
Generalized Multitext Grammars

I. Dan Melamed
Computer Science Department

New York University
715 Broadway, 7th Floor

New York, NY, 10003, USA�
lastname ✁ @cs.nyu.edu

Giorgio Satta
Dept. of Information Eng’g

University of Padua
via Gradenigo 6/A

I-35131 Padova, Italy�
lastname ✁ @dei.unipd.it

Benjamin Wellington
Computer Science Department

New York University
715 Broadway, 7th Floor

New York, NY, 10003, USA�
lastname ✁ @cs.nyu.edu

Abstract

Generalized Multitext Grammar (GMTG) is a syn-

chronous grammar formalism that is weakly equiv-

alent to Linear Context-Free Rewriting Systems

(LCFRS), but retains much of the notational and in-

tuitive simplicity of Context-Free Grammar (CFG).

GMTG allows both synchronous and independent

rewriting. Such flexibility facilitates more perspic-

uous modeling of parallel text than what is possible

with other synchronous formalisms. This paper in-

vestigates the generative capacity of GMTG, proves

that each component grammar of a GMTG retains

its generative power, and proposes a generalization

of Chomsky Normal Form, which is necessary for

synchronous CKY-style parsing.

1 Introduction

Synchronous grammars have been proposed for

the formal description of parallel texts representing

translations of the same document. As shown by

Melamed (2003), a plausible model of parallel text

must be able to express discontinuous constituents.

Since linguistic expressions can vanish in transla-

tion, a good model must be able to express inde-

pendent (in addition to synchronous) rewriting. In-

version Transduction Grammar (ITG) (Wu, 1997)

and Syntax-Directed Translation Schema (SDTS)

(Aho and Ullman, 1969) lack both of these prop-

erties. Synchronous Tree Adjoining Grammar

(STAG) (Shieber, 1994) lacks the latter and allows

only limited discontinuities in each tree.

Generalized Multitext Grammar (GMTG) offers

a way to synchronize Mildly Context-Sensitive

Grammar (MCSG), while satisfying both of the

above criteria. The move to MCSG is motivated

by our desire to more perspicuously account for

certain syntactic phenomena that cannot be easily

captured by context-free grammars, such as clitic

climbing, extraposition, and other types of long-

distance movement (Becker et al., 1991). On the

other hand, MCSG still observes some restrictions

that make the set of languages it generates less ex-

pensive to analyze than the languages generated by

(properly) context-sensitive formalisms.

More technically, our proposal starts from Mul-

titext Grammar (MTG), a formalism for synchro-

nizing context-free grammars recently proposed by

Melamed (2003). In MTG, synchronous rewriting

is implemented by means of an indexing relation

that is maintained over occurrences of nonterminals

in a sentential form, using essentially the same ma-

chinery as SDTS. Unlike SDTS, MTG can extend

the dimensionality of the translation relation be-

yond two, and it can implement independent rewrit-

ing by means of partial deletion of syntactic struc-

tures. Our proposal generalizes MTG by moving

from component grammars that generate context-

free languages to component grammars whose gen-

erative power is equivalent to Linear Context-Free

Rewriting Systems (LCFRS), a formalism for de-

scribing a class of MCSGs. The generalization is

achieved by allowing context-free productions to

rewrite tuples of strings, rather than single strings.

Thus, we retain the intuitive top-down definition of

synchronous derivation original in SDTS and MTG

but not found in LCFRS, while extending the gen-

erative power to linear context-free rewriting lan-

guages. In this respect, GMTG has also been in-

spired by the class of Local Unordered Scattered

Context Grammars (Rambow and Satta, 1999). A

syntactically very different synchronous formalism

involving LCFRS has been presented by Bertsch

and Nederhof (2001).

This paper begins with an informal description of

GMTG. It continues with an investigation of this

formalism’s generative capacity. Next, we prove

that in GMTG each component grammar retains its

generative power, a requirement for synchronous

formalisms that Rambow and Satta (1996) called

the “weak language preservation property.” Lastly,

we propose a synchronous generalization of Chom-

sky Normal Form, which lays the groundwork for

synchronous parsing under GMTG using a CKY-

style algorithm (Younger, 1967; Melamed, 2004).

2 Informal Description and Comparisons

GMTG is a generalization of MTG, which is itself

a generalization of CFG to the synchronous case.

Here we present MTG in a new notation that shows

the relation to CFG more clearly. For example, the

following MTG productions can generate the multi-

text [(I fed the cat), (ya kota kormil)]:1

�
(S) ✁ (S) ✂☎✄ �✝✆

PN ✞ VP ✟✡✠☛✁ ✆ PN ✞ VP ✟☞✠✌✂ (1)�✍✆
PN ✠☛✁ ✆ PN ✠✌✂✎✄ �✝✆

I ✠☛✁ ✆ ya ✠✌✂ (2)�✍✆
VP ✠☛✁ ✆ VP ✠✌✂✎✄ �✝✆

V ✞ NP ✟ ✠☛✁ ✆ NP ✟ V ✞ ✠✌✂ (3)�✍✆
V ✠☛✁ ✆ V ✠✌✂✎✄ �✝✆

fed ✠☛✁ ✆ kormil ✠✌✂ (4)�✍✆
NP ✠☛✁ ✆ NP ✠✌✂✎✄ �✝✆

D ✞ N ✟ ✠☛✁ ✆ N ✟ ✠✌✂ (5)�✝✆
D ✠☛✁ ✆ ✠✌✂✏✄ �✝✆

the ✠☛✁ ✆ ✠✌✂ (6)�✍✆
N ✠☛✁ ✆ N ✠✌✂✎✄ �✝✆

cat ✠☛✁ ✆ kota ✠✌✂ (7)

Each production in this example has two com-

ponents, the first modeling English and the sec-

ond (transliterated) Russian. Nonterminals with the

same index must be rewritten together (synchronous

rewriting). One strength of MTG, and thus also

GMTG, is shown in Productions (5) and (6). There

is a determiner in English, but not in Russian, so

Production (5) does not have the nonterminal D in

the Russian component and (6) applies only to the

English component (independent rewriting). For-

malisms that do not allow independent rewriting re-

quire a corresponding ✑ to appear in the second

component on the right-hand side (RHS) of Produc-

tion (5), and this ✑ would eventually generate the

empty string. This approach has the disadvantage

that it introduces spurious ambiguity about the po-

sition of the “empty” nonterminal with respect to

the other nonterminals in its component. Spurious

ambiguity leads to wasted effort during parsing.

GMTG’s implementation of independent rewrit-

ing through the empty tuple () serves a very differ-

ent function from the empty string. Consider the

following GMTG:

�✝✆✓✒ ✠☛✁ ✆✓✒ ✠✌✂✏✄ �✝✆✕✔ ✠☛✁ ✆✕✖ ✠✌✂ (8)�✝✆✓✒ ✠☛✁ ✆✓✒ ✠✌✂✏✄ �✝✆✘✗ ✞ ✠☛✁ ✆✕✙ ✟ ✠✌✂ (9)�✝✆✘✗ ✠☛✁ ✆ ✠✌✂✏✄ �✝✆✛✚ ✠☛✁ ✆ ✠✌✂✢✜ �✝✆✕✣ ✠☛✁ ✆ ✠✌✂✤✜ �✝✆✕✥ ✠☛✁ ✆ ✠✌✂ (10)�✝✆ ✠☛✁ ✆✕✙ ✠✌✂✦✄ �✝✆ ✠☛✁ ✆✛✧ ✠✌✂✤✜ �✝✆ ✠☛✁ ✆✛★ ✠✌✂✤✜ �✝✆ ✠☛✁ ✆✪✩ ✠✌✂ (11)

Production (8) asserts that symbol
✔

vanishes in

translation. Its application removes both of the non-

terminals on the left-hand side (LHS), pre-empting

any other production. In contrast, Production (9)

1We write production components both side by side and one

above another to save space, but each component is always in

parentheses.

explicitly relaxes the synchronization constraint, so

that the two components can be rewritten indepen-

dently. The other six productions make assertions

about only one component and are agnostic about

the other component. Incidentally, generating the

same language with only fully synchronized pro-

ductions would raise the number of required pro-

ductions to 11, so independent rewriting also helps

to reduce grammar size.

