
AIAA JOURNAL 
Vol. 30. No. II. November 1992 

C"'o 
F(z) 
I 
K 
KH 
Ks 
P(q,) 
p 
Q(q,) 
s 
s; 
Si 
tic 
V 
v 

Vi 

V·(q,) 
ii;(q;; ) 

W(q,) 
WF(q,) 
WS(q,) 
Ww(q,) 
z 

Generalized Multipoint Inverse Airfoil Design 

Michael S. Selig· and Mark D. Maughmert 
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la a rather aeaeral sense, ia"erse airfoU desila caa be takea to meaa the problem of speclfyinl a desired set 
of airfoU characteristics, sudl as tbe airfoU maxima .. tblekaess ratio, pltchlal moment, part of tbe "e1oclty 
distributioa, or bouadary-layer develop_t. From tills laformatloa, the correspoadinl airfoU shape is deter­
miaed. This paper presents a metbod tbat approacha tbe desiga problem from this penpectlve. In particular, 
the airfoU is dl"ided Into seameats aloBl wbleb, toaetber witb tbe desila conditions, either tbe "e1ocity 
distribution or boundary-layer developmeat may be presaibed. la additioa to tbese local desired distributions, 
sinlle parameten like the amoU tblekaess caa be specified. Del_iaatioa of tbe airfoU sbape is accompllsbed 
by coupUnl aa iacompressible poteatial·Dow lanne alrfoU desip metbod witb a direct lateanal bouadary-layer 
aaalysis method. Tbe resultial system of aoallaear eqUtioDl Is soh-ed by a multidimensional Newtoa itenatloa 
techaiqae. Aa eomple airfaU desila, DOt latended for practical appllcatioa, Is preseated to Hlustrate some of 
the capabUlties of the metbod. As tbls eomple Hlustnates, the desila methodoloty presented pro"ldes a means 
of dealina simultaneously wit~ tbe myriad requirements aad coastnaiats tbat can be speciDed in the desiaa of an 
airfoil. 

Nomenclature 
= Fourier series coefficients 
= airfoil chord 
= pitching-moment coefficient for a given angle 

of attack 
= pitching-moment coefficient at zero lift 
= complex potential function 
= total number of airfoil segments 
= main recovery parameter 
= closure recovery parameter 
= trailing-edge thickness parameter 
= harmonic function on circle 
= value of a desired generic parameter 
= conjugate harmonic function on circle 
= arc length about airfoil 
= arc length for segment i 
= relative arc length for segment i 
= maximum thickness ratio of airfoil 
= freestream velocity (V = 1) 
= airfoil velocity distribution normalized by 

freest ream velocity 
= velocity level for segment i 
= mUltipoint design velocity distribution 
= relative design velocity distribution as a function 

of q;; for segment i 
= relative design velocity distribution as a function 

of Si for segment i 
= total recovery function 
= trailing-edge recovery function 
= closure recovery function 
= main recovery function 
= physical-plane complex coordinate (x + iy) 
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= angle of attack from zero-lift angle 
= zero-lift angle of attack relative to airfoil 

chordline 
= mUltipoint design angle-of-attack distribution 
= trailing-edge included angle parameter 
= circle-plane complex coordinate (~ + i.,,) 
= local direction of flow about airfoil 
= main recovery parameter 
= step function 
= arc limit in circle plane 
= arc limit for segment i 
= leading-edge arc limit 
= trailing-edge recovery arc limit 
= closure recovery arc limit 
= main recovery arc limit 
= relative arc limit for segment i 

Boundary-Layer Variables 

CD = dissipation coefficient 
cf = skin-friction coefficient 
H 11• H)l = shape factors. 0/ ~ and 0)1 ~ 
n = linear stability amplification factor 
R = airfoil chord Reynolds number. Veil' 
R~ = Reynolds number. V 021 " 
0., ~. 0) = displacement. momentum. and energy thicknesses 
II = kinematic viscosity 

Subscript 

= value for segment or at arc limit q,; 

Superscripts 

= relative to beginning of segment 
= lower-surface quantity 
= Newton node index 
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Introduction 

T RADITIONALL Y. inverse airfoil design is considered as 
the problem of finding the airfoil shape corresponding to 

a specified velocity distribution. To more directly control the 
airfoil characteristics. the contemporary view of inverse airfoil 
design follows principally along two lines of thought. First. 
emphasis is being placed on solving multipoint design prob­
lems either by inverse formulationsl.l or numerical optimiza­
tion.)'· Second, there is continued interest in prescribing quan­
tities other than just the velocity distribution. For instance. it 
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is often the case that the designer wishes to specify local flow 
physics such as the boundary-layer shape factor'-IO or a Strat­
ford turbulent pressure recovery. II In other cases, it may be 
desirable to control the geometry over a segment of the air­
foil. 12 Besides specification of these desired local distributions, 
it is usually necessary to simultaneously achieve global 
!Jarameters such as the thickness ratio and pitching moment. 
rhus, in broad terms, a modern airfoil design methodology 
.;hould allow for multipoint design, as well as for the selection 
and specification of the independent design variables, be they 
the velocity distribution, boundary-layer development, or sin­
gle design parameters. 

