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Generalized Multichannel Image-Filtering Structures

Damianos G. Karakos and Panos E. Trahanias

Abstract—Recent works in multispectral image processing advocate
the employment of vector approaches for this class of signals. Vector
processing operators that involve the minimization of a suitable error
criterion have been proposed and shown appropriate for this task. In
this framework, two main classes of vector processing filters have been
reported in the literature. In [1], Astola et al. introduce the well-known
class of vector median filters(VMF), which are derived as maximum
likelihood (ML) estimates from exponential distributions. In [2] and [3],
the authors study the processing of color image data using directional
information, considering the class of vector directional filters (VDF). In
this paper, we introduce a new filter structure, the directional-distance
filters (DDF), which combine both VDF and VMF in a novel way. We show
that DDF are robust signal estimators under various noise distributions,
they have the property of chromaticity preservation and, finally, compare
favorably to other multichannel image processing filters.

I. INTRODUCTION

In multichannel, and especially color image processing, it is
accepted that the vector approach is more appropriate compared to
traditional approaches that have addressed componentwise operators.
This is due to the inherent correlation that exists between the
image channels [4], [5]. In vector approaches, each pixel value is
considered as anm-dimensional vector (m is the number of image
channels; in the case of color images,m = 3), whose characteristics,
i.e., magnitude and direction, are examined. The vectors’ direction
signifies their chromaticity, while their magnitude is a measure of
their brightness. This approach has attracted much research lately
since it is very well suited for the elimination of noise [4], [6]–[8],
and other tasks, such as restoration [9], [10], edge enhancement
[11], edge detection [12], [13] and segmentation [14]. A number
of vector processing filters usually involve the minimization of an
appropriate error criterion [1]–[3], [15], [16]. Such filters can be
broadly characterized by the vector attribute they consider. One class
of filters considers the distance in the vector space between the
image vectors; typical representative of this class is thevector median
filter (VMF) [1]. A second class of filters operate by considering
the vectors’ direction, and hence the namevector directional filters
(VDF’s) [2], [3].

VMF’s are derived as MLE estimates from exponential distribu-
tions [1], while VDF’s are spherical estimators (sample spherical
median) when the underlying distribution is a spherical (directional)
one [3]. The former—VMF’s—perform accurately when the noise
follows a long-tailed distribution (e.g. exponential or impulsive);
moreover, any outliers in the image data are easily detected and
eliminated by VMF’s. The latter—VDF’s—are optimal directional
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Fig. 1. Test color images. (a) Bird image. (b) Peppers image.

estimators and consequently are very effective in preserving the
chromaticity of the image vectors [3]. A drawback of VDF lies in the
fact that they do not consider the magnitude of the image vectors;
to alleviate for that they operate in cascade with a grey-scale filter,
which accounts for the vectors’ magnitude. Depending on the choice
of the grey-scale filter, VDF’s can be very effective for various
noise distributions [3]. However, the resulting filter structures are
complex and the corresponding implementations may be slow since
they operate in two steps.

In this paper, a novel filter structure is introduced, thedirectional-
distance filters(DDF’s). DDF’s constitute a generalization of VMF’s
and VDF’s, and are derived by a joint minimization of the functions
that define VMF’s and VDF’s [17]. Directional-distance filters are
very useful in color (and generally multichannel) image processing,
since they inherit the properties of their ancestors. They constitute
very accurate estimators inlong- andshort-tailednoise distributions
and, at the same time, they preserve the chromaticity of the image
vectors. Moreover, they eliminate the second step (grey-scale filter)
required in VDF’s, resulting in simple and fast filter structures. DDF’s
bear similarities to multichannel filters that employ varied error
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(a) (b)

Fig. 2. Error surfaces forp 2 [0; 1]. (a) Gaussian noise. (b) Impulsive noise.

criteria in the filtering process [7], [15]. However, such structures
use local measures to select the optimal processing at each image
site, whereas, DDF’s operate independently of such measures by
appropriately combining two criteria.

In the following sections, DDF’s are first introduced as a general-
ization of VMF’s and VDF’s. Since DDF’s assume the product of two
factors, a study is then performed to derive the significance of each of
these factors. This is based on experimental simulations under various
noise models and reveals the importance of directional information in
color image processing. Moreover, it provides the operating bounds
of DDF. Comparative and illustrative results follow that demonstrate
the accurate performance and generality of DDF. Concluding remarks
are finally presented that summarize the results of this work.