Independent rewriting is also useful for model-

ing paraphrasing. Take, for example, [(Tim got a

pink slip), (Tim got laid off)]. While the two sen-

tences have the same meaning, the objects of their

verb phrases are structured very differently. GMTG

can express their relationships as follows:
�✝✆

S ✠☛✁ ✆ S ✠✌✂✎✄ �✝✆
NP ✞ VP ✟✡✠☛✁ ✆ NP ✞ VP ✟✫✠✌✂ (12)�✝✆

VP ✠☛✁ ✆ VP ✠✌✂☎✄ �✝✆
V ✞ NP ✟ ✠☛✁ ✆ V ✞ PP ✟ ✠✌✂ (13)�✍✆

NP ✠☛✁ ✆ PP ✠✌✂☎✄ �✝✆
DT ✞ A ✟✬✁ N ✭✡✠☛✁ ✆ VB ✮✯✁ R ✰✡✠✌✂ (14)�✝✆

NP ✠☛✁ ✆ NP ✠✌✂☎✄ �✝✆
Tim ✠☛✁ ✆ Tim ✠✌✂ (15)�✱✆

V ✠☛✁ ✆ V ✠✌✂✎✄ �✝✆
got ✠☛✁ ✆ got ✠✌✂ (16)�✱✆

DT ✠☛✁ ✆ ✠✌✂✏✄ �✝✆
a ✠☛✁ ✆ ✠✌✂ (17)�✝✆

A ✠☛✁ ✆ ✠✌✂✏✄ �✝✆
pink ✠☛✁ ✆ ✠✌✂ (18)�✝✆

N ✠☛✁ ✆ ✠✌✂✏✄ �✝✆
slip ✠☛✁ ✆ ✠✌✂ (19)�✱✆ ✠☛✁ ✆ VB ✠✌✂✎✄ �✝✆ ✠☛✁ ✆ laid ✠✌✂ (20)�✝✆ ✠☛✁ ✆ R ✠✌✂✎✄ �✝✆ ✠☛✁ ✆ off ✠✌✂ (21)

As described by Melamed (2003), MTG requires

production components to be contiguous, except af-

ter binarization. GMTG removes this restriction.

Take, for example, the sentence pair [(The doctor

treats his teeth), (El médico le examino los dientes)]

(Dras and Bleam, 2000). The Spanish clitic le and

the NP los dientes should both be paired with the

English NP his teeth, giving rise to a discontinuous

constituent in the Spanish component. A GMTG

fragment for the sentence is shown below:
�✝✆

S ✠☛✁ ✆ S ✠✌✂☎✄ �✝✆
NP ✞ VP ✟ ✠☛✁ ✆ NP ✞ VP ✟ ✠✌✂�✝✆

VP ✠☛✁ ✆ VP ✠✌✂✦✄ �✝✆
V ✞ NP ✟ ✠☛✁ ✆ NP ✟ V ✞ NP ✟ ✠✌✂�✝✆

NP ✠☛✁ ✆ NP ✠✌✂✦✄ �✝✆
The doctor ✠☛✁ ✆ El médico ✠✌✂�✝✆

V ✠☛✁ ✆ V ✠✌✂☎✄ �✝✆
treats ✠☛✁ ✆ examino ✠✌✂�✝✆

NP ✠☛✁ ✆ NP ✁ NP ✠✌✂✦✄ �✝✆
his teeth ✠☛✁ ✆ le ✁ los dientes ✠✌✂

Note the discontinuity between le and los dientes.

Such discontinuities are marked by commas on both

the LHS and the RHS of the relevant component.

GMTG’s flexibility allows it to deal with many

complex syntactic phenomena. For example,

Becker et al. (1991) point out that TAG does not

have the generative capacity to model certain kinds

of scrambling in German, when the so-called “co-

occurrence constraint” is imposed, requiring the

derivational pairing between verbs and their com-

plements. They examine the English/German sen-

tence fragment [(... that the detective has promised

the client to indict the suspect of the crime), (...

daß des Verbrechens der Detektiv den Verdächtigen

dem Klienten zu überführen versprochen hat)]. The

verbs versprochen and überführen both have two

noun phrases as arguments. In German, these noun

phrases can appear to the left of the verbs in any

order. The following is a GMTG fragment for the

above sentence pair2:� ✆
S ✠✆
S ✠✂✁ ✄ ✄ ✆

N ✞ ☎✝✆✟✞ has promised N ✟ ✠✟✡ ☛☞✆✂✌✍✞✏✎S ✭ ✠✆ ✎S ✭ N ✞✑ ✆✟✞✒✎S ✭ N ✟ ✓✔✡ ☛☞✆✂✌✕✎S ✭ versprochen hat ✠✗✖ (22)� ✆ ✎S ✠✆ ✎S ✁ ✎S ✁ ✎S ✠ ✁ ✄
� ✆

to indict N ✞✘✚✙✛✘☞✜ ✆✚✠✂✞ N ✟ ✠✟✢✣☛✥✤✦✆ ✠✆
N ✟ ✧ ✆✂✢✂★ ✁ N ✞ ✧ ✆✟✢✩☎ ✁ zu überführen ✠ ✁ (23)

The discontinuities allow the noun arguments of

versprochen to be placed in any order with the noun

arguments of überführen. Rambow (1995) gives a

similar analysis.

3 Formal Definitions

Let ✪✬✫ be a finite set of nonterminal symbols and

let ✭ be the set of integers.3 We define ✮ ✆ ✪ ✫ ✠✰✯✱✳✲✵✴✷✶✩✸ ✜ ✲✺✹ ✪ ✫ ✁✼✻ ✹ ✭✾✽ .4 Elements of ✮ ✆ ✪ ✫ ✠
will be called indexed nonterminal symbols. In

what follows we also consider a finite set of termi-

nal symbols ✪❀✿ , disjoint from ✪ ✫ , and work with

strings in ✪❂❁❃ , where ✪ ❃ ✯❄✮ ✆ ✪ ✫ ✠✒❅❆✪❀✿ . For ❇ ✹ ✪❈❁❃ ,

we define ❉☞❊●❋■❍❑❏ ✆ ❇ ✠▲✯ ✱ ✻ ✜✦❇▼✯◆❇P❖ ✲ ✴✷✶✩✸ ❇✬❖ ❖✘✁◗❇P❖✪✁❘❇P❖ ❖ ✹✪ ❁❃ ✁ ✲❙✴☞✶✩✸❚✹ ✮ ✆ ✪ ✫ ✠❯✽ , i.e. the set of indexes that ap-

pear in ❇ .

An indexed tuple vector, or ITV, is a vector of

tuples of strings over ✪ ❃ , having the form❇ ✯ �✝✆ ❇ ✞ ✞ ✁✍❱✍❱✍❱ ✁❘❇ ✞✂❲❨❳ ✠☛✁✍❱✍❱✍❱ ✁ ✆ ❇❬❩ ✞ ✁✍❱✍❱✍❱☞✁❘❇❀❩ ❲✟❭ ✠✌✂
where ✑❫❪❵❴ , ❛✍❜❝❪❡❞ and ❇❢❜❤❣ ✹ ✪ ❁❃ for ❴❈✐❦❥❆✐ ✑ ,❴❙✐♠❧♥✐♦❛✍❜ . We write ❇ � ❥✓✂ , ❴❙✐♦❥♣✐ ✑ , to denote the❥ -th component of ❇ and q ✆ ❇ � ❥✛✂✘✠ to denote the arity

of such a tuple, which is ❛✳❜ . When q ✆ ❇ � ❥✛✂✘✠r✯s❞ ,❇ � ❥✓✂ is the empty tuple, written
✆ ✠ . This should not

be confused with
✆✕✖ ✠ , that is the tuple of arity one

containing the empty string. A link is an ITV where

2These are only a small subset of the necessary productions.

The subscripts on the nonterminals indicate what terminals they

will eventually yield; the terminal productions have been left

out to save space.
3Any other infinite set of indexes would suit too.
4The parentheses around indexes distinguish them from

other uses of superscripts in formal language theory. However,

we shall omit the parentheses when the context is unambigu-

ous.

each ❇❢❜t❣ consists of one indexed nonterminal and all

of these nonterminals are coindexed. As we shall

see, the notion of a link generalizes the notion of

nonterminal in context-free grammars: each pro-

duction rewrites a single link.

Definition 1 Let ✑ ❪ ❴ be some integer con-

stant. A generalized multitext grammar with ✑
dimensions (✑ -GMTG for short) is a tuple ✉✈✯✆ ✪✬✫ ✁❑✪ ✿ ✁✝✇ ✁ ✒ ✠ where ✪✬✫ , ✪ ✿ are finite, disjoint sets

of nonterminal and terminal symbols, respectively,✒①✹ ✪ ✫ is the start symbol and ✇ is a finite set of

productions. Each production has the form ② ✄ ③ ,

where ② is a ✑ -dimensional link and ③ is a ✑ -

dimensional ITV such that q ✆ ② � ❥✛✂✘✠④✯⑤q ✆ ③ � ❥✛✂✘✠ for❴❙✐⑥❥♣✐ ✑ . If ② � ❥✛✂ contains
✒

, then q ✆ ② � ❥✛✂✘✠❝✯⑦❴ .

