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The Nash Equilibrium Problem: Definition

A Nash equilibrium problem (NEP) consists of

. a finite number N of players

. the cost functions θν of player ν, ν = 1, . . . , N

. the strategy sets Xν of player ν, ν = 1, . . . , N .

A vector x∗ =
`
x∗,1, x∗,2, . . . , x∗,N

´
∈ X1 ×X2 × . . . ×XN is called a Nash equilibrium (or

simply a solution) of the NEP if

θν(x
∗
) ≤ θν

`
x
∗,1
, . . . , x

∗,ν−1
, x

ν
, x
∗,ν+1

, . . . , x
∗,N´ ∀xν ∈ Xν

holds for all ν = 1, . . . , N .
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The Nash Equilibrium Problem: Comments

Notation: Write (xν, x−ν) :=
`
x1, . . . , xν−1, xν, xν+1, . . . , xN

´

. x∗ is a Nash equilibrium if and only if x∗,ν solves the minimization problem

min
xν

θν(x
ν
, x
∗,−ν

) s.t. x
ν ∈ Xν

for all ν = 1, . . . , N .

. x∗ is a Nash equilibrium if and only if no player can improve his cost function by unilaterally changing

his strategy.
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A generalized Nash equilibrium problem (GNEP) consists of

. a finite number N of players

. cost functions θν for each player ν, ν = 1, . . . , N

. a common strategy set X ⊆ Rn (usually supposed to be nonempty, closed, and convex).

A vector x∗ =
`
x∗,1, x∗,2, . . . , x∗,N

´
∈ X is called a (generalized) Nash equilibrium (or simply a

solution) of the GNEP if

θν(x
∗
) ≤ θν(x∗,1, . . . , x∗,ν−1

, x
ν
, x
∗,ν+1

, . . . , x
∗,N

) ∀xν : (x
ν
, x
∗,−ν

) ∈ X

holds for all ν = 1, . . . , N .
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Generalized Nash Equilibrium Problems: Comments

. x∗ is a generalized Nash equilibrium if and only if x∗,ν solves the optimization problem

min
xν

θν(x
ν
, x
∗,−ν

) s.t. x
ν

: (x
ν
, x
∗,−ν

) ∈ X

for all ν = 1, . . . , N .
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. x∗ is a generalized Nash equilibrium if and only if x∗,ν solves the optimization problem

min
xν

θν(x
ν
, x
∗,−ν

) s.t. x
ν

: (x
ν
, x
∗,−ν

) ∈ X

for all ν = 1, . . . , N .

. The feasible set of player ν, i.e.,

Xν(x
−ν

) := {xν | (xν, x−ν) ∈ X}

depends on the decisions x−ν taken by the other players.
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Generalized Nash Equilibrium Problems: Comments

. x∗ is a generalized Nash equilibrium if and only if x∗,ν solves the optimization problem

min
xν

θν(x
ν
, x
∗,−ν

) s.t. x
ν

: (x
ν
, x
∗,−ν

) ∈ X

for all ν = 1, . . . , N .

. The feasible set of player ν, i.e.,

Xν(x
−ν

) := {xν | (xν, x−ν) ∈ X}

depends on the decisions x−ν taken by the other players.

. If X = X1 × . . .×XN , the GNEP reduces to a standard NEP.

. The so-called normalized Nash equilibria form a subset of the set of all solutions of a GNEP. This set

coincides with the set of all solutions in case the GNEP is a standard NEP.
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Generalized Nash Equilibrium Problems: Applications

. Oligopoly models using joint resources

. Network problems with capacity constraints

. Environmental models (as formulated in the Kyoto protocol)

. First GNEP models introduced by Debreu (1952), Arrow and Debreu (1954), Rosen (1965)

. Alternative names for a GNEP: pseudo-game, social equilibrium problem, equilibrium programming,

coupled constraint equilibrium problem, abstract economy
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Assumptions

Throughout, we assume that the GNEP satisfies the following assumptions:

. The cost functions θν are continuous (later also assumed to be continuously differentiable)
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Assumptions

Throughout, we assume that the GNEP satisfies the following assumptions:

. The cost functions θν are continuous (later also assumed to be continuously differentiable)

. The cost functions θν(·, x−ν) are convex as a mapping of xν alone

. The common strategy space has a representation of the form

X := {x | g(x) ≤ 0}

with a function g : Rn → Rm whose components gi are convex (later also assumed to be

continuously differentiable)
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(Regularized) Nikaido-Isoda Function and Merit Function

The Nikaido-Isoda-function of a GNEP (or NEP) is defined by

Ψ(x, y) :=

NX
ν=1

h
θν(x

ν
, x
−ν

)− θν(yν, x−ν)
i
.
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The Nikaido-Isoda-function of a GNEP (or NEP) is defined by

Ψ(x, y) :=

NX
ν=1

h
θν(x

ν
, x
−ν

)− θν(yν, x−ν)
i
.