II. REVIEW OF RELEVANT WORK AND DEFINITIONS

Let W be the processing window of sizen and let xi; i =

1; 2; � � � ; n be the pixels inW . Let also the (vector-valued) image
function at pixelxi be denoted asfi. The following two definitions

introduce VMF’s and VDF’s, respectively (both definitions are valid
in the case ofm-dimensional image functions,m � 2)

Definition 1: [1] Let the input setffi; i = 1; 2; � � � ; ng and letLi

correspond tofi and be defined as

Li =

n

j=1

jjfi � fj jj; i = 1; 2; � � � ; n (1)

where jj:jj is an appropriate vector norm. The vectorfi for which
Li � Lj ; 8 j = 1; 2; � � � ; n, is the output of the VMF. In other
words, the VMF outputs the vector that minimizes the sum of the
distances to all the other vectors.

An analogous definition holds for thebasic vector directional filter
(BVDF) [2], by incorporating thevector anglesinstead of thevector
distances.

Definition 2: [2], [3] Let the input setffi; i = 1; 2; � � � ; ng and
let �i correspond tofi

�i =

n

j=1

A(fi; fj); i = 1; 2; � � � ; n (2)
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(c) (d)

Fig. 2 (Continued). Error surfaces forp 2 [0; 1]. (c) Von Misses–Fisher noise. (d) Mixture of Gaussian and impulsive noise.

whereA(fi; fj) denotes the angle betweenfi and fj . An ordering
of the �is

�(1) � �(2) � � � � � �(k) � � � � � �(n) (3)

implies the same ordering to the correspondingfis

f
(1)

� f
(2)

� � � � � f
(k)

� � � � � f
(n)

: (4)

The output of the BVDF isf (1), i.e., the vector that minimizes the
sum of the angles with all the other vectors (sample spherical median).
The set of the firstk vectors in the above ordered sequence [see (4)]
is the output of the generalized vector directional filter (GVDF).

It is obvious from the above definition that the output of GVDF
should subsequently be passed through a second filter in order to
produce a single output vector. This issue has been studied in detail
elsewhere [2], [3]; it has been shown that the second filter can be
a gray-scalefilter which considers only the magnitudes of the set
of vectorsf

(i); i = 1; � � � ; k in the GVDF output set. Equations (1)
and (2) may give rise to ambiguities, since two or more vectors may
result as candidate filter outputs. Such ties are resolved arbitrarily,

with an exception the case when the vector at the central window
pixel (pixel under consideration) is a candidate filter output; in this
case, this vector is given priority over all other candidates.

Definitions (1) and (2) indicate that the two filters (VMF, VDF)
differ only in the quantity that is minimized. Both minimizations
are useful, since they result in filtering structures that offer desirable
features in image processing [1]–[3]. To incorporate the properties of
both, we propose to combine the distance sum criterion and the angle
sum criterion in the minimization formula. A straightforward way of
doing that is to minimize their productL � � (other monotonous
two-variable functions could also be used in the place of “�”).
Although minimization of the productL � � does not necessarily
imply a minimum for either of the two factors (L or �), it results,
however, in very small values for both of them. Therefore, the product
minimization will select as the output vector the one that results in
very small distance sum (L) and, at the same time, very small angle
sum (�). Ties in this case are resolved in exactly the same way as
above.
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Fig. 3. Vector field for the window shown in Fig. 1(b). (a) Initial. (b) Mixture of Gaussian and impulsive noise. (c) DDF results. (d) VMF results.

Definition 3: Let the input setffi; i = 1; 2; � � � ; ng and let
i

correspond tofi


i = Li � �i

=

n

j=1

jjfi � fj jj �

n

j=1

A(fi; fj) ; i = 1; 2; � � � ; n: (5)

The input vectorfi that minimizes
i is the output of the directional-
distance filter (DDF).

Equation (5) can be further generalized by introducing different
powers in the two factorsL, � (in its current form it implies the
power one for each of the two factors). Since we would like to
derive a general scheme that has (1) and (2) as special cases, we
rewrite (5) as


i = L
1�p
i � �pi

=

n

j=1

jjfi � fj jj

1�p

�

n

j=1

A(fi; fj)

p

p 2 f0; 1g; i = 1; 2; � � � ; n: (6)

The above definition (6) is indeed quite general, having VMF and
BVDF as special cases. However, its main usefulness stems from the
fact that it combines both error criteria (distance sum, angle sum) in
the minimization process. As it is shown later, this results in accurate
and robust performance under different noise models.