We omit symbol ✑ from ✑ -GMTG whenever it is

not relevant. To simplify notation, we write pro-

ductions as ⑧⑨✯ � ⑧ ✞ ✁✍❱✍❱✍❱☞✁✚⑧P❩ ✂ , with each ⑧✬❜⑩✯✆✚✲ ❜ ✞ ✁✍❱✍❱✍❱ ✁ ✲ ❜ ❲✟❶ ✠ ✄ ✆ ② ❜ ✞ ✁✍❱✍❱✍❱ ✁❯② ❜ ❲✟❶ ✠ , ✲ ❜❤❣ ✹ ✪✬✫ . I.e.

we omit the unique index appearing on the LHS of⑧ . Each ⑧ ❜ is called a production component. The

production component
✆ ✠ ✄ ✆ ✠ is called the inactive

production component. All other production com-

ponents are called active and we set ❷●❸✒❹❑❉ ❺❻❍ ✆ ⑧ ✠❼✯✱ ❥ ✜❽❛✍❜❚❾❿❞❢✽ . Inactive production components are

used to relax synchronous rewriting on some dimen-

sions, that is to implement rewriting on
✥✼➀ ✑ com-

ponents. When
✥ ✯➁❴ , rewriting is licensed on one

component, independently of all the others.

Two grammar parameters play an important role

in this paper. Let ⑧➂✯ � ⑧ ✞ ✁✍❱✍❱✍❱☞✁✚⑧P❩ ✂ ✹ ✇ and ⑧➃❜➄✯✆✚✲ ❜ ✞ ✁✍❱✍❱✍❱ ✁ ✲ ❜ ❲✟❶ ✠ ✄ ✆ ② ❜ ✞ ✁✍❱✍❱✍❱ ✁❯② ❜ ❲✟❶ ✠ .
Definition 2 The rank ➅ of a production ⑧ is

the number of links on its RHS: ➅ ✆ ⑧ ✠ ✯
✜✥❉✷❊➆❋➇❍❑❏ ✆ ② ✞ ✞✔➈✍➈✍➈ ② ✞✂❲✝❳ ② ✟ ✞✕➈✍➈✍➈ ②➉❩ ❲✟❭ ✠✫✜ . The rank of a

GMTG ✉ is ➅ ✆ ✉ ✠❝✯➋➊✰➌➆➍ ➎❻➏➆➐➑➅ ✆ ⑧ ✠ .
Definition 3 The fan-out of ⑧ ❜ , ⑧ and ✉ are, re-

spectively, q ✆ ⑧ ❜ ✠➒✯⑤❛ ❜ , q ✆ ⑧ ✠➒✯➔➓ ❩❜➣→ ✞ q ✆ ⑧ ❜ ✠ andq ✆ ✉ ✠◗✯◆➊✰➌➆➍ ➎↔➏➆➐↕q ✆ ⑧ ✠ .
For example, the rank of Production (23) is two and

its fan-out is four.

In GMTG, the derives relation is defined over

ITVs. GMTG derivation proceeds by synchronous

application of all the active components in some

production. The indexed nonterminals to be rewrit-

ten simultaneously must all have the same index ✻ ,
and all nonterminals indexed with ✻ in the ITV must

be rewritten simultaneously. Some additional nota-

tion will help us to define rewriting precisely. A

reindexing is a one-to-one function on ✭ , and is

extended to ✪ ❃ by letting
★ ✆✕✔ ✠➙✯ ✔

for
✔➛✹ ✪➜✿

and
★ ✆✚✲✵✴✷✶✩✸ ✠➋✯ ✲✵✴✁�❻✴✷✶✩✸✩✸

for
✲✵✴☞✶✩✸◆✹ ✮ ✆ ✪ ✫ ✠ . We

also extend
★

to strings in ✪ ❁❃ analogously. We

say that ② ✁❯② ❖ ✹ ✪ ❁❃ are independent if ❉☞❊●❋➇❍❑❏ ✆ ② ✠✄✂❉✷❊➆❋➇❍❑❏ ✆ ②✕❖✱✠❝✯✆☎ .
Definition 4 Let ✉ ✯ ✆ ✪ ✫ ✁❑✪❬✿ ✁✝✇ ✁ ✒ ✠ be a

✑ -GMTG and let ⑧ ✯ � ⑧ ✞ ✁✍❱✍❱✍❱✡✁✚⑧ ❩ ✂ with ⑧ ✹ ✇
and ⑧✬❜➑✯ ✆✚✲ ❜ ✞ ✁✍❱✍❱✍❱☞✁ ✲ ❜ ❲✟❶ ✠ ✄ ✆ ②✕❜ ✞ ✁✍❱✍❱✍❱ ✁❯②✕❜ ❲✂❶ ✠ . Let❇ and ✝ be two ITVs with ❇ � ❥✛✂✕✯ ✆ ❇❬❜ ✞ ✁✍❱✍❱✍❱☞✁❘❇❢❜ ❲✟❶ ✠ and

✝ � ❥✛✂❚✯ ✆ ✝✛❜ ✞ ✁✍❱✍❱✍❱✡✁✞✝✛❜ ❲✂❶ ✠ . Assume that ② is some con-

catenation of all ②➉❜t❣ and that ❇ is some concatena-

tion of all ❇❢❜❤❣ , ❴❂✐♦❥❆✐ ✑ , ❴✵✐➂❧ ✐❦❛✍❜ , and let
★

be

some reindexing such that strings
★ ✆ ② ✠ and ❇ are

independent. The derives relation ❇✠✟ ➎ ✡ ✝ holds

whenever there exists an index ✻ ✹ ✭ such that the

following two conditions are satisfied:

(i) for each ❥ ✹ ❷➆❸✒❹❑❉ ❺➆❍ ✆ ⑧ ✠ we have❇❢❜ ✞ ➈✍➈✍➈ ❇■❜ ❲✂❶ ✯ ❇P❖❜☞☛ ✲ ✴✷✶✩✸❜ ✞ ❇✬❖❜ ✞ ✲ ✴✷✶✩✸❜ ✟ ➈✍➈✍➈ ❇✬❖❜ ❲✂❶✍✌ ✞
✲ ✴☞✶✩✸❜ ❲✂❶ ❇P❖❜ ❲✂❶

such that ✻✏✎✹ ❉✷❊➆❋➇❍❑❏ ✆ ❇ ❖❜✁☛ ❇P❖❜ ✞ ➈✍➈✍➈ ❇✬❖❜ ❲✂❶ ✠ , and each

✝✛❜❤❣ is obtained from ❇❬❜t❣ by replacing each
✲ ✴✷✶✩✸❜❤❣✒✑

with
★ ✆ ② ❜❤❣✒✑ ✠ ;

(ii) for each ❥✓✎✹ ❷➆❸✒❹❯❉ ❺➆❍ ✆ ⑧ ✠ we have✻✔✎✹ ❉☞❊●❋➇❍❑❏ ✆ ❇■❜ ✞♣➈✍➈✍➈ ❇❢❜ ❲✟❶ ✠ and ❇ � ❥✓✂ ✯ ✝ � ❥✛✂ .
We generalize the ✟ ➎ ✡ relation to ✟ ✡

and ✟♦❁✡ in

the usual way, to represent derivations.

We can now introduce the notion of generated

language (or generated relation). A start link

of a ✑ -GMTG is a ✑ -dimensional link where at

least one component is
✆✓✒ ✴ ✞ ✸ ✠ , ✒

the start sym-

bol, and the rest of the components are
✆ ✠ . Thus,

there are ✕ ❩✗✖ ❴ start links. The language

generated by a ✑ -GMTG ✉ is ✘ ✆ ✉ ✠➋✯ ✱ ❇✚✙ ✜❇✜✛✢✟ ❁✡ ❇ ✙ ✁ ❇✚✛ a start link ✁ ❇ ✙ � ❥✛✂➄✯ ✆ ✠ or ❇ ✙ � ❥✛✂➄✯✆✤✣ ❜✌✠ with
✣ ❜ ✹ ✪ ❁✿ ✁✏❴➋✐ ❥➒✐ ✑ ✽ . Each ITV in

✘ ✆ ✉ ✠ is called a multitext. For every ✑ -GMTG ✉ ,

✘ ✆ ✉ ✠ can be partitioned into ✕ ❩ ✖ ❴ subsets, each

containing multitexts derived from a different start

link. These subsets are disjoint, since every non-

empty tuple of a start link is eventually rewritten as

a string, either empty or not.5

A start production is a production whose LHS

is a start link. A GMTG writer can choose the com-

binations of components in which the grammar can

generate, by including start productions with the de-

sired combinations of active components. If a gram-

mar contains no start productions with a certain

combination of active components, then the corre-

sponding subset of ✘ ✆ ✉ ✠ will be empty. Allow-

ing a single GMTG ✉ to generate multitexts with

5We are assuming that there are no useless nonterminals.

some empty tuples corresponds to modeling rela-

tions of different dimensionalities. This capability

enables a synchronous grammar to govern lower-

dimensional sublanguages/translations. For exam-

ple, an English/Italian GMTG can include Produc-

tion (9), an English CFG, and an Italian CFG. A

single GMTG can then govern both translingual

and monolingual information in applications. Fur-

thermore, this capability simplifies the normaliza-

tion procedure described in Section 6. Otherwise,

this procedure would require exceptions to be made

when eliminating epsilons from start productions.