Given a parameter α > 0, the corresponding regularized Nikaido-Isoda-function is defined by

Ψα(x, y) =

NX
ν=1

»
θν(x

ν
, x
−ν

)− θν(yν, x−ν)−
α

2
‖xν − yν‖2

–
.
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(Regularized) Nikaido-Isoda Function and Merit Function

The Nikaido-Isoda-function of a GNEP (or NEP) is defined by

Ψ(x, y) :=

NX
ν=1

h
θν(x

ν
, x
−ν

)− θν(yν, x−ν)
i
.

Given a parameter α > 0, the corresponding regularized Nikaido-Isoda-function is defined by

Ψα(x, y) =

NX
ν=1

»
θν(x

ν
, x
−ν

)− θν(yν, x−ν)−
α

2
‖xν − yν‖2

–
.

Let

Vα(x) := max
y∈X

Ψα(x, y) = Ψα

`
x, yα(x)

´
where

yα(x) := argmaxy∈XΨα(x, y)

denotes the uniquely defined maximizer.

Department of Mathematics and Computer Science
Institute of Mathematics



Constrained Optimization Reformulations of Normalized Nash Equilibria

The mapping Vα has the following properties:

. Vα is continuously differentiable.
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Constrained Optimization Reformulations of Normalized Nash Equilibria

The mapping Vα has the following properties:

. Vα is continuously differentiable.

. Vα(x) ≥ 0 for all x ∈ X.

. Vα(x∗) = 0 if and only if x∗ is a normalized Nash equilibrium.

. Hence x∗ is a normalized Nash equilibrium if and only if it solves the optimization problem

min Vα(x) subject to x ∈ X

with Vα(x∗) = 0.
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Unconstrained Optimization Reformulations of Normalized Nash Equilibria

Let 0 < α < β be given and define the corresponding functions Vα, Vβ as before. Let

Vαβ(x) := Vα(x)− Vβ(x).
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Unconstrained Optimization Reformulations of Normalized Nash Equilibria

Let 0 < α < β be given and define the corresponding functions Vα, Vβ as before. Let

Vαβ(x) := Vα(x)− Vβ(x).

Then

. Vαβ is continuously differentiable.

. Vαβ(x) ≥ 0 for all x ∈ Rn.

. Vαβ(x
∗) = 0 if and only if x∗ is a normalized Nash equilibrium.

. Hence x∗ is a normalized Nash equilibrium if and only if it solves the unconstrained optimization

problem

min Vαβ(x), x ∈ Rn,
with Vαβ(x

∗) = 0.
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Modified Merit Function

Let α > 0 be a given parameter. Recall the definition of the regularized Nikaido-Isoda-function

Ψα(x, y) =

NX
ν=1

»
θν(x

ν
, x
−ν

)− θν(yν, x−ν)−
α

2
‖xν − yν‖2

–
and the corresponding merit function

Vα(x) := max
y∈X

Ψα(x, y) = Ψα

`
x, yα(x)

´
.

Now define the modified merit function
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Modified Merit Function

Let α > 0 be a given parameter. Recall the definition of the regularized Nikaido-Isoda-function

Ψα(x, y) =

NX
ν=1

»
θν(x

ν
, x
−ν

)− θν(yν, x−ν)−
α

2
‖xν − yν‖2

–
and the corresponding merit function

Vα(x) := max
y∈X

Ψα(x, y) = Ψα

`
x, yα(x)

´
.

Now define the modified merit function

V̂α(x) := max
y∈Ω(x)

Ψα(x, y) = Ψα

`
x, ŷα(x)

´
,

where

ŷα(x) := argmaxy∈Ω(x)Ψα(x, y)

and

Ω(x) := X1(x
−1

)× . . .×XN(x
−N

).
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Constrained Optimization Reformulations of All Nash Equilibria

The mapping V̂α has the following properties:

. V̂α in general nondifferentiable.
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Unconstrained Optimization Reformulations of All Nash Equilibria
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Natural idea: Let 0 < α < β be given, define the corresponding functions V̂α, V̂β as before. Let

V̂αβ(x) := V̂α(x)− V̂β(x).

Then

. V̂αβ in general nondifferentiable.

. V̂αβ(x) ≥ 0 for all x ∈ Rn.