III. OPERATION TUNING

Referring to (6), we observe that DDF depend on the parameter
p, which controls the importance of the angle criterion versus the
distance criterion in the overall filter structure. In the two extremes,
p = 0 or p = 1, DDF behave as either VMF or BVDF, respectively.
The case ofp = 0:5 is identical with (5), givingequal importance
to both criteria; for any other value ofp, the filter is biased toward
one of the two criteria.

An optimal estimation ofp seems very difficult due to the two
factors that are involved in the product. Moreover, for the special
case of color images, we are interested in deriving accurate estimates
when the error is measured in theL�a�b� space.L�a�b� is known as

a space where equal color differences result in equal distances and,
therefore, it is very close to human perception of colors [18].L�a�b�

has also been used in many studies regarding color imaging [19], [20],
[3]. The transformation to theL�a�b� space is highly nonlinear and
makes the optimal estimation ofp even more difficult. Consequently,
we have chosen to proceed with a computational approach for its
estimation. Our approach involves the following steps.

• Four different noise models have been employed represent-
ing short- and long-tailed distributions as well as a spherical
distribution. The noise models are Gaussian, impulsive, Von
Misses–Fisher1 [21], [3] and mixture of Gaussian and impulsive.
These noise models were used to contaminate the test images.

• For each noise model, images were contaminated at various
noise levels; the noise level has been gradually increased and,
at each level, a DDF has been applied for a range ofp values
in the interval [0, 1] (the step inp was 0.05). The performance
of DDF in each case has been measured as the mean absolute
error in theL�a�b� space,EL a b .

• The above procedure has been repeated for several color images
in order to minimize any bias introduced by the individual
characteristics of the images. Here, we confine our presentation
to two cases: the bird and peppers color images, shown in Fig. 1.

The results obtained from the above set of experiments are graphi-
cally presented in Fig. 2 in the form oferror surfaces. As already
mentioned, the error (vertical axis) is measured in theL�a�b�

space in order to match closely the human perception of color. The
two horizontal axes represent the noise level and the parameterp,
respectively. The noise axis is quantified in each case using the
parameter of the corresponding noise model. In addition to the
error surfaces, a cross section (one-dimensional plot projected on
theEL a b –p plane) is also shown in each case as a function ofp

for fixed noise level, to facilitate the visual observation of the error

1The Von Misses–Fisher distribution is the most commonly used distribu-
tion in directional data analysis [21]. It is defined parametrically, according to
a concentration parameterk. For k = 0 it reduces to the uniform distribution
on the sphere. Large values ofk indicate high degree of concentration of the
data.
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Fig. 4. Results on the bird image [Fig. 1(a)]. (a) Mixture of Gaussian and impulsive noise. (b) DDF results. (c) VMF results. (d) VDF results.

TABLE I
EL a b , GAUSSIAN NOISE (BIRD IMAGE)

TABLE II
EL a b , GAUSSIAN NOISE (PEPPERSIMAGE)

surface patterns. The noise parameter for which the cross sections
have been plotted is indicated on their right-end.

The surface plots of Fig. 2 present the behavior of DDF’s in a
compact way. The value ofp that gives the minimum error value
for each noise level represents the “operational” setting for the
particular noise model (and color image). As can be observed, a

“valley” pattern is exhibited in most of these plots that follows the
direction of the noise level. This pattern illustrates the behavior of
DDF’s for different values of the parameterp; better performance
is attained forp values corresponding to the “bottom” of the valley.
The observed performance is in accordance with our intuition, since
it is expected that both criteria (distance and angle) should contribute
to the filtering process. This is exactly the behavior demonstrated
by the error surfaces; increased filter performance is attained for
values ofp that consider both criteria. Moreover, since the valley
pattern follows the direction of the noise level, it is verified that
both criteria are important at all noise levels. Therefore, the effect
of the joint minimization introduced is unambiguously demonstrated
in these plots.