4 Generative Capacity

In this section we compare the generative capac-

ity of GMTG with that of mildly context-sensitive

grammars. We focus on LCFRS, using the no-

tational variant introduced by Rambow and Satta

(1999), briefly summarized below. Throughout this

section, strings
✣✈✹ ✪❂❁✿ and vectors of the form�✝✆✤✣ ✠✌✂ will be identified. For lack of space, some

proofs are only sketched, or entirely omitted when

relatively intuitive: Melamed et al. (2004) provide

more details.

Let ✪❀✿ be some terminal alphabet. A function
✩

has rank ✥↕❪♦❞ if it is defined on
✆ ✪ ❁✿ ✠ � ❳✧✦ ✆ ✪ ❁✿ ✠ �✩★ ✦➈✍➈✍➈ ✦ ✆ ✪❂❁✿ ✠ �✫✪ , for integers

★ ❜❝❪❵❴ , ❴❈✐ ❥❆✐✬✥ . Also,✩
has fan-out

★ ❪ ❴ if its range is a subset of
✆ ✪↕❁✿ ✠ � .

Let ✭✯✮ , ✰✬❜t❣ , ❴ ✐✲✱❦✐ ★
, ❴ ✐⑦❥❂✐✳✥ and ❴ ✐①❧♠✐★ ❜ , be string-valued variables. Function

✩
is linear

regular if it is defined by an equation of the form

✩ ✆✵✴ ✰ ✞ ✞ ✁✍❱✍❱✍❱✡✁✵✰ ✞ � ❳ ✶ ✁✍❱✍❱✍❱☞✁ ✴ ✰✸✷ ✞ ✁✍❱✍❱✍❱ ✁✵✰ ✷ �✫✪ ✶ ✠✯ ✴ ✭ ✞ ✁✍❱✍❱✍❱☞✁✵✭ � ✶ (24)

where
✴ ✭ ✞ ✁✍❱✍❱✍❱✡✁✵✭ � ✶ represents some grouping into

★
strings of all and only the variables appearing in the

left-hand side, possibly with some additional termi-

nal symbols. (Symbols ➅ , q and ✟ ✡
are overloaded

below.)

Definition 5 A Linear Context-Free Rewrit-

ing System (LCFRS) is a quadruple✉ ✯ ✆ ✪ ✫ ✁❑✪❀✿ ✁✝✇ ✁ ✒ ✠ where ✪ ✫ , ✪❀✿ and
✒

are

as in GMTGs, every
✲ ✹ ✪ ✫ is associated

with an integer q ✆✚✲ ✠⑤❪ ❴ with q ✆✓✒ ✠✺✯ ❴ ,
and ✇ is a finite set of productions of the form✲ ✄ ✩ ✆✺✹

✞ ✁
✹

✟ ✁✍❱✍❱✍❱✡✁ ✹✼✻ ✴✾✽❑✸ ✠ , where ➅ ✆✪✩ ✠ ❪ ❞ ,✲ ✁ ✹ ❜ ✹ ✪✬✫ , ❴✰✐◆❥❚✐ ➅ ✆✪✩ ✠ and where
✩

is a linear

regular function having rank ➅ ✆✪✩ ✠ and fan-outq ✆✚✲ ✠ , defined on
✆ ✪❈❁✿ ✠✩✿ ✴☞❀ ❳ ✸ ✦ ➈✍➈✍➈ ✦ ✆ ✪❂❁✿ ✠ ✿ ✴☞❀✸❁✒❂ ❃✩❄✚✸ .

For every
✲ ✹ ✪P✫ and ❅ ✹ ✆ ✪❂❁✿ ✠✩✿ ✴✾❆ ✸ , we write✲ ✟ ✡ ❅ if

(i)
✲ ✄ ✩ ✆ ✠ ✹ ✇ and

✩ ✆ ✠❝✯✆❅ ; or else

(ii)
✲ ✄ ✩ ✆✺✹

✞ ✁✍❱✍❱✍❱☞✁ ✹ ✻ ✴ ✽❑✸ ✠ ✹ ✇ ,
✹ ❜ ✟ ✡ ❅✒❜ ✹✆ ✪❈❁✿ ✠✩✿ ✴☞❀ ❶ ✸ for every ❴ ✐ ❥ ✐ ➅ ✆✪✩ ✠ , and✩ ✆ ❅ ✞ ✁✍❱✍❱✍❱✡✁✒❅ ✻ ✴✾✽❑✸ ✠ ✯ ❅ .

The language generated by ✉ is defined as ✘ ✆ ✉ ✠◗✯✱ ✣ ✜ ✒ ✟ ✡ ✆✤✣ ✠☛✁ ✣ ✹ ✪✵❁✿ ✽ . Let ⑧ ✹ ✇ ,⑧⑦✯ ✲ ✄ ✩ ✆✺✹
✞ ✁

✹
✟ ✁✍❱✍❱✍❱✡✁ ✹ ✻ ✴✾✽❑✸ ✠ . The rank of ⑧

and ✉ are, respectively, ➅ ✆ ⑧ ✠❂✯ ➅ ✆✪✩ ✠ and ➅ ✆ ✉ ✠➑✯➊✰➌➆➍↔➎❻➏➆➐❂➅ ✆ ⑧ ✠ . The fan-out of ⑧ and ✉ are, respec-

tively, q ✆ ⑧ ✠❝✯ q ✆✚✲ ✠ and q ✆ ✉ ✠◗✯◆➊✰➌➆➍ ➎↔➏➆➐ q ✆ ⑧ ✠ .
The proof of the following theorem is relatively

intuitive and therefore omitted.

Theorem 1 For any LCFRS ✉ , there exists some

1-GMTG ✉ ❖ with ➅ ✆ ✉✾❖✱✠◆✯ ➅ ✆ ✉ ✠ and q ✆ ✉ ❖✱✠◆✯q ✆ ✉ ✠ such that ✘ ✆ ✉ ❖✱✠ ✯ ✘ ✆ ✉ ✠ .
Next, we show that the generative capacity of

GMTG does not exceed that of LCFRS. In order

to compare string tuples with bare strings, we in-

troduce two special functions ranging over multi-

texts. Assume two fresh symbols
✁ ✁✄✂ ✎✹ ✆ ✪✬✿ ❅✪ ✫ ✠ . For a multitext ❇ we write ☎➆❷➆❋ ✆ ❇ ✠ ✯❇✬❖ , where ❇P❖ � ❥✛✂ ✯ ✆ ✂ ✠ if ❇ � ❥✛✂ ✯ ✆ ✠ and❇✬❖ � ❥✛✂ ✯ ❇ � ❥✓✂ otherwise, ❴✈✐ ❥s✐ ✑ . For

a multitext
�✝✆✤✣

✞ ✠☛✁
✆✤✣

✟ ✠☛✁✍❱✍❱✍❱ ✁ ✆✤✣ ❩ ✠✌✂ with no empty

tuple, we write ✆✞✝✠✟●❍ ✆ �✝✆✤✣ ✞ ✠☛✁
✆✤✣

✟ ✠☛✁✍❱✍❱✍❱✡✁ ✆✤✣ ❩ ✠✌✂✕✠ ✯✣
✞
✁ ✣

✟
✁ ➈✍➈✍➈ ✁ ✣ ❩ . We extend both functions to

sets of multitexts in the obvious way: ✆✞✝✡✟➆❍ ✆ ✘ ✠ ✯✱ ✆✞✝✡✟➆❍ ✆☞☛ ✠ ✜ ☛✦✹ ✘➄✽ and ☎➆❷➆❋ ✆ ✘ ✠◗✯ ✱ ☎➆❷➆❋ ✆☞☛ ✠ ✜ ☛➉✹ ✘❆✽ .
In a ✑ -GMTG, a production with

✥
active com-

ponents, ❴➋✐ ✥ ✐ ✑ , is said to be
✥
-active. A

✑ -GMTG whose start productions are all ✑ -active

is called properly synchronous.