This paper presents an approach to solving this general 
problem by coupling a boundary-layer analysis procedure with 
an inverse airfoil design method developed earlier.2•13 Then, 
through a convenient parameterization of the desired design 
variables and appropriately selected dependent variables, the 
nonlinear system is solved via Newton iteration. The method is 

ighly flexible. For instance, it is possible to specify the airfoil 
docity distribution on the upper surface at one angle of 

attack and some boundary-layer development on the lower 
surface at a different angle of attack, while at the same time 
achieving a desired airfoil thickness ratio and pitching mo­
ment. Of course, these prescribed conditions are subject to the 
constraints that the airfoil shape must be closed and uncrossed 
and that the velocity distribution must be continuous. 

Formulation of tbe Problem 
Although a number of schemes have been devised to achieve 
desired velocity distribution, 1~.11.12.14-21 there are only two 
,mmon approaches for the achievement of a desired 

boundary-layer development. One approach6•7•11 is to use an 
inverse boundary-layer method to determine the velocity dis­
tribution that yields the desired boundary-layer development, 
typically the shape-factor or skin-friction distribution. The 
resulting velocity distribution is then used as input to a poten­
tial-flow inverse airfoil method that provides the correspond­
ing airfoil shape. 

The disadvantage of the method is that only single-point 
design problems can be handled directly. Whether or not the 
~ ,ulting airfoil meets the multipoint design requirements is 

ermined through postdesign analysis. If discrepancies do 
e,\lst, pan of the velocity distribution is modified judiciously 
until the desired goals are eventually achieved. Another diffi­
culty arises when the boundary-layer equations and the auxil­
iary equations may not be expressed in inverse form. 

The other approach, which may be employed using almost 
any inverse airfoil method, entirely dispenses with the inverse 
boundary-layer solution as a driver to the inverse airfoil 
method. In an interactive and iterative fashion, all of the 
design goals are achieved by carefully adjusting the velocity 
d',fribution provided as input to the inverse method. Based on 

iback from successive analyses and with some experience, 
t. _ velocity distribution may be changed in the direction nec­
essary to bring the airfoil closer to the desired goals. 

II is instructive to illustrate this iterative technique within 
the framework of the inverse airfoil design method described 
in Ref. 2. The method uses conformal mapping to transform 
the flow about the circle into that about an airfoil. A review of 
the theory is presented later. The circle is divided into a desired 
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Fig. 3 Cbenges in the sbape-factor distribution as a mull of ,..rylng 
the slope of tbe nlocity distribution on tbe tblrd segment. 

number of segments along each of which the airfoil velocity 
distribution as a function of the circle arc limit q, is prescribed 
for a specified angle of attack corresponding to the segment. 
For this example, five segments are used as depicted in Fig. 1. 
Attention, however, is focused only on the third and fourth 
segments (on the lower surface) along which the velocity is 
prescribed for a = S deg. 

The velocity distribution along any intermediate segment at 
the design angle of attack is made up of a constant level and 
a velocity distribution relative to this constant level; i.e., 
Vi + Vi(-ii), where -ii is the arc limit relative to the beginning of 
the segment i. By definition and without any loss in generality, 
it is taken that Vi(-ii = 0) = O. These relative design velocity 
distributions are indicated in Fig. 2a for the third and fourth 
segments. The origin of the relative coordinate system is posi­
tioned for each segment at the constant velocity level Vi. The 
relative velocity is then measured from this origin. After speci­
fying the airfoil design velocity distribution and angle of at-
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tack for each segment, the inverse problem is solved to obtain 
the airfoil shape. The velocity distribution may then be plotted 
as a function of the arc length s as shown in Fig. 2b. Figure 2c 
shows the resulting boundary-layer shape-factor distribution 
in the relative coordinate system that is consistent with the 
prescribed velocity distribution. 

Now it is supposed that one of the design goals is to have 
HI2 = 3 for the fourth segment at the design angle of attack 
a = S deg. As shown in Fig. 3, the relative velocity at the end 
of the third segment for the airfoil of Fig. 1 may be adjusted 
to achieve the desired initial condition: HI2 = 3. After having 
achieved this desired initial condition, attention is turned to 
adjusting to relative velocity distribution on the fourth seg­
ment so that HI2 along the segment does not change from the 
initial condition. Put differently, V4(~4) is adjusted to achieve 
fllZ Cf4) = o. Although it cannot be seen from Fig. 4, the 
sol~tion for V4(~4) which gives flll.(f4) = 0 leads to a slight 
change in the initial condition. This process could be repeated 
until the shape-factor distribution for the fourth segment is 
within any set tolerance of the desired value of 3. 

