUN'ICHI GOTO 

Definition. Let A C R 2N and B E 13. (i) B is called touching A if int B n A = 0 
and 8B n A=/= 0, where intB is the interior of B. (ii) When B is touching A, B is 

called obliquely touching A provided that x =/= x0 andy=/= y0 for all (x, y) E 8B n A. 

When B E 13 is touching a set A C R2N, there is a ball B' c B such that 8B' n A 

contains just a single point. Indeed, for a touching point (x, y) E 8B n A the new 

radius is sufficiently small and the center moves to some point in (x, y)-direction. 

By similar argument we have the following two propositions. The proof of the 

propositions is easy, so it is omitted here. 

Proposition 6.1. If B E 13 is touching a set A C WN, then there is B' E 132 such 

that B' c B and B' is touching A. 

Proposition 6.2. LetA C R2N and B = B~(xo,Yo) (resp. Er1 ,r2 (xo,Yo)). (i) 
Suppose that int B n A =/= 0 and 

(intB n A) n ( {(xo, y) : y ERN} U {(x, Yo) : x ERN})= 0. 

Then there exists a constant A with 0 < A < 1 such that B~r(xo, Yo) (respectively 

E>.r1 ,>.r2 (xo, Yo)) is obliquely touching A. (ii) When int B n A= 0, there is B' E 13 

such that B' c B and B' is obliquely touching A at a single point provided that 

there exists (x, y) E 8B n A with x =/= x0 andy=/= y0 . 

Our goal in this section is to prove 

Theorem 6.3. Let U be a connected open set in R 2N and let A be a closed subset of 

U such that A=/= 0 and A=/= U. Then there is a ball B = Br(xo, Yo) c U satisfying 

one of the following properties: 

(I) B is obliquely touching A. 

If there are no balls obliquely touching A, 

(IIa) B is touching A at a point (xo, y) and (x, y) E A for all x with lx- xol < r. 

(lib) B is touching A at a point (x, Yo) and (x, y) E A for all y with IY -Yo I < r. 

We also use "touching" when the dimension of the base space is not even, and 

set Bp(zo) = {z E Rd; lz- zol :::::; p} for p > 0 and zoE Rd. 

Lemma 6.4. Under the hypothesis of Theorem 6.3 (in Rd), there is a ball B such 

that B C U and B is touching A. 

Proof. Since A=/= 0 and A -::j=. U, we find a point z E 8An U. For a sufficiently small 

p > 0 satisfying Bp(z) c U, we choose z0 E Bp;2 (z) \A. Since dist(zo, 8Bp(z)) ~ 

pj2, we see Bp;2 (z0 ) c Bp(z). By z E 8A n Bp;2 (zo) we see that Bp;2 (zo) n A is 

a nonempty closed set. Set r = dist(zo, 8(Bp;2 (zo) n A)) > 0, then Br(zo) C U is 

touching A. D 

When d = 2N in Lemma 6.4, by replacing p/2 by pj(2-./2N) in the proof of 

Lemma 6.4, we also see that 

{(x,y) ERN X RN; lx- xol < r, IY- Yo I< r} C U ((xo,Yo) = zo). 

We can now prove Theorem 6.3. By Lemma 6.4 we get a ball B = Br(xo, Yo) C U 

touching A. We may assume that B is touching A at a single point (x, y) E 8 B n A. 
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Suppose that there are no balls satisfying (I). Then x = xo, y i= Yo or x i= x 0 , 

y=yo. 

Suppose that x = xo and y i= Yo. We will show the existence of a ball satisfying 

(ITa). We first prove that 

(x,y) ~A iflx-xol <rand IY-Yol <r. (6.1) 

Indeed, (6.1) clearly holds if (x, y) E B. When (x, y) ~ B, we see that (x, y) E 

intB:(xo,Yo) for some k > 2, and so 

Suppose that (6.1) is false. Then int B:(xo, Yo) n A i= 0. By Proposition 6.2 (i) 

there is a constant A with 0 <A< 1 such that B~r(xo, Yo) is obliquely touching A, 

which implies, by Proposition 6.1, the existence of a ball satisfying (I). 

We next prove that 

(x,y)EA iflx-xol<r. (6.2) 

To do this, we use a generalization of (6.1), whose proof is similar to that of (6.1), 
so it is omitted here. 

Lemma 6.5. Under the hypothesis of Theorem 6.3, let E';1 ,r2 (xo, Yo) CUbe touch

ing A at a single point (x, y). Suppose that x = xo and y i= y0 (or x i= x 0 and 

y =Yo). If lx- xol < r1 and IY- Yo I < r2, then (x, y) ~A. 

We set Q = {x E RN; lx- xol < r} and V = {x E Q; (x,y) E A}. Since 

(x0 , y) E A and A is a closed set, it follows that Vis a nonempty and closed subset 

of Q. Hence, it is enough to show that V is also an open subset of Q. For each 

x1 E V, let p > 0 satisfying B2p(x1) C Q. Let x2 E Bp(xl) and suppose that 

X2 ~ v. Since E;,r/2(x2, Y) n A = 0 (f) = (Yo+ ?J)/2) by Lemma 6.5, there is a 

constant c > 0 such that E;+e,r/2+e(x2, f)) is touching A. We may assume that this 

touching is not oblique. By Lemma 6.5 we see 

(x,y) ~A if lx-x2l <p+s and IY-YI <r/2+s. 

This contradicts x1 E V, so x2 E V or Bp(x1) C V, which implies that Vis an open 

set of Q. 

By (6.1) and (6.2) there exists a ball satisfying (ITa). When xi= xo andy= y0 

are supposed, the same argument also implies the existence of a ball satisfying (IIb). 

The proof of Theorem 6.3 is complete. 
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