. V̂αβ(x
∗) = 0 if and only if x∗ is a Nash equilibrium.
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Unconstrained Optimization Reformulation Not Well-Defined

But: If x 6∈ X, then Ω(x) might be empty. Hence V̂α(x), V̂β(x) and V̂αβ(x) are not necessarily

defined in this case!!!
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Unconstrained Optimization Reformulation Not Well-Defined

But: If x 6∈ X, then Ω(x) might be empty. Hence V̂α(x), V̂β(x) and V̂αβ(x) are not necessarily

defined in this case!!!

Solution: All previous results remain true if we redefine V̂α(x), V̂β(x) and V̂αβ(x) in the following

way for the unconstrained reformulation:

V̂α(x) := max
y∈Ω(PX(x))

Ψα(x, y),

V̂β(x) := max
y∈Ω(PX(x))

Ψβ(x, y),

V̂αβ(x) := V̂α(x)− V̂β(x).
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Numerical Example for Unconstrained Nonsmooth Reformulation
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Example 1: {(α, 1− α) | α ∈ [1
2, 1]} Example 2: {(5, 9)} ∪ {(α, 15− α) |α ∈ [9, 10]}
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Numerical Example for Unconstrained Nonsmooth Reformulation
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Example 3: {(α, 1− α) |α ∈ [0, 2
3]} Example 4: {(α,

√
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5]}
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Fixed Point Characterization of Normalized Nash Equilibria

Recall that

Ψα(x, y) =

NX
ν=1

»
θν(x

ν
, x
−ν

)− θν(yν, x−ν)−
α

2
‖xν − yν‖2

–
.

and

yα(x) := argmaxy∈XΨα(x, y)
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α

2
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–
.

and

yα(x) := argmaxy∈XΨα(x, y)

Then

x∗ is a normalized Nash equilibrium⇐⇒ x∗ is a fixed point of the mapping yα, i.e. yα(x∗) = x∗.
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Fixed Point Characterization of Normalized Nash Equilibria

Recall that

Ψα(x, y) =

NX
ν=1

»
θν(x

ν
, x
−ν

)− θν(yν, x−ν)−
α

2
‖xν − yν‖2

–
.

and

yα(x) := argmaxy∈XΨα(x, y)

Then

x∗ is a normalized Nash equilibrium⇐⇒ x∗ is a fixed point of the mapping yα, i.e. yα(x∗) = x∗.

Note that the corresponding fixed point iteration (Picard iteration)

x
k+1

:= yα(x
k
), k = 0, 1, 2, . . .

is, usually, not convergent even under very favourable assumptions.
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Relaxation Method

Modification of the Picard fixed point iteration leads to the Relaxation method by Uryasev and Rubinstein

(1994):

Choose α = 0 and

x
k+1

:= tkyα(x
k
) + (1− tk)xk, k = 0, 1, 2, . . .

Convergence shown under a number of (difficult to verify) assumptions provided that

tk ↓ 0 and
∞X
k=0

tk =∞.

Department of Mathematics and Computer Science
Institute of Mathematics



Relaxation Method

Modification of the Picard fixed point iteration leads to the Relaxation method by Uryasev and Rubinstein

(1994):

Choose α = 0 and

x
k+1

:= tkyα(x
k
) + (1− tk)xk, k = 0, 1, 2, . . .

Convergence shown under a number of (difficult to verify) assumptions provided that

tk ↓ 0 and
∞X
k=0

tk =∞.

Comment: The natural choice tk := 1/(k + 1) gives very slow convergence in practice. Other modi-

fications exists which are either very expensive to compute or still have some heuristics in it.
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Relaxation Method Viewed as Descent Method

Take α > 0. The relaxation method

x
k+1

:= tkyα(x
k
) + (1− tk)xk, k = 0, 1, 2, . . .

can be rewritten as

x
k+1

:= x
k

+ tkd
k
, k = 0, 1, 2, . . .

with the direction vector

d
k

:= yα(x
k
)− xk, k = 0, 1, 2, . . .
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Relaxation Method Viewed as Descent Method

Take α > 0. The relaxation method

x
k+1

:= tkyα(x
k
) + (1− tk)xk, k = 0, 1, 2, . . .

can be rewritten as

x
k+1

:= x
k

+ tkd
k
, k = 0, 1, 2, . . .

with the direction vector

d
k

:= yα(x
k
)− xk, k = 0, 1, 2, . . .

Under suitable (definiteness) assumptions, dk has the descent property

∇Vα(x
k
)
T
d
k
< 0.

Hence tk can be chosen by an inexact (Armijo-type) line search rule.
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Relaxation Method with Inexact Line Search

(S.0) Choose x0 ∈ X, β, σ ∈ (0, 1), and set k := 0.
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Relaxation Method with Inexact Line Search

(S.0) Choose x0 ∈ X, β, σ ∈ (0, 1), and set k := 0.