The basis of a practical inverse design method emerges from 
this simple example. Specifically, for the example presented, 
the relative velocity for the third segment is defined by one 
parameter-the relative velocity at the end of the segment 
assuming a linear variation in ~l. Then, the relative velocity 
distribution for the fourth segment is defined by a fIXed num­
ber of nodes through which a spline is passed as indicated in 
Fig. S. A multidimensional Newton iteration method is then 
used to iterate on the points defining the velocity distribution 
to achieve the desired initial condition Hil = 3 at the beginning 
of the fourth segment and flI2 = 0 at the nodes of the fourth 
segment. 

The approach described is preasely that taken here. This 
technique can be employed to achieve a desired v(s),1l but it 
readily generalizes to allow for the achievement of a desired 

boundary-layer development. Moreover, it is straightforward 
to include in the Newton system equations for the thickness 
ratio, pitching moment, or any other single parameter. The 
remainder of this paper reviews briefly the potential-flow in­
verse formulation and presents the direct boundary-layer anal­
ysis method. The multidimensional Newton iteration scheme 
is then discussed and one example airfoil is given. 

Potential-Flow Inverse Airfoil Design Method 
Eppler was the first to develop a theory for multipoint 

inverse airfoil design, and today the use of this method, which 
is based on conformal mapping, is widespread. Whereas Ep­
pler's formulation only considers cusped trailing edges, the 
present theoretical development, which draws on the work of 
Eppler, allows for both the design of cusped and finite trail­
ing-edge angle airfoils. Finite trailing-edge angle airfoils are 
permitted by including an additional factor in the conformal 
transformation that in turn requires the modification of the 
functions that control the recovery regions of the velocity 
distribution. The formulation of the numerical solution also 
differs. For the intermediate airfoil segments, that is, all seg­
ments excluding the first and last, the design velocity distribu­
tion for the segment can be a prescribed function as indicated 
in Figs. 2a and 5. Eppler's formulation only permits a con­
stant design velocity for an intermediate segment at the design 
angle of attack. Finally, the current method employs multidi­
mensional Newton iteration to solve the resulting system of 
nonlinear equations and to enable the designer to achieve a 
multitude of design requirements. 

Tbeoretical Development 

A summary of the inverse method, fully detailed in Ref. 13, 
begins by considering the complex velocity in the airfoil plane 
expressed as 

(1) 

On the boundary of the unit circle, S = ei., this becomes 

(2) 

where O:s 41:S 2 .... From potential-flow theory, the complex 
velocity on the circle is expressed as 

(~~).~ =4 sin ~ I cos [ ~- a*(41)] I exp [ -;( 41-~- ... *(~)JJ 

where 

o :s ~ :s ... + 2a*(41) 

... + 2a(~):s ~:s 2 ... 

(3) 

(4) 

The quantity in the exponent, 41 - ... 12 - ... *(~), is the flow 
angle about circle. The step function "'*(41) is included to 
account for the 18O-deg jumps in the flow angle at the forward 
and rear stagnation points. For single-point design a*(~) is a 
constant and may be considered as the design angle of attack 
in the usual manner. For practical multipoint design, however, 
a*(~) is considered a piecewise function. For each segment of 
the airfoil there corresponds a constant, design angle of at­
tack, aj. The design angle-of-attack distribution a*(41) is the 
function made up of these individual design angles of attack aj 
about the airfoil. The desired velocity distribution on the 
airfoil is expressed in exponential form as 

(5) 

Since the velocity distribution about the circle is known and 
the velocity distribution about the airfoil is specified, it re-
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mains to determine the derivative of the mapping function 
through Eq. (2) in order to obtain the corresponding airfoil 
shape. The derivative of the transformation is assumed to be 
of the form 

dz ( 1)1-' ... 
dr = 1- t exp l~/am + ibm)r- m

• Irl ~ I (6) 

. ;1at on the boundary of the circle becomes 

(dz) = (1 - e -;.)1-. exp[P(ct» + iQ(ct») (7) 
dr ,'0 

Substitution of Eqs. (3). (5), and (7) into Eq. (2) leads to 

[ 
2 sin ct>12-'v*(ct» J 

P(ct» = -t.. 
21 cos[ct>/2 - Q*(ct»] 1 

(8) 

Consideration of airfoil closure and compatibility between 
e specified velocity distribution and the freestream leads to 

the three integral constraints given by 

(9) 

Consequently the airfoil velocity distribution v(ct» and angle 
of attack distribution Q*(ct» may not be specified arbitrarily 
t-;!l must satisfy these three equations. In addition, as seen 

ough Eq. (8), the function P(ct» must be continuous in 
L,,'der that the velocity distribution be continuous at any single 
angle of attack. Having specified P(ct» through v*(ct» and 
a·(ct» subject to these three integral constraints and the condi­
tion that P(ct» be continuous, the conjugate harmonic func­
tion Q(ct» is determined through application of Poisson's inte­
gral. The functions P(ct» and Q(ct» define the derivative of the 
mapping function which may be integrated about the circle to 
give the airfoil coordinates, :(ct» = x(ct» + iy(ct». 