In order to simplify the visual detection of this valley, the points
where it attains the minimum value at the corresponding noise level
are drawn on the horizontal plane as a continuous curve. This curve
gives the (experimentally obtained) value ofp that results in optimal
performance for the corresponding noise level and model. In order
to obtain operational values that are constant at any noise level,
the average of these values is computed and used as such; this is
shown on the same plots with the dashed lines. As can be verified
from these plots, the deviation of the continuous lines (truep values)
from the corresponding dashed lines (averaged values) is small and,
therefore, the averaged values can be safely used. Moreover, the
differences inEL a b when the true or the averaged values are
used are insignificant (in the order of 1% ofEL a b ), compared to
the variation ofEL a b over the whole range ofp values which,
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TABLE III
EL a b , IMPULSIVE NOISE (BIRD IMAGE)

TABLE IV
EL a b , IMPULSIVE NOISE (PEPPERSIMAGE)

TABLE V
EL a b , VON MISSES–FISHER NOISE (BIRD IMAGE)

TABLE VI
EL a b , VON MISSES–FISHER NOISE (PEPPERSIMAGE)

TABLE VII
EL a b , GAUSSIAN AND IMPULSIVE NOISE (BIRD IMAGE)

for moderate noise levels, was found above 15% in most cases.
Actually, experimentation with different color images has revealed
thatEL a b remains practically unchanged for a small range ofp

values around its mean value.
Another important observation refers to the consistency of the “val-

ley” location in different images. The pairs of plots in Fig. 2(a)–(d)
present the same results for two images. As can be verified, very
similar results are obtained (for each noise model) for the two
images. This can be interpreted as the fact that, for a particular noise
model, the operational value of the parameterp can be experimentally
obtained.

TABLE VIII
EL a b , GAUSSIAN AND IMPULSIVE NOISE (PEPPERSIMAGE)

TABLE IX
NCRE, GAUSSIAN NOISE

TABLE X
NCRE, IMPULSIVE NOISE

TABLE XI
NCRE, VON MISSES–FISHER NOISE

TABLE XII
NCRE, GAUSSIAN AND IMPULSIVE NOISE

A final comment regards the error behavior in the presence of
different noise models. The plots of Fig. 2 demonstrate that additive
Gaussian and mixture of Gaussian with impulsive noise favor higher
values ofp (the filter tends to behave more like a VDF); very similar
behavior is also exhibited in the case of a spherical noise distribution
(Von Misses-Fisher). When the noise is modeled as impulsive (long-
tailed noise), the best filter performance is obtained for slightly
smallerp values; in other words, a filter behavior closer to a VMF is
favored. This illustrates the fact that the vector median is an accurate
estimator in the presence of impulsive noise but still directional
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(a) (b)
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Fig. 5. Results on the peppers image [Fig. 1(b)]. (a) Mixture of Gaussian and impulsive noise. (b) DDF results. (c) VMF results. (d) VDF results.

information is very important (when the error is measured in the
L�a�b� space).

Based on thep values suggested by the plots of Fig. 2, we have
adopted a constant operational valuep = 0:75. This represents
a compromise between the (slightly) different values implied by
the different noise models. More importantly, however, since the
performance measures remain practically unchanged for a range of
p values, which includes the valuep = 0:75, this is a “safe” value
independent of the noise distribution.

IV. EXPERIMENTAL RESULTS

The performance of DDF’s has been experimentally assessed for
various noise models. The error figures, measured in theL�a�b�

space, have shown the accurate performance of DDF’s and their
superiority compared to VMF’s and their variation, theRE filters
[16]. When compared to VDF’s, they perform at least comparable and
in some cases slightly better, but still they have the advantage over
VDF’s in that they operate in one step without involving any grey-
scale filter. Many different color images were used in our simulations;
here, we present sample results regarding the two images, bird and
peppers, shown in Fig. 1(a) and (b).

In order to get a subjective impression of the performance of
DDF’s, Fig. 3 illustrates their application to a (part of a) color image,
shown as a vector field. This vector field is exactly the 30� 24
window shown in Fig. 1(b). The initial vector field is shown in
Fig. 3(a); this has been corrupted by a mixture of Gaussian (� = 30)

and 5% impulsive noise, and the result is given in Fig. 3(b). DDF’s
and VMF’s have been applied to the noisy image. The results are
presented in Fig. 3(c) and 3(d), respectively. The accuracy of DDF’s
in restoring the vector field is demonstrated in this example.

Some selected results from our evaluation experiments regarding
DDF’s, VMF’s, VDF’s, andRE filters are presented in tabular form
in Tables I–VIII; in these tables the values ofEL a b are given. The
results refer to two color images, bird and peppers, corrupted with
the four noise models mentioned in the previous section. For a fair
comparison, VDF’s were combined with thebestgrey-scale filter with
respect to the noise model, resulting in very accurate performance [3].
An asterisk (*) in a table entry indicates the best filter performance
for the corresponding noise level. As can be verified, DDF’s result
in better, or at least equal performance, in most cases. In some
cases, VDF’s perform slightly better but still they involve two steps
in the filtering process (directional and magnitude processing) and
their performance depends on the selection of the gray-scale filter.
DDF’s on the other side, are very simple filter structures and operate
accurately independent of the underlying noise model.