(S.1) Check a suitable termination criterion
`

like Vα(xk) ≤ ε for some ε > 0
´

.

(S.2) Compute yα(xk) and set dk := yα(xk)− xk.

(S.3) Compute tk = max {βl | l = 0, 1, 2, . . .} such that

Vα(x
k

+ tkd
k
) ≤ Vα(x

k
)− σt2k‖d

k‖.
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(S.0) Choose x0 ∈ X, β, σ ∈ (0, 1), and set k := 0.

(S.1) Check a suitable termination criterion
`

like Vα(xk) ≤ ε for some ε > 0
´

.

(S.2) Compute yα(xk) and set dk := yα(xk)− xk.

(S.3) Compute tk = max {βl | l = 0, 1, 2, . . .} such that

Vα(x
k

+ tkd
k
) ≤ Vα(x

k
)− σt2k‖d

k‖.

(S.4) Set xk+1 := xk + tkd
k, k ←− k + 1, and go to (S.1).
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Convergence Properties

. The previous algorithm is well-defined (note that a modified and derivative-free Armijo-type rule is

used there)
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. The previous algorithm is well-defined (note that a modified and derivative-free Armijo-type rule is

used there)

. Every accumulation point of a sequence generated by the algorithm is a normalized Nash equilibrium

of the GNEP
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Convergence Properties

. The previous algorithm is well-defined (note that a modified and derivative-free Armijo-type rule is

used there)

. Every accumulation point of a sequence generated by the algorithm is a normalized Nash equilibrium

of the GNEP

. Local rate of convergence unknown, but numerical examples indicate a (relatively) fast linear rate
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Numerical Results: River Basin Pollution Game

This test problem is the river basin pollution game taken from Krawczyk and Uryasev (Environmental

Modeling and Assessment 5, 2000, pp. 63–73). The cost functions are quadratic with linear constraints.

The assumptions for convergence are satisfied.

k xk1 xk2 xk3 Vα(xk) stepsize

0 0.000000 0.000000 0.000000 90.878301693511 0.000

1 19.325863 17.174698 3.811533 0.118402581670 1.000

2 20.704303 16.105378 3.049526 0.003663469196 1.000

3 21.036699 16.036757 2.808432 0.000213429907 1.000

4 21.118197 16.029540 2.746408 0.000012918766 1.000

5 21.138222 16.028243 2.731024 0.000000789309 1.000

6 21.143173 16.027948 2.727213 0.000000047954 1.000

7 21.144471 16.027877 2.726212 0.000000001927 1.000

8 21.144714 16.027858 2.726025 0.000000000000 1.000
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Numerical Results: Internet Switching Model

This test problem is an internet switching model introduced by Kesselman et al. and also analysed by

Facchinei et al. We modify this example slightly and add the additional constraint xν ≥ 0.01, ν =

1, . . . , N and use N = 10 players.

k xk1 xk2 Vα(xk) stepsize

0 0.100000 0.100000 0.026332722333 0.000

1 0.087172 0.087172 0.002241194298 0.250

2 0.090379 0.090379 0.000039775125 0.250

3 0.089905 0.089905 0.000002517609 0.250

4 0.090024 0.090024 0.000000156756 0.250

5 0.089994 0.089994 0.000000010751 0.250

6 0.090002 0.090002 0.000000000671 0.250

7 0.090000 0.090000 0.000000000000 0.250
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Numerical Results: Oligopoly Model

This is the Cournot oligopoly problem with shared constraints and nonlinear cost functions as described

in Outrata, Kocvara, and Zowe (1998). We use the parameter P = 100 (total production activity).

k xk1 xk2 xk3 Vα(xk) stepsize

0 10.000000 10.000000 10.000000 1836.050150600377 0.000

1 17.833057 19.050570 20.189450 4.898567426891 1.000

2 15.207025 18.069382 20.605731 0.389727842587 1.000

3 14.408253 17.849904 20.795588 0.033154445717 1.000

4 14.161948 17.805303 20.868540 0.002976203103 1.000

5 14.085260 17.797975 20.894315 0.000278156683 1.000

6 14.061205 17.797524 20.903000 0.000026779751 1.000

7 14.053616 17.797912 20.905860 0.000002633959 1.000

8 14.051210 17.798178 20.906771 0.000000263170 1.000

9 14.050445 17.798303 20.907059 0.000000026572 1.000

10 14.050201 17.798354 20.907149 0.000000000000 1.000
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Newton’s Method Based on Fixed Point Formulation