'IImrrical Formulation 

-he formulation of the numerical solution begins with the 
'. jfication of the design velocity and angle-of-attack distri­
butions. As mentioned, the design angle-of-attack distribution 
is specified in a piecewise manner by assigning a constant 
angle of attack to each segment of the airfoil. Likewise, v·(ct» 
is prescribed as a piecewise function. Its form is selected on the 
basis that it must facilitate the numerical solution and permit 
the design of practical airfoils. For each segment other than 
the first or the last, the design velocity distribution is written 
in the form 

v·(ct» = V; + v;(q;;), (10) 

w 
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Fig.6 COmpollenl rec:OYrfY f.JKtioas ud Iotal rKOYrry fullCtion 
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Fig. 7 Componenl rKOYrfY functions and total rKOYrfY function 
for.w = )00, .s = 20, .F '" 10 deg,,, .. 0.3, KH '" 0.1, f '" 1/18, and 
K = 1 corresponding to an airfoU wilh a lO-deg lraillnl-Ngr anglr. 

as discussed in the previous example. For the first segment, the 
design velocity distribution is expressed as 

(lIa) 

while for the last 

v*(ct» = VfW(ct», ct>/- 1 :S ct> :S 2r (lib) 

The recovery function w(ct» for the upper surface is defined by 

(12) 

where 

(
COS ct> - cos ct>w) 

ww(ct» = 1 + K , 
1+ cosct>w 

Osct>sct>w (13a) 

[

I - 0.36(cOS ct> - cos ct>S)2 ,Os ct> s ct>s 
ws(ct» = I - cos ct>s 

1, ct>s:sct>:Sct>w 
(l3b) 

(l3c) 

where q,w - q,1' The recovery function W(q,) for the lower 
surface is of the same form except that ww(q,), ws(ct», WF(ct» 
and the defining parameters p., KH , K, ct>w, ct>s. and q,F are 
replaced by ww(q,), ws(ct», WF(ct», p., kH' k. ~w - q,1-1. ~s. 
and ~F' 

For a typical airfoil design. it is usually desirable to have 
ct>,..>ct>s >ct>F. for instance, ct>,.. = 100, ct>s = 30, and ct>F = 15 
deg. In this case, the first factor ww~(ct» in Eq. (12) controls 
the main part of the recovery. The second factor WfH(q,) 
controls to a great extent the velocity distribution in the vicin­
ity of the trailing edge. If E ;o! 0, the last factor wF{ct» is active 
and results in the proper behavior of the velocity distribution 
up to and including the trailing-edge stagnation point. To 
illustrate the effect of these component functions given in Eqs. 
(I3a-c) on the total recovery function of Eq.(I2), the follow­
ing values are used: p. = 0.3, KH = 0.1, E = 0, and K = I. With 
these assigned values and those for the arc limits given previ­
ously, the total recovery function and the component func­
tions are shown in Fig. 6. Since E = 0 in this case, an airfoil 
using this total recovery function would have a cusped trailing 
edge. If a lO-deg trailing-edge angle is desired, it is required 
that E = 1/18. The corresponding total recovery function and 
the component functions are shown in Fig. 7 where, as com­
pared with Fig. 6, only the value E has been changed. 

The equations to be satisfied by an airfoil with I segments 
includes the three integral constraints together with I continu-
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ity equations on P(tP), one coming from each junction be­
tween any two adjacent segments. Thus, in order to satisfy 
these (I + 3) equations, it is necessary to identify (I + 3) un­
knowns. Owing to the linearity of the equations, it is conve­
nient to select 1', jJ., KH , and I<H as four of these unknowns. 
The remaining (1- I) unknowns are selected from the [velocity 
levels Vi, again owing to the linearity of the governing equa­
tions. Consequently, the inverse problem is defined completely 
by specifying one velocity level Vi, all of the ai, tPi, Vi(~i)' and 
the upper- and lower-surface main and closure recovery arc 
limits tPw, 4»w, tPs, and 4»s and the recovery parameters K and 
1<. Also, if the airfoil is to have a finite trailing-edge angle, E 

is given to yield a trailing-edge angle of TE. Also, the trailing­
edge recovery arc limits, tPF and 4»F, are specified to define the 
trailing-edge recovery function, Eq. (l3c). 

Throughout the remainder of this paper the specified design 
Quantities ai, tPi' and so on, which define the potential-flow in­
verse design problem, are termed the inverse design parameters. 