Lemma 1 For any properly synchronous ✑ -GMTG✉ , there exists some LCFRS ✉ ❖ with ➅ ✆ ✉✾❖✱✠♣✯◆➅ ✆ ✉ ✠
and q ✆ ✉✾❖✪✠ ✯⑩q ✆ ✉ ✠ such that ✘ ✆ ✉ ❖✱✠❝✯✌✆✞✝✡✟●❍ ✆ ✘ ✆ ✉ ✠ ✠ .
Outline of the proof. We set ✉ ❖ ✯ ✆ ✪ ❖✫ ✁P✪❀✿ ✁➃✇ ❖ ✁� ✒ ✂✘✠ , where ✪ ❖✫ ✯ ✱ � ⑧ ✁❨✻✌✂ ✜✬⑧ ✹ ✇ ✁❝✻ ✹ ❉☞❊●❋➇❍❑❏ ✆ ✉ ✠❯✽➃❅✱ � ✒ ✂✣✽ , ❉✷❊➆❋➇❍❑❏ ✆ ✉ ✠ is the set of all indexes appearing

in the productions of ✉ , and ✇❈❖ is constructed as

follows. Let ⑧ ✁ ⑧✬❖ ✹ ✇ with ⑧❫✯ � ⑧ ✞ ✁✍❱✍❱✍❱✡✁✚⑧ ❩ ✂ ,⑧➃❖ ✯ � ⑧➃❖ ✞ ✁✍❱✍❱✍❱✡✁✚⑧➃❖❩ ✂ , ⑧➃❜ ✯ ✆✚✲ ❜ ✞ ✁✍❱✍❱✍❱☞✁ ✲ ❜ ❩ ✠ ✄✆ ②✔❜ ✞ ✁✍❱✍❱✍❱ ✁❯②✕❜ ❲✟❶ ✠ , and ⑧✬❖❜ ✯ ✆✺✹ ❜ ✞ ✁✍❱✍❱✍❱ ✁ ✹ ❜ ❩ ✠ ✄✆ ③ ❜ ✞ ✁✍❱✍❱✍❱✡✁❨③ ❜ ❲ ✑❶ ✠ . Assume that ⑧ can rewrite the right-

hand side of ⑧P❖ , that is

�✝✆ ③ ✞ ✞ ✁✍❱✍❱✍❱☞✁❨③ ✞✂❲ ✑ ❳ ✠☛✁✍❱✍❱✍❱ ✁ ✆ ③ ❩ ✞ ✁✍❱✍❱✍❱ ✁❨③ ❩ ❲ ✑❭ ✠✌✂
✟ ➎ ✡ �✝✆ ✝ ✞ ✞ ✁✍❱✍❱✍❱☞✁✞✝ ✞✂❲❨❳ ✠☛✁✍❱✍❱✍❱ ✁ ✆ ✝✍❩ ✞ ✁✍❱✍❱✍❱✡✁✞✝✍❩ ❲✗❭ ✠✌✂ ❱

Then there must be at least one index ✻ such that for

each ❥ ✹ ❷➆❸✒❹❯❉ ❺➆❍ ✆ ⑧ ✠ , ✆ ③➃❜ ✞ ✁✍❱✍❱✍❱✡✁❨③ ❜ ❲ ✑❶ ✠ contains exactly❛✍❜ occurrences of ✻ .

Let ② ➎ ✯ ② ✞ ✞✕➈✍➈✍➈ ② ✞✂❲❨❳ ② ✟ ✞✕➈✍➈✍➈ ②➉❩ ❲✟❭ . Also let❉✷❊➆❋➇❍❑❏ ✆ ② ➎ ✠➂✯ ✱ ✻ ✞ ✁✍❱✍❱✍❱☞✁❨✻ ✻ ✴ ➎ ✸ ✽ and let q ✆ ✻❘❜✛✠ be the

number of occurrences of ✻❨❜ appearing in ② ➎ . We

define an alphabet
✗ ➎⑤✯ ✱ ✰✬❜❤❣ ✜ ❴ ✐ ❥ ✐➅ ✆ ⑧ ✠☛✁➋❴①✐ ❧ ✐ q ✆ ✻✗❜✌✠❯✽ . For each ❥ and ❧ with❴ ✐ ❥❡✐ ✑ , ❥ ✹ ❷➆❸✒❹❯❉ ❺➆❍ ✆ ⑧ ✠ and ❴⑦✐ ❧ ✐➔❛✏❜ ,

we define a string ✱ ✆ ⑧ ✁❨❥ ✁✂❧ ✠ over
✗ ➎♥❅➂✪❬✿ as fol-

lows. Let ② ❜❤❣♥✯ ✙
✞
✙
✟✦➈✍➈✍➈ ✙✎✍ , each

✙✎✏▼✹ ✪ ❃ . Then

✱ ✆ ⑧ ✁❨❥ ✁✂❧ ✠▲✯ ✙ ❖✞ ✙ ❖✟ ➈✍➈✍➈ ✙ ❖✍ , where

✑ ✙ ❖✏ ✯ ✙✒✏
in case

✙✓✏❈✹ ✪❀✿ ; and

✑ ✙ ❖✏ ✯ ✰ ✶☞✔ ✕ in case
✙✓✏❡✹ ✮ ✆ ✪ ✫ ✠ , where ✻ is

the index of
✙✓✏

and the indicated occurrence

of
✙✎✏

is the ✖ -th occurrence of such symbol

appearing from left to right in string ② ➎ .
Next, for every possible ⑧ , ⑧P❖ , and ✻ as above, we

add to ✇❙❖ a production⑧ ✶ ✯ � ⑧ ❖ ✁❨✻ ✂ ✄ ✩ ✆ � ⑧ ✁❨✻ ✞ ✂✓✁✍❱✍❱✍❱ ✁ � ⑧ ✁❨✻ ✻ ✴ ➎ ✸ ✂✘✠☛✁
where
✩ ✆✵✴ ✰ ✞ ✞ ✁✍❱✍❱✍❱☞✁✵✰ ✞ ✿ ✴✷✶ ❳ ✸ ✶ ✁✍❱✍❱✍❱✡✁ ✴ ✰ ✻ ✴ ➎ ✸ ✞ ✁✍❱✍❱✍❱☞✁✵✰ ✻ ✴ ➎ ✸ ✿ ✴☞✶ ❁✵❂ ✗✞❄ ✸ ✶ ✠✯ ✴ ✱ ✆ ⑧ ✁✏❴✯✁✏❴✡✠☛✁✍❱✍❱✍❱✯✁✞✱ ✆ ⑧ ✁ ✑ ✁✝❛●❩ ✠ ✶

(each ✱ ✆ ⑧ ✁❨❥ ✁✂❧ ✠ above satisfies ❥ ✹ ❷●❸✒❹❑❉ ❺❻❍ ✆ ⑧ ✠). Note

that
✩

is a function with rank ➅ ✆ ⑧ ✠ and fan-out➓ ❩❜➣→ ✞ ❛✍❜ ✯ q ✆ ⑧ ✠ . Thus we have ➅ ✆ ⑧ ✶ ✠ ✯ ➅ ✆ ⑧ ✠
and q ✆ ⑧ ✶ ✠ ✯ q ✆ ⑧ ✠ . Without loss of generality,

we assume that ✉ contains only one production

with
✒

appearing on the left-hand side, having the

form ⑧ ✛ ✯ �✝✆✓✒ ✠☛✁✍❱✍❱✍❱✡✁ ✆✓✒ ✠✌✂ ✄ �✝✆✚✲ ✞ ✠☛✁✍❱✍❱✍❱ ✁ ✆✚✲ ✞ ✠✌✂ .
To complete the construction of ✇❈❖ , we then

add a last production
� ✒ ✂ ✄ ✩ ✆ � ⑧ ✛ ✁✏❴ ✂✘✠ where✩ ✆✵✴ ✰ ✞ ✞ ✁✵✰ ✞✌✟ ✁✍❱✍❱✍❱ ✁✵✰ ✞ ❩ ✶ ✠⑥✯ ✴ ✰ ✞ ✞

✁ ✰ ✞✌✟
✁ ➈✍➈✍➈ ✁ ✰ ✞ ❩ ✶

.