Recall that

x
∗

is a normalized Nash equilibrium ⇐⇒ x
∗

is a fixed point of yα, i.e. x
∗

= yα(x
∗
)

⇐⇒ x
∗

is a solution of Fα(x) = 0,

where Fα(x) := x− yα(x).
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Newton’s Method Based on Fixed Point Formulation

Recall that

x
∗

is a normalized Nash equilibrium ⇐⇒ x
∗

is a fixed point of yα, i.e. x
∗

= yα(x
∗
)

⇐⇒ x
∗

is a solution of Fα(x) = 0,

where Fα(x) := x− yα(x). Apply a (suitable!) nonsmooth Newton method to the nonlinear system

of equations Fα(x) = 0:

x
k+1

:= x
k −H−1

k Fα(x
k
) ∀k = 0, 1, 2, . . . with Hk ≈ F ′α(x

k
).
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Newton’s Method Based on Fixed Point Formulation

Recall that

x
∗

is a normalized Nash equilibrium ⇐⇒ x
∗

is a fixed point of yα, i.e. x
∗

= yα(x
∗
)

⇐⇒ x
∗

is a solution of Fα(x) = 0,

where Fα(x) := x− yα(x). Apply a (suitable!) nonsmooth Newton method to the nonlinear system

of equations Fα(x) = 0:

x
k+1

:= x
k −H−1

k Fα(x
k
) ∀k = 0, 1, 2, . . . with Hk ≈ F ′α(x

k
).

Then

. The method is locally quadratically convergent under very weak assumptions.
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Newton’s Method Based on Fixed Point Formulation

Recall that

x
∗

is a normalized Nash equilibrium ⇐⇒ x
∗

is a fixed point of yα, i.e. x
∗

= yα(x
∗
)

⇐⇒ x
∗

is a solution of Fα(x) = 0,

where Fα(x) := x− yα(x). Apply a (suitable!) nonsmooth Newton method to the nonlinear system

of equations Fα(x) = 0:

x
k+1

:= x
k −H−1

k Fα(x
k
) ∀k = 0, 1, 2, . . . with Hk ≈ F ′α(x

k
).

Then

. The method is locally quadratically convergent under very weak assumptions.

. The method finds the exact solution locally in just one iteration for quadratic games.
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Numerical Results: River Basin Pollution Game

This test problem is the river basin pollution game taken from Krawczyk and Uryasev (Environmental

Modeling and Assessment 5, 2000, pp. 63–73). The cost functions are quadratic with linear constraints.

The assumptions for convergence are satisfied.

k xk1 xk2 xk3
‚‚yα(xk)− xk

‚‚ InnerIt

0 10.000000 10.000000 10.000000 12.0479757781438828 0

1 21.144791 16.027846 2.725969 0.0000000000000000 6
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Numerical Results: Internet Switching Model

This test problem is an internet switching model introduced by Kesselman et al. and also analysed by

Facchinei et al. We modify this example slightly and add the additional constraint xν ≥ 0.01, ν =

1, . . . , N and use N = 10 players.

k xk1 xk2
‚‚yα(xk)− xk

‚‚ InnerIt

0 0.100000 0.100000 0.1622713514699797 0

1 0.090238 0.090238 0.0037589337871505 4

2 0.090000 0.090000 0.0000000000000000 3
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Numerical Results: Oligopoly Model

This is the Cournot oligopoly problem with shared constraints and nonlinear cost functions as described

in Outrata, Kocvara, and Zowe (1998). We use the parameter P = 100 (total production activity).

k xk1 xk2 xk3 xk4 xk5
‚‚yα(xk)− xk

‚‚ InnerIt

0 10.000000 10.000000 10.000000 10.000000 10.000000 22.5856681233344716 0

1 14.742243 17.889842 20.649363 22.776440 23.942112 0.5830566903965523 7

2 14.050339 17.798223 20.907147 23.111451 24.132840 0.0002091129151843 5

3 14.050091 17.798381 20.907187 23.111428 24.132914 0.0000000000000000 2
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Summary

. We presented two smooth optimization reformulations of normalized NE
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Summary

. We presented two smooth optimization reformulations of normalized NE

. We presented two nonsmooth optimization reformulations of NE

. We gave a fixed-point formulation of normalized NE and re-interpreted the relaxation method as a

descent method.
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Summary

. We presented two smooth optimization reformulations of normalized NE

. We presented two nonsmooth optimization reformulations of NE

. We gave a fixed-point formulation of normalized NE and re-interpreted the relaxation method as a

descent method.

. We gave a nonsmooth Newton-type method for the computation of normalized NE.
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Many thanks for your attention!
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