Direct Boundary-Layer Method 
Once the airfoil is designed using the previously described 

inverse method, the boundary-layer development is then deter­
mined along each segment of the airfoil at the design condition 
for which some boundary-layer development is prescribed. 
For rapid interactive design, a direct integral boundary-layer 
method is used and displacement-thickness potential-flow iter­
ation is not performed. The integral momentum and energy 
equations are used in the standard form: 

dch 62 dv 
ds = - (2 + Hiv -; ds + C, (I4a) 

d6] 36] dv 
-= --- +CD 
ds vds 

(l4b) 

with laminar and turbulent closure relations expressed func­
tionallyas 

(l5a) 

(l5b) 

(l5c) 

The correlations used in the present method are taken from 
Ref. 22 for the laminar case and Ref. 23 for the turbulent case. 
The shape-factor correlation for laminar flow, however, is 
modified as will be discussed. 

The prescribed boundary-layer developments are limited to 
those corresponding to attached flows. A special problem is 
encountered, however, if at some point in the Newton itera­
tion laminar separation is reached before transition. An excur­
sion of this sort is entirely conceivable even though the final 
boundary-layer development will be attached along the design 
segment at the prescribed design condition. 

Conventional integral boundary-layer solution techniques 
switch at the point of laminar separation from a treatment of 
the velocity as the independent variable to its treatment as a 
dependent variable; that is, it follows fro m the solution. What 
is given instead of the velocity is anothe: variable, such as the 
shape of the separation streamline,24 distribution of the shape 
factor,25 or boundary-layer displacement thickness, all of which 
approximate the development of the ensuing laminar separa­
tion bubble. The integral boundary-layer equations are then 
solved in an inverse mode with the new variable as the inde­
pendent variable. An entirely different approach is to solve the 
problem through the inverse boundary-layer equations by the 
specification of a boundary-layer variable in order to find the 
corresponding boundary-layer edge velocity.' 

The need to approach the solution in either of these two 
ways is guided by clues found in the governing equations. The 
shape-factor correlation for HI2 = H 12(H]v based on the 

Falkner-Skan family of profiles is only valid for H32 ~ 1.515, 
whether or not the flow is attached or separated. An inversion 
of the relations given by Drela21 yields for attached flows 

HI2 = - 5.967105 + 6.578947 H]2 

-"'43.2865 (0.907 - H]2)2 - 16 

for H32 ~ 1.515. For separated flows with H]2> 1.515, 

HI2 = - 14.9375 + 12.5 H]2 

+"'156.25 (1.195 - H]v2 - 16 

(16a) 

(16b) 

An attempt to solve the integral boundary-layer equations 
beyond the point of separation with a boundary-layer edge 
velocity given by inviscid theory yields a shape factor 
H32< 1.515, which is not within the bounds of the correlations. 

To circumvent this difficulty and to integrate in the direct 
mode beyond the point of laminar separation, the present 
method replaces Eq. (16b) for separated flow with a fictitious 
shape-factor relation given by 

(17) 

for H32< 1.515. This equation merely serves as a means to 
continue in the direct mode beyond laminar separation with­
out having to resort to an inverse boundary-layer method. Of 
course, the solution beyond the point of laminar separation is 
no longer a valid boundary-layer development. Nevertheless, 
the final solution after iteration yields the desired (i.e., pre­
scribed) attached boundary-layer development for which the 
correlations are still perfectly valid. 

Transition from laminar to turbulent flow is predicted by a 
simplified e"-method based on linear stability theory as dis­
cussed in Ref. 26 or the (H - R) method of Eppler" 

Multidimensional Newton Iteration 
As illustrated in the example shown in Figs. 1-4, the pre­

scribed velocity distribution defined by the inverse design 
parameters Vi, all of the ai, tPi, etc., will not necessarily result 
in an airfoil having all of the specified properties. With experi­
ence and painstaking manipulation of the inverse design 
parameters, the desired properties can be obtained provided 
that they are realistically achievable and compatible. 

This sophisticated trial-and-error approach through the in­
verse method may be automated by solving the problem 
through multidimensional Newton iteration. Thus, control 
over the inverse design parameters is selectively given up; i.e., 
the values are determined through Newton iteration, in favor 
of matching desired airfoil characteristics that are not explic­
itly given as input to the potential-flow inverse airfoil design 
problem. 

As illustrated in the example of Fig. 4, the shape factor HI2 
at the beginning of the fourth segment is specified as 3. This 
value is obtained by the adjustment of the slope dIVd~l. 
Through Newton iteration, dVl/d~l becomes the unknown in 
order to satisfy the Newton equation 

(18) 

where the notation .. =>" means that this inverse design pa­
rameter has a first-order effect on the corresponding Newton 
equation. It further serves as an aid in keeping an equal 
number of equations as unknowns. 