We claim that, for each ⑧ , ⑧ ❖ and ✻ as above

�✝✆✚✲ ✞✞ ✞ ✁✍❱✍❱✍❱☞✁ ✲ ✞✞✂❲❨❳ ✠☛✁✍❱✍❱✍❱✡✁ ✆✚✲ ✞❩ ✞ ✁✍❱✍❱✍❱☞✁ ✲ ✞❩ ❲✟❭ ✠✌✂
✟⑥❁✡ �✝✆✙✘

✞ ✞ ✁✍❱✍❱✍❱☞✁ ✘ ✞✂❲❨❳ ✠☛✁✍❱✍❱✍❱✡✁ ✆✙✘ ❩ ✞ ✁✍❱✍❱✍❱✡✁ ✘ ❩ ❲ ❭ ✠✌✂
iff

� ⑧✬❖✘✁❨✻✌✂✄✟ ✡ ✑ ✴✙✘
✞ ✞ ✁✍❱✍❱✍❱✡✁ ✘ ✞✂❲❨❳ ✁ ✘ ✟ ✞ ✁✍❱✍❱✍❱ ✁ ✣ ❩ ❲✟❭ ✶

. The

lemma follows from this claim.

The proof of the next lemma is relatively intuitive

and therefore omitted.

Lemma 2 For any ✑ -GMTG ✉ , there exists a prop-

erly synchronous ✑ -GMTG ✉ ❖ such that ➅ ✆ ✉ ❖✱✠✰✯➅ ✆ ✉ ✠ , q ✆ ✉✾❖✪✠❿✯ ➊✰➌➆➍ ✱ q ✆ ✉ ✠☛✁ ✑r✽ , and ✘ ✆ ✉✾❖✱✠①✯
☎➆❷➆❋ ✆ ✘ ✆ ✉ ✠ ✠ .

Combining Lemmas 1 and 2, we have

Theorem 2 For any ✑ -GMTG ✉ , there exists

some LCFRS ✉ ❖ with ➅ ✆ ✉✾❖✱✠ ✯ ➅ ✆ ✉ ✠ andq ✆ ✉✾❖✪✠ ✯ ➊✰➌➆➍ ✱ q ✆ ✉ ✠☛✁ ✑ ✽ such that ✘ ✆ ✉ ❖✱✠✺✯
✆✞✝✡✟➆❍ ✆ ☎➆❷➆❋ ✆ ✘ ✆ ✉ ✠ ✠ ✠ .

5 Weak Language Preservation Property

GMTGs have the weak language preservation prop-

erty, which is one of the defining requirements of

synchronous rewriting systems (Rambow and Satta,

1996). Informally stated, the generative capacity of

the class of all component grammars of a GMTG

exactly corresponds to the class of all projected lan-

guages. In other words, the interaction among dif-

ferent grammar components in the rewriting process

of GMTG does not increase the generative power

beyond the above mentioned class. The next result

states this property more formally.

Let ✉ be a ✑ -GMTG with production set ✇ .

For ❴✺✐ ❥ ✐ ✑ , the ❥ -th component gram-

mar of ✉ , written ☎✁�✄✂ ☎ ✆ ✉ ✁❨❥ ✠ , is the 1-GMTG

with productions ✇✦❜⑦✯ ✱ ⑧✬❜ ✜ � ⑧ ✞ ✁✍❱✍❱✍❱ ✁✚⑧P❩ ✂ ✹✇ ✁ ⑧➃❜ ✎✯ ✆ ✠ ✄ ✆ ✠❯✽ . Similarly, the ❥ -th
projected language of ✘ ✆ ✉ ✠ is ☎✆�✝✂ ☎ ✆ ✘ ✆ ✉ ✠☛✁❨❥ ✠ ✯✱ ✣ ❜ ✜ �✝✆✤✣

✞ ✠☛✁✍❱✍❱✍❱ ✁ ✆✤✣ ❩ ✠✌✂ ✹ ✘ ✆ ✉ ✠☛✁ ✆✤✣ ❜✓✠ ✎✯✆ ✠❯✽ . In general ✘ ✆ ☎✁�✄✂ ☎ ✆ ✉ ✁❨❥ ✠ ✠ ✎✯ ☎✆�✝✂ ☎ ✆ ✘ ✆ ✉ ✠☛✁❨❥ ✠ ,
because component grammars ☎✆�✝✂ ☎ ✆ ✉ ✁❨❥ ✠ inter-

act with each other in the rewriting process of✉ . To give a simple example, consider the 2-

GMTG ✉ with productions
�✝✆✓✒ ✠☛✁ ✆✓✒ ✠✌✂ ✄ �✝✆✕✖ ✠☛✁ ✆✕✖ ✠✌✂ ,�✝✆✓✒ ✠☛✁ ✆✓✒ ✠✌✂✤✄ �✝✆✕✔■✲✵✴ ✞ ✸ ✠☛✁ ✆✕✔ ✒♣✴ ✞ ✸ ✠✌✂ and

�✝✆✚✲ ✠☛✁ ✆✓✒ ✠✌✂ ✄�✝✆✓✒ ✴ ✞ ✸ ✠☛✁ ✆✓✒ ✴ ✞ ✸ ✚ ✠✌✂ . Then ✘ ✆ ✉ ✠ ✯ ✱ �✝✆✕✔✟✞ ✠☛✁ ✆✕✔✟✞ ✚✠✞ ✠✌✂ ✜✡ ❪➁❞❢✽ , and thus ☎✆�✝✂ ☎ ✆ ✘ ✆ ✉ ✠☛✁✞✕ ✠↕✯ ✱✡✔✟✞ ✚✠✞ ✜ ✡ ❪❞❢✽ . On the other hand, ✘ ✆ ☎✁�✄✂ ☎ ✆ ✉ ✁✞✕ ✠ ✠↕✯ ✱✡✔☛✞ ✚ ✕ ✜✡ ✁ ✖ ❪❿❞❢✽ . Let ☞
✆
LCFRS ✠ be the class of all lan-

guages generated by LCFRSs. Also let ☞ ➎ ✴ ✡ ✸ and

☞ ➎ ✴✍✌❬✸ be the classes of languages ✘ ✆ ☎✆�✝✂ ☎ ✆ ✉ ✁ ✥ ✠ ✠ and

☎✆�✝✂ ☎ ✆ ✘ ✆ ✉ ✠☛✁ ✥ ✠ ✠ , respectively, for every ✑⑤❪ ❴ , ev-

ery ✑ -GMTG ✉ and every
✥

with ❴❙✐ ✥ ✐ ✑ .

Theorem 3 ☞ ➎ ✴ ✡ ✸ ✯ ☞
✆ ✘✏✎✒✑✔✓ ✒ ✠ and ☞ ➎ ✴✕✌❢✸ ✯

☞
✆ ✘✖✎✒✑✗✓

✒ ✠ .
Proof. The ✘ cases directly follow from Theo-

rem 1.

Let ✉ be some ✑ -GMTG and let
✥

be an integer

such that ❴ ✐ ✥ ✐ ✑ . It is not difficult to see that

✆✞✝✡✟➆❍ ✆ ☎➆❷➆❋ ✆ ✘ ✆ ☎✆�✝✂ ☎ ✆ ✉ ✁ ✥ ✠ ✠ ✠ ✠❽✯✠✘ ✆ ☎✆�✝✂ ☎ ✆ ✉ ✁ ✥ ✠ ✠ . Hence

✘ ✆ ☎✆�✝✂ ☎ ✆ ✉ ✁ ✥ ✠ ✠ can be generated by some LCFRS, by

Theorem 2.

We now define a LCFRS ✉ ❖ such that

✘ ✆ ✉ ❖✍✠❿✯ ☎✆�✝✂ ☎ ✆ ☎❻❷●❋ ✆ ✘ ✆ ✉ ✠ ✠☛✁ ✥ ✠ ✠ . Assume ✉ ❖ ❖⑥✯✆ ✪✬✫ ✁❑✪ ✿ ✁✝✇ ✁ ✒ ✠ is a properly synchronous ✑ -GMTG

generating ☎➆❷➆❋ ✆ ✘ ✆ ✉ ✠ ✠ (Lemma 2). Let ✉❙❖➛✯✆ ✪ ❖✫ ✁❑✪❀✿ ✁✝✇ ❖ ✁ � ✒ ✂✘✠ , where ✪ ❖✫ and ✇ ❖ are constructed

from ✉ ❖ ❖ almost as in the proof of Lemma 1.

