Generalized Nash Equilibrium Problems

Christian Kanzow
Joint work with Anna von Heusinger, Axel Dreves, and Masao Fukushima

The Nash Equilibrium Problem: Definition

A Nash equilibrium problem (NEP) consists of

The Nash Equilibrium Problem: Definition

A Nash equilibrium problem (NEP) consists of
\triangleright a finite number N of players

The Nash Equilibrium Problem: Definition

A Nash equilibrium problem (NEP) consists of
\triangleright a finite number N of players
\triangleright the cost functions θ_{ν} of player $\nu, \nu=1, \ldots, N$

The Nash Equilibrium Problem: Definition

A Nash equilibrium problem (NEP) consists of
\triangleright a finite number N of players
\triangleright the cost functions θ_{ν} of player $\nu, \nu=1, \ldots, N$
\triangleright the strategy sets X_{ν} of player $\nu, \nu=1, \ldots, N$.

The Nash Equilibrium Problem: Definition

A Nash equilibrium problem (NEP) consists of
\triangleright a finite number N of players
\triangleright the cost functions θ_{ν} of player $\nu, \nu=1, \ldots, N$
\triangleright the strategy sets X_{ν} of player $\nu, \nu=1, \ldots, N$.
A vector $x^{*}=\left(x^{*, 1}, x^{*, 2}, \ldots, x^{*, N}\right) \in X_{1} \times X_{2} \times \ldots \times X_{N}$ is called a Nash equilibrium (or simply a solution) of the NEP if

$$
\theta_{\nu}\left(x^{*}\right) \leq \theta_{\nu}\left(x^{*, 1}, \ldots, x^{*, \nu-1}, x^{\nu}, x^{*, \nu+1}, \ldots, x^{*, N}\right) \quad \forall x^{\nu} \in X_{\nu}
$$

holds for all $\nu=1, \ldots, N$.

The Nash Equilibrium Problem: Comments

Notation: Write $\left(x^{\nu}, x^{-\nu}\right):=\left(x^{1}, \ldots, x^{\nu-1}, x^{\nu}, x^{\nu+1}, \ldots, x^{N}\right)$

The Nash Equilibrium Problem: Comments

Notation: Write $\left(x^{\nu}, x^{-\nu}\right):=\left(x^{1}, \ldots, x^{\nu-1}, x^{\nu}, x^{\nu+1}, \ldots, x^{N}\right)$
$\triangleright x^{*}$ is a Nash equilibrium if and only if $x^{*, \nu}$ solves the minimization problem

$$
\min _{x^{\nu}} \theta_{\nu}\left(x^{\nu}, x^{*,-\nu}\right) \quad \text { s.t. } \quad x^{\nu} \in X_{\nu}
$$

for all $\nu=1, \ldots, N$.

The Nash Equilibrium Problem: Comments

Notation: Write $\left(x^{\nu}, x^{-\nu}\right):=\left(x^{1}, \ldots, x^{\nu-1}, x^{\nu}, x^{\nu+1}, \ldots, x^{N}\right)$
$\triangleright x^{*}$ is a Nash equilibrium if and only if $x^{*, \nu}$ solves the minimization problem

$$
\min _{x^{\nu}} \theta_{\nu}\left(x^{\nu}, x^{*,-\nu}\right) \quad \text { s.t. } \quad x^{\nu} \in X_{\nu}
$$

for all $\nu=1, \ldots, N$.
$\triangleright x^{*}$ is a Nash equilibrium if and only if no player can improve his cost function by unilaterally changing his strategy.

Generalized Nash Equilibrium Problem: Definition

A generalized Nash equilibrium problem (GNEP) consists of

Generalized Nash Equilibrium Problem: Definition

A generalized Nash equilibrium problem (GNEP) consists of
\triangleright a finite number N of players

Generalized Nash Equilibrium Problem: Definition

A generalized Nash equilibrium problem (GNEP) consists of
\triangleright a finite number N of players
\triangleright cost functions θ_{ν} for each player $\nu, \nu=1, \ldots, N$

Generalized Nash Equilibrium Problem: Definition

A generalized Nash equilibrium problem (GNEP) consists of
\triangleright a finite number N of players
\triangleright cost functions θ_{ν} for each player $\nu, \nu=1, \ldots, N$
\triangleright a common strategy set $X \subseteq \mathbb{R}^{n}$ (usually supposed to be nonempty, closed, and convex).

Generalized Nash Equilibrium Problem: Definition

A generalized Nash equilibrium problem (GNEP) consists of
\triangleright a finite number N of players
\triangleright cost functions θ_{ν} for each player $\nu, \nu=1, \ldots, N$
\triangleright a common strategy set $X \subseteq \mathbb{R}^{n}$ (usually supposed to be nonempty, closed, and convex).
A vector $x^{*}=\left(x^{*, 1}, x^{*, 2}, \ldots, x^{*, N}\right) \in X$ is called a (generalized) Nash equilibrium (or simply a solution) of the GNEP