For the fourth segment, the relative design velocity distribu­
tion V4(~4) is adjusted such that 8 12.($4) = 0, that is, through 
Newton iteration 

(19) 

The numerical problem, however, must be discretized for 
incorporation into the Newton system. The design velocity 
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distribution v.(~.) is defined by a desired number of moveable 
spline supports as shown in Fig. 5. For the three nodes shown, 
the following three equations must be satisfied: 

- - -I V.(tP4 = 41.) o = HI2.(5. = ~l) (20a) 

V4(~4 = ~:) => 0= Hl 2.(54 = 411) (20b) 

- - -3 V4(tP4 = 414) => o = Hl 2.(54 = ~1> (2Oc) 

where the superscripts indicate the index of the nodes in terms 
of the arc limit ~4 and the corresponding nodes in 54' 

Practically any conceivable desired airfoil property can be 
incorporated into the Newton system with iteration on some 
inverse design parameter. As in the companion paper, 2 the 
pitching moment at a given angle of attack may be specified by 
the adjustment of the specified velocity level V; as 

Only specified V; 0= Cm - P (21) 

where p is the value of the generic desired parameter, in this 
case the pitching moment. 

An arc limit 41; between two segments can be iterated to 
correspond to a specified x;lc or s;lc location as 

41; 0= x;lc - p (22a) 

or 

41, ... O=s;lc-p (22b) 

e generally, the arc limit may be adjusted so that a speci­
fied boundary-layer property is reached at that location. For 
example. q,; may be iterated to correspond to the point where 
the linear stability amplification factor n is a value of 9 for a 
given operating condition, i.e., 

q,; - 0= n(s,) - 9 (23) 

The basic inverse formulation through the specification of 
v*(tP) and a*(q,) can lead to an airfoil that is crossed. Fortu­
!"' .' "Iy, this problem can be remedied through appropriate 

ton iteration. By empirical obseryation, the trailing-edge 
\ ",,)city ratio of uncrossed airfoils is always less than unity. 
Moreover, it can be shown that the thicker the airfoil, the 
lower the trailing-edge velocity ratioY Many inverse methods 
make use of this fact and allow for the adjustment of an 
inverse design parameter in order to match a specified trailing­
edge velocity ratio, which is somewhat less than unity. A 
shortcoming of this approach is that the airfoil thickness is not 
known a priori, thereby making it difficult to preassign the 
proper trailing-edge velocity ratio. Also specifying the trailing­
eC7e velocity ratio is not a viable option for the design of 

lils having a finite trailing-edge angle in which case the 
L "ding-edge velocity is always zero. 

More can be deduced from the character of the trailing-edge 
velocity distribution than from the value of the trailing-edge 
velocity ratio. Figure 8 shows the trailing-edge velocity distri­
bution and the corresponding trailing-edge shape for three, 
symmetric, 8070 thick, cusped airfoils at a 5-deg angle of at­
tack. Only the last 25070 of chord is shown, and the vertical y I c 

v a) b) c) 

:t 
y/c ===-., ==- ====-I 
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~ ~ ~ 
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0.75 I 

FIR.S Impact 01 tM tralllal-edle nlodt,. dillrilMltioa oa tbe .... pe 
01 tM trallial edle: a) moclmateiy tbick tmlial edp, b) tbla trallial 
edRe, aad c) crossed trailinl edle. 

scale has been expanded to five times that of the xl c scale. The 
trend is that the larger the drop in velocity (i.e., pressure 
recovery) at the trailing edge, the thicker the airfoil in the 
vicinity of the trailing edge (e.g., case a). If there is no drop in 
the velocity, the trailing edge is very thin (e.g., case b). If the 
velocity shows an increase, the airfoil is usually crossed (e.g., 
case c). Although these comments are specific to symmetric 
airfoils such as those shown in Fig. 8, the same trends are 
observed for non-symmetric airfoils as long as the net velocity 
drop is considered. For example, if the velocity decreases on 
the upper surface by the same amount that it increases on the 
lower surface, there is zero net velocity drop. In such an 
instance, the airfoil will be thin at the trailing edge. 

The trend just discussed must be translated into an equation 
if typical trailing-edge shapes are to result from the design 
method. The functions given in Eqs. (12) and (13) have been 
derived so that normal trailing-edge velocity distributions can 
be produced. In particular, the closure contributions, wtH(tP) 
and wfH(tP) have a dominant effect on the trailing-edge veloc­
ity distributions. By prescribing the sum (KH + KH ) = Ks to be 
in the range 0 to 0.8, normal trailing-edge velocity distribu­
tions result and give rise to uncrossed airfoils-the smaller Ks 
in this range, the thinner the airfoil in the vicinity of the 
trailing edge. Negative values for Ks usually produce crossed 
airfoils. To achieve the desired value of Ks , the leading-edge 
arc limit may be used for iteration, that is, 

0= Ks-p (24) 

For a finite trailing-edge angle (E -F- 0), the functions wHtP) and 
wF(tP) are active and produce a zero trailing-edge velocity. It 
is still necessary, however, to specify Ks in order to have 
control over the thickness in the vicinity of the trailing edge. 
By these means, the designer has great control over the airfoil 
geometry in the region of the trailing edge. 