The only difference is in the definition of strings

✱ ✆ ⑧ ✁❨❥ ✁✂❧ ✠ and the production rewriting
� ✒ ✂ , speci-

fied as follows (we use the same notation as in the

proof of Lemma 1). ✱ ✆ ⑧ ✁❨❥ ✁✂❧ ✠▲✯ ✙ ❖✞ ✙ ❖✟ ➈✍➈✍➈ ✙ ❖✍ , where

for each ✙ : (i)
✙ ❖✏ ✯ ✙✎✏

if
✙✎✏❡✹ ✪❬✿ and ❥ ✯ ✥

;

(ii)
✙ ❖✏ ✯ ✖

if
✙✎✏ ✹ ✪❬✿ and ❥ ✎✯ ✥

; (iii)
✙ ❖✏ ✯ ✰ ✶☞✔ ✕

if
✙✒✏④✹ ✮ ✆ ✪ ✫ ✠ , with ✻ , ✖ as in the original proof.

Finally, the production rewriting
� ✒ ✂ has the form� ✒ ✂ ✄ ✩ ✆ � ⑧✜✛ ✁✏❴ ✂✘✠ , where

✩ ✆✵✴ ✰ ✞ ✞ ✁✵✰ ✞✌✟ ✁✍❱✍❱✍❱✡✁✵✰ ✞ ❩ ✶ ✠❂✯✴ ✰ ✞ ✞ ✰ ✞✌✟✦➈✍➈✍➈ ✰ ✞ ❩ ✶ . To conclude the proof, note that

☎✆�✝✂ ☎ ✆ ✘ ✆ ✉ ✠☛✁ ✥ ✠ ✠ and ☎✆�✝✂ ☎ ✆ ☎➆❷➆❋ ✆ ✘ ✆ ✉ ✠ ✠☛✁ ✥ ✠ ✠ can differ

only with respect to string ✂ . The theorem then fol-

lows from the fact that LCFRS is closed under in-

tersection with regular languages (Weir, 1988).

6 Generalized Chomsky Normal Form

Certain kinds of text analysis require a grammar in a

convenient normal form. The prototypical example

for CFG is Chomsky Normal Form (CNF), which is

required for CKY-style parsing. A ✑ -GMTG is in

Generalized Chomsky Normal Form (GCNF) if it

has no useless links or useless terminals, and every

production is in one of two forms:

(i) A nonterminal production has rank = 2 and

no terminals or
✖
’s on the RHS.

(ii) A terminal production has exactly one com-

ponent of the form
✲ ✄ ✔

, where
✲①✹ ✪ ✫ and✔ ✹ ✪❀✿ . The other components are inactive.

The algorithm to convert a GMTG to GCNF has

the following steps: (1) add a new start-symbol (2)

isolate terminals, (3) binarize productions, (4) re-

move
✖
’s, (5) eliminate useless links and terminals,

and (6) eliminate unit productions. The steps are

generalizations of those presented by Hopcroft et al.

(2001) to the multidimensional case with disconti-

nuities. The ordering of these steps is important, as

some steps can restore conditions that others elim-

inate. Traditionally, the terminal isolation and bi-

narization steps came last, but the alternative order

reduces the number of productions that can be cre-

ated during
✖
-elimination. Steps (1), (2), (5) and (6)

are the same for CFG and GMTG, except that the

notion of nonterminal in CFG is replaced with links

in GMTG. Some complications arise, however, in

the generalization of steps (3) and (4).

6.1 Step 3: Binarize

The third step of converting to GCNF is binarization

of the productions, making the rank of the grammar

two. For ✥↕❪♦❞ and
★ ❪ ❴ , we write D-GMTG

✴ ✷ ✸� to

represent the class of all ✑ -GMTGs with rank ✥ and

fan-out
★

. A CFG can always be binarized into an-

other CFG: two adjacent nonterminals are replaced

with a single nonterminal that yields them. In con-

trast, it can be impossible to binarize a ✑ -GMTG
✴ ✷ ✸�

into an equivalent ✑ -GMTG ✟ � . From results pre-

sented by Rambow and Satta (1999) it follows that,

�
(S)

(S) ✁ ✄
� ✆

N ✞PatV ✟wentP ✭homeA ✮early ✠✆
P ✭damoyN ✞PatA ✮ranoV ✟pashol ✠ ✁

Pat went home early

damoy

Pat

rano

pashol

Figure 1: A production that requires an increased

fan-out to binarize, and its 2D illustration.

for every fan-out
★ ❪ ✕ and rank ✥ ❪✁� , there

are some index orderings that can be generated by

✑ -GMTG
✴ ✷ ✸� but not ✑ -GMTG

✴ ✷ ✌ ✞ ✸� . The distin-

guishing characteristic of such index orderings is

apparent in Figure 1, which shows a production in

a grammar with fan-out two, and a graph that illus-

trates which nonterminals are coindexed. No two

nonterminals are adjacent in both components, so

replacing any two nonterminals with a single non-

terminal causes a discontinuity. Increasing the fan-

out of the grammar allows a single nonterminal to

rewrite as non-adjacent nonterminals in the same

string. Increasing the fan-out can be necessary even

for binarizing a 1-GMTG production such as:

�✝✆
S,S ✠✌✂ ✄ �✝✆

N ✞ V ✟ P ✭ A ✮ ✁ P ✭ N ✞ A ✮ V ✟ ✠✌✂ (25)

To binarize, we nondeterministically split each

nonterminal production ⑧✚☛ of rank ✥ ❾ ✕ into two

nonterminal productions ⑧ ✞ and ⑧ ✟ of rank
➀ ✥ , but

possibly with higher fan-out. Since this algorithm

replaces ✥ with two productions that have rank
➀ ✥ ,

recursively applying the algorithm to productions of

rank greater than two will reduce the rank of the

grammar to two. The algorithm follows:

(i) Nondeterministically chose ✡ links to be re-

moved from ⑧ ☛ and replaced with a single link

to make ⑧ ✞ , where ✕⑥✐ ✡ ✐ ✥ ✖ ❴ . We call

these links the m-links.

(ii) Create a new ITV ❇ . Two nonterminals are

neighbors if they are adjacent in the same

string in a production RHS. For each set of m-

link neighbors in component
✥

in ⑧ ☛ , place that

set of neighbors into the
✥
’th component of ❇

in the order in which they appeared in ⑧ ☛ , so

that each set of neighbors becomes a different

string, for ❴❙✐ ✥ ✐ ✑ .

(iii) Create a new unique nonterminal, say
✹

, and

replace each set of neighbors in production ⑧ ☛
with

✹
, to create ⑧ ✞ . The production ⑧ ✟ is� ✹ ✁✍❱✍❱✍❱☞✁ ✹ ✂ ✄ ❇

For example, binarization of the productions for the

English/Russian multitext [(Pat went home early),

(damoy Pat rano pashol)]6 in Figure 1 requires that

we increase the fan-out of the language to three. The

binarized productions are as follows:� ✆
S ✠✆
S ✠ ✁ ✄

� ✆
N ✞PatVP ✟ ✠✆

VP ✟ N ✞PatVP ✟ ✠ ✁ (26)� ✆
VP ✠✆

VP ✁ VP ✠ ✁ ✄
� ✆

V ✞ A ✟early ✠✆
V ✞ ✁ A ✟ranoV ✞ ✠ ✁ (27)� ✆

V ✠✆
V ✁ V ✠✟✁ ✄

� ✆
V ✞wentP ✟home ✠✆

P ✟damoy ✁ V ✞pashol ✠✂✁ (28)

6.2 Step 4: Eliminate
✖
’s

Grammars in GCNF cannot have
✖
’s in their

productions. Thus, GCNF is a more restrictive

normal form than those used by Wu (1997) and

Melamed (2003). The absence of
✖
’s simplifies

parsers for GMTG (Melamed, 2004). Given a

GMTG ✉ with
✖

in some productions, we give

the construction of a weakly equivalent gram-

mar ✉✾❖ without any
✖
’s. First, determine all

nullable links and associated strings in ✉ . A

link ✂ ✯ �✝✆✚✲
✞ ✁✍❱✍❱✍❱☞✁ ✲ ✞ ✠☛✁✍❱✍❱✍❱✡✁ ✆✚✲ ❩ ✁✍❱✍❱✍❱✡✁ ✲ ❩ ✠✌✂

is nullable if ✂ ❁✟ ❇ , where ❇ ✯�✝✆ ② ✞ ✞ ✁✍❱✍❱✍❱✡✁❯② ✞✂❲❨❳ ✠☛✁✍❱✍❱✍❱✡✁ ✆ ②➉❩ ✞ ✁✍❱✍❱✍❱✡✁❯②➉❩ ❲✟❭ ✠✌✂ is an

ITV where at least one ②➉❜❤❣ is
✖
. We say the link

✂ is nullable and the string at address
✆✕✥ ✁✝❛ ✠ in

✂ is nullable. For each nullable link, we create

✕ ✞
versions of the link, where ✡ is the number of

nullable strings of that link. There is one version for

each of the possible combinations of the nullable

strings being present or absent. The version of the

link with all strings present is its original version.