The chromaticity preservation of DDF’s has been experimen-
tally demonstrated by measuring thenormalized chromaticity error
(NCRE), introduced in [2]. NCRE measures the error as a distance on
the Maxwell triangle, i.e., the triangle drawn between the three color
primaries: red, green, and blue [18]. Since the point of intersection
on the Maxwell triangle serves to characterize the chromaticity of a
given image vector, NCRE gives an indication of the chromaticity
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error.2 The results referring to NCRE are tabulated in Tables IX–XII
for exactly the same noise models as the ones used in theEL a b

measurements (Tables I–VIII). Since VDF’s have been shown as
very accurate chromaticity preserving filters [2], [3], only the DDF
and VDF results are presented here. The other filters have generally
inferior performance regarding color chromaticity. On the contrary,
Tables IX–XII demonstrate that DDF’s and VDF’s have comparable
performances in this sense. This is in accordance with our intuition,
since both filters include the angles between the image vectors in their
minimization criteria, thus resulting in accurate chromaticity filters.

Since the topic iscolor image processing, a subjective assessment
of any filter’s performance is the ultimate criterion regarding its
usability. Figs. 4 and 5 present filtering results for the bird and pep-
pers images, respectively. Fig. 4(a) shows the bird image corrupted
with a mixture of Gaussian (� = 30) and 5% impulsive noise. The
filtered versions of the image with the DDF, VMF, and VDF are
given in Fig. 4(b), (c), and (d), respectively. As can be observed,
filtering with the DDF has resulted in a better recovery of the initial
image, compared to VMF. The background, for example, in the VMF
result appears more distorted and erroneous chromaticities are visible;
the latter is also visible in the tree branch and the left wing (from
the point of view of the observer) of the bird, where “red” colors
have resulted after VMF processing. When compared to VDF, the
DDF and VDF results appear almost identical; still, VDF processing
exhibits a slight smoothing effect, which can be observed on the tree
branch and the bird wings. This can be attributed to the grey-scale
filter (�-trimmed mean) that is applied in the second step of VDF
processing. The general impression, however, is that the DDF and
VDF have similar filtering performances; this has already been stated
throughout the paper. The advantage of DDF’s over VDF’s lies in
that they eliminate the second step required in VDF processing and
they operate independent of the underlying noise model. Analogous
results are given in Fig. 5 for the color image of peppers. Again, the
reader can verify that the DDF result [see Fig. 5(b)] is closer to the
initial image. In the VMF result [see Fig. 5(c)], noisy colors appear
more predominant, especially in the foreground peppers—two green
and one red. Consequently, both results verify the superiority of the
DDF in color image filtering.

V. DISCUSSION

Multispectral image processing has been mainly treated to date as
a minimization problem, by selecting suitable minimization criteria.
However, these criteria have led to solutions that fit special cases. In
this work, we have derived a novel filter class (DDF) by employing
a combination (product minimization) of two such criteria. These
criteria serve for the definition of VMF’s and VDF’s, respectively;
therefore, DDF’s have been constructed as a generalization of these
two filters.

Operation tuning for the DDF has been tackled by experimentally
deriving an operational value for the parameterp involved in the DDF
defining equation. This has been achieved by performing exhaustive
simulations in the whole range ofp values, under various noise
models and with different color images. In addition, these simulations
have demonstrated the robustness of the DDF under different noise
distributions. Our experimental results have shown the accurate
performance of DDF’s independent of the noise model. Moreover,
they constitute chromaticity preserving operators, like their ancestors,

2NCRE should not be considered as theexact chromaticity error, since
the Maxwell triangle isnot a space where equal color differences result in
equal distances; rather, NCRE measures theexact distance, which can be
qualitatively interpreted as the chromaticity error.

the VDF operators. Therefore, DDF’s may be a very useful and
general tool in color image processing.

In this paper, DDF’s have mainly been studied in the framework
of color image processing. More work is needed, however, in
order to address the processing of other multispectral images (i.e.,
satellite images and multispectral medical images). Moreover, the
issue of joint minimization in the filtering process should be further
investigated; the incorporation of other factors, besides the distance
sum (L) and the angle sum (�), in the minimization formula (6) might
result in even more effective filtering structures.
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