Iteration on the design angles of attack can easily be used to 
control the usable lift range of the airfoil. By adding an 
increment to each ai, the polar will be shifted upwards which. 
in turn, will decrease the zero-lift angle of attack. This shift in 
the polar can be controlled through a prescribed zero-lift angle 
of attack as 

Q; 0= QOL - P (25) 

By adding an increment to the upper surface a; and subtract­
ing an equal increment from the lower surface a;, the width of 
the polar will be increased. This has the effect of thickening 
the airfoil and may be controlled through 

O=tlc-p (26) 

where ± means to adjust the a; in opposite fashion. 
The relative design velocity distribution for a segment may 

be used to control the relative boundary-layer shape-factor 
distribution as previously mentioned, or the relative velocity 
distribution in 5,,2 or anyone of other desired distributions. 
For example, either the local airfoil geometry may be speci­
fied, the n-development, or a curve in the H-R diagram used 
by Eppler for predicting transition. Through iteration on the 
preceding segment, the initial value is set as previously ex­
plained for the specification of the shape-factor distribution. 

In the design of a new airfoil, the iterative process is taken 
in stages. In a typical case, Ks is first satisfied in order for the 
airfoil to be uncrossed. Then Cm is sometimes specified to 
bring the airfoil into a normal range. After this, any desired 
initial segment conditions are added to the Newton system 
before iterating on the segments that have a specified distribu­
tion of some type. If only a few small changes are made to the 
inverse design parameters of a converged solution, it usually is 
possible to iterate on the full Newton system from the outset. 
The convergence of the solution can be disrupted if the New­
ton scheme attempts to take a step that is too large. To prevent 
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this from happening, a maximum step size for any of the 
unknowns can be preset. If any of the predicted step sizes at 
any point in the iteration exceeds a preset maximum, then a 
fractional step is taken to avoid exceeding a maximum. Be­
cause the method incorporates an incompressible inverse air­
foil design method and an integral boundary-layer method, 
the convergence is quite rapid and easily allows for the interac­
tive design of a wide range of specialized airfoils. 

Demonstration of the Method 
To illustrate some of the capabilities of the method an 

example airfoil is considered. It should be stated that this 
airfoil only serves to illustrate the method and is not intended 
for practical use. The main design goals. although defined in 
mathematical detail later. may be stated as follows. Along the 
forward part of the upper surface of the airfoil. the n -develop­
ment is prescribed at the design angle of attack and Reynolds 
number. By prescribing the linear stability amplification fac­
tor n, the extent of laminar flow and the location of transition 
is controlled. This is advantageous when there is interest in 
designing for low drag. Following this segment. a linear ramp 
is introduced for a different angle of attack. On the lower 
surface. at yet a different angle of attack. the boundary-layer 
shape-factor distribution is prescribed much like the example 
of Figs. 1-4. Specification of the boundary-layer shape factor 
is desirable in instances where flow separation is to be avoided. 

These characteristics described are obtained using seven 
segments on the airfoil-four segments on the airfoil upper 
surface and three on the lower. All of the inverse design 
parameters are listed in Table I, with the exception of the 
trailing-edge angle parameter E. Many of the inverse design 
parameters listed in Table I are selected as unknowns in the 
Newton iteration in order to match the design goals. but for 
those that are fixed the following values are used: 

al = a2 = 10 deg (27a) 

a3 = a4 = IS deg (27b) 

a5 = a6 = a7 = 8 deg (27c) 

K=k= I (27d) 

<l>s = 15 deg, ~s = 340 deg (27e) 

<l>F = 10 deg, ~F = 350 deg (270 

E = 1118 (27g) 

The value for E is selected to yield a IO-deg trailing-edge angle 
and the arc limits <l>s, ~s, <l>F' and ~F are set to confine the 
closure and the finite trailing-edge angle contributions of 
the pressure recovery to a small region near the trailing edge. 
The small values for K and k, which partly define the main 
pressure recovery, will give a slight adverse pressure gradient 
at the beginning of the recovery on the upper and lower 
surfaces at the corresponding design angles of attack, al and 
a7, respectively. 