Each non-original version of the link (except in the

case of start links) gets a unique subscript, which is

applied to all the nonterminals in the link, so that

each link is unique in the grammar. We construct

a new grammar ✉ ❖ whose set of productions ✇ ❖
is determined as follows: for each production, we

identify the nullable links on the RHS and replace

them with each combination of the non-original

versions found earlier. If a string is left empty

during this process, that string is removed from the

RHS and the fan-out of the production component

is reduced by one. The link on the LHS is replaced

with its appropriate matching non-original link.

There is one exception to the replacements. If a

production consists of all nullable strings, do not

include this case. Lastly, we remove all strings on

the RHS of productions that have
✖
’s, and reduce

the fan-out of the productions accordingly. Once

6The Russian is topicalized but grammatically correct.

again, we replace the LHS link with the appropriate

version.

Consider the example grammar:

�✝✆✓✒ ✠☛✁ ✆✓✒ ✠✌✂✏✄ �✝✆✚✲ ✞ ✹ ✟ ✲ ✞ ✠☛✁ ✆✺✹ ✟ ✲ ✞ ✠✌✂ (29)�✝✆✚✲ ✁ ✲ ✠☛✁ ✆✚✲ ✠✌✂ ✄ �✝✆✕✔ ✁ ✹ ✞ ✠☛✁ ✆✺✹ ✞ ✠✌✂ (30)�✝✆✺✹ ✠☛✁ ✆✺✹ ✠✌✂✎✄ �✝✆✛✚ ✠☛✁ ✆✕✖ ✠✌✂ (31)�✝✆✺✹ ✠☛✁ ✆✺✹ ✠✌✂✎✄ �✝✆✛✚ ✠☛✁ ✆✛✚ ✚ ✠✌✂ (32)

We first identify which links are nullable. In this

case
�✝✆✚✲ ✁ ✲ ✠☛✁ ✆✚✲ ✠✌✂ and

�✝✆✺✹ ✠☛✁ ✆✺✹ ✠✌✂ are nullable so we

create a new version of both links:
�✝✆✚✲

✞ ✁
✲
✞ ✠☛✁

✆ ✠✌✂
and

�✝✆✺✹
✞ ✠☛✁

✆ ✠✌✂ . We then alter the productions. Pro-

duction (31) gets replaced by (40). A new produc-

tion based on (30) is Production (38). Lastly, Pro-

duction (29) has two nullable strings on the RHS,

so it gets altered to add three new productions, (34),

(35) and (36). The altered set of productions are the

following:

�✝✆✓✒ ✠☛✁ ✆✓✒ ✠✌✂ ✄ �✝✆✚✲ ✞ ✹ ✟ ✲ ✞ ✠☛✁ ✆✺✹ ✟ ✲ ✞ ✠✌✂ (33)�✝✆✓✒ ✠☛✁ ✆✓✒ ✠✌✂ ✄ �✝✆✚✲ ✞ ✹ ✟✞
✲ ✞ ✠☛✁ ✆✚✲ ✞ ✠✌✂ (34)�✝✆✓✒ ✠☛✁ ✆✓✒ ✠✌✂ ✄ �✝✆✚✲ ✞✞

✹ ✟ ✲ ✞✞ ✠☛✁ ✆✺✹ ✟ ✠✌✂ (35)�✝✆✓✒ ✠☛✁ ✆ ✠✌✂ ✄ �✝✆✚✲ ✞✞
✹ ✟✞

✲ ✞✞ ✠☛✁ ✆ ✠✌✂ (36)✆✚✲ ✁ ✲ ✠☛✁ ✆✚✲ ✠✌✂ ✄ �✝✆✕✔ ✁ ✹ ✞ ✠☛✁ ✆✺✹ ✞ ✠ (37)�✝✆✚✲
✞ ✁

✲
✞ ✠☛✁

✆ ✠✌✂✏✄ �✝✆✕✔ ✁ ✹ ✞✞ ✠☛✁
✆ ✠✌✂ (38)�✝✆✺✹ ✠☛✁ ✆✺✹ ✠✌✂✏✄ �✝✆✛✚ ✠☛✁ ✆✛✚ ✚ ✠✌✂ (39)�✝✆✺✹

✞ ✠☛✁
✆ ✠✌✂✏✄ �✝✆✛✚ ✠☛✁ ✆ ✠✌✂ (40)

Melamed et al. (2004) give more details about

conversion to GCNF, as well as the full proof of our

final theorem:

Theorem 4 For each GMTG ✉ there exists a

GMTG ✉ ❖ in GCNF generating the same set of mul-

titexts as ✉ but with each
✆✕✖ ✠ component in a multi-

text replaced by
✆ ✠ .

7 Conclusions

Generalized Multitext Grammar is a convenient and

intuitive model of parallel text. In this paper, we

have presented some formal properties of GMTG,

including proofs that the generative capacity of

GMTG is comparable to ordinary LCFRS, and that

GMTG has the weak language preservation prop-

erty. We also proposed a synchronous generaliza-

tion of Chomsky Normal Form, laying the founda-

tion for synchronous CKY parsing under GMTG. In

future work, we shall explore the empirical proper-

ties of GMTG, by inducing stochastic GMTGs from

real multitexts.

Acknowledgments

Thanks to Owen Rambow and the anonymous re-

viewers for valuable feedback. This research was

supported by an NSF CAREER Award, the DARPA

TIDES program, the Italian MIUR under project

PRIN No. 2003091149 005, and an equipment gift

from Sun Microsystems.

References

A. Aho and J. Ullman. 1969. Syntax directed translations and

the pushdown assembler. Journal of Computer and System

Sciences, 3:37–56, February.

T. Becker, A. Joshi, and O. Rambow. 1991. Long-distance

scrambling and tree adjoining grammars. In Proceedings of

the 5th Meeting of the European Chapter of the Association

for Computational Linguistics (EACL), Berlin, Germany.

E. Bertsch and M. J. Nederhof. 2001. On the complexity

of some extensions of RCG parsing. In Proceedings of

the 7th International Workshop on Parsing Technologies

(IWPT), pages 66–77, Beijing, China.

M. Dras and T. Bleam. 2000. How problematic are clitics for

S-TAG translation? In Proceedings of the 5th International

Workshop on Tree Adjoining Grammars and Related For-

malisms (TAG+5), Paris, France.

J. Hopcroft, R. Motwani, and J. Ullman. 2001. Introduction to

Automota Theory, Languages and Computation. Addison-

Wesley, USA.

I. Dan Melamed, G. Satta, and B. Wellington. 2004. Gener-

alized multitext grammars. Technical Report 04-003, NYU

Proteus Project. http://nlp.cs.nyu.edu/pubs/.

I. Dan Melamed. 2003. Multitext grammars and synchronous

parsers. In Proceedings of the Human Language Technology

Conference and the North American Association for Com-

putational Linguistics (HLT-NAACL), pages 158–165, Ed-

monton, Canada.

I. Dan Melamed. 2004. Statistical machine translation by pars-

ing. In Proceedings of the 42nd Annual Meeting of the As-

sociation for Computational Linguistics (ACL), Barcelona,

Spain.

O. Rambow and G. Satta. 1996. Synchronous models of lan-

guage. In Proceedings of the 34th Annual Meeting of the As-

sociation for Computational Linguistics (ACL), Santa Cruz,

USA.

O. Rambow and G. Satta. 1999. Independent parallelism in

finite copying parallel rewriting systems. Theoretical Com-

puter Science, 223:87–120, July.

O. Rambow. 1995. Formal and Computational Aspects of Nat-

ural Language Syntax. Ph.D. thesis, University of Pennsyl-

vania, Philadelphia, PA.

S. Shieber. 1994. Restricting the weak-generative capactiy of

synchronous tree-adjoining grammars. Computational In-

telligence, 10(4):371–386.

D. J. Weir. 1988. Characterizing Mildly Context-Sensitive

Grammar Formalisms. Ph.D. thesis, Department of Com-

puter and Information Science, University of Pennsylvania.

D. Wu. 1997. Stochastic inversion transduction grammars and

bilingual parsing of parallel corpora. Computational Lin-

guistics, 23(3):377–404, September.

D. H. Younger. 1967. Recognition and parsing of context-free

languages in time �
✁
. Information and Control, 10(2):189–

208, February.