As discussed in the preceding section. the design goals are 
matched in stages. In this example case, the process is taken in 
the order of increasing complexity. First, the leading-edge arc 
limit is iterated to match Ks. Afterwards. the leading-edge arc 

Table 1 InYene design p.rameten for. seven-segment airfoil 

<I> a·(<I» v·(<I» 

1 [0, <1>11 al VI, w(<I>; <l>w. I/Is. <l>F, ,.. KH. K) 
2 [1/11.1/12) a2 V2. V2(~2) 
3 [1/12, 1/13J aJ V3, V3(~J) 
4 [I/IJ. <l>4J Q4 V4. V4(~4) 
5 [1/14. <1>51 a5 V5, V'(~5) 
6 [<1>5. tl>61 !r6 V6, V6(~) 
7 [<I>6. 2rl en V7. 101(<1>; ibw. ~s. ibF. jJ.. KH. K) 

limit <1>4 and the specified velocity level Vi are iterated together 
to achieve the design Ks and cmo as 

<1>4 0 = Ks - 0.4 (28a) 

Only specified Vi 0= cmo + 0.25 (28b) 

Next, the remaining arc limits are iterated to correspond to 
specified s,/c locations by 

<1>1 0= Sl/C - 0.25 (29a) 

0= S2/C - 0.40 (29b) 

0= sJlc - 0.90 (29c) 

o = s~/c - 1.20 (29d) 

<1>6 => 0= S61c - 1.70 (2ge) 

After this. the relative design velocity distribution on the 
second segment is included for iteration to produce a linear 
velocity distribution in S at the design angle of attack az = 10 
deg. Specifically, 

V2(~2) => 0 = V2(52) + 1.252 (30) 

where now 52 is measured in the direction from S2 to s" that 
is. 52 = 52 - 5 (opposite to that shown in Fig. 5). Figure 9 
shows portions of the velocity distribution extending from the 
stagnation point for the design angles of attack a = 8. 10. and 
IS deg. For the IO-deg case, it is seen in the figure that the 
desired linear variation (in boldline) is obtained for the second 
segment. The a = 8 and 15-deg cases are pertinent to the re­
maining lower-surface and upper-surface design requirements. 
respectively. 

For the lower surface, the boundary-layer shape factor is 
prescribed to be HI2 = 2.8 for the sixth segment at a6 = 8 deg. 
This is achieved, as in the illustrated example of Figs. 1-4, by 
iterating on the preceding segment to match the desired initial 
condition and by adjusting the relative velocity distribution 
along the sixth segment to maintain HI2 = 2.:3, that is, 

d'Vd~5 

V6(~6) 

0= H 12(s,) - 2.8 

6' = ill~(56) 

(3Ia) 

(3Ib) 

As shown in Fig. 10. this shape-factor distribution is achieved 
by the velocity distribution shown in Fig. 9 for a = 8 deg. 

On the upper surface, the n-development is prescribed for 
the third segment at the design conditions a3 = IS deg and 

2 

15·"-_--<>-, V ~z~ ____ __ 
10' "\ 
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Fig. 9 Parti.1 velocity distributions corresponding to the design con­
ditions (s,..,. = 2.(67). 
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5 re~ 
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Fig_ 10 P.rti.1 bouad.ry .... yer developments corresponding to the 
design conditions (R = I x 10' for the n-development). 
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fig. 11 Airfoil and velocity distributions for a = 8, 10, and 15 deg. 

F, = 1 X 106 • The initial value of n = 2 is set by adjusting the 
ocity distribution of the fourth segment, i.e., 

(32) 

The velocity distribution for the third segment is adjusted to 
give the desired linearly increasing n-growth given by 

(33) 

where $3 is measured from 53 to 52, that is, $3 = 53 - 5. 
Since the length of the segment is 53 - 52 = 0.5 and the initial 

\ -lue is n = 2, this gives n = 9 at the end of the segment to 
respond to the point of transition. As shown in Fig. 10, this 

desired n-growth, based on the analysis method of Ref. 26, is 
achieved. Finally, the airfoil shape and the velocity distribu­
tions at the design angles of attack are shown in Fig. 11. 

Conclusions 
A hybrid-inverse airfoil design technique has been devel­

oped by coupling a potential-flow, multipoint inverse airfoil 
design method with a direct boundary-layer analysis method. 
The potential-flow inverse design parameters can be iteratively 

; iusted automatically through multidimensional Newton it-
tion in order to obtain desired airfoil characteristics that 

~. ~ not explicitly given as input to the potential-flow inverse 
method. This combined approach makes it possible to pre­
scribe along segments of the airfoil either the local geometry 
or, together with the design conditions, the velocity distribu­
tion or some boundary-layer development. At the same time it 
is possible to specify single parameters such as thickness ratio 
or pitching moment. Although the current implementation of 
this approach makes use of an incompressible inverse design 
method and a direct integral boundary-layer method together 
" :!h an en-method for transition prediction, either component 

dd be replaced by an alternative design or analysis method. 
j ·r instance, the method could be extended to handle com­
pressible airfoil design, multielement airfoil design, or allow 
for the design of airfoils with regions of separated flow. As it 
stands, fairly sophisticated airfoil design studies can now be 
made with relative ease. This should ultimately lead to im­
provements in new airfoil designs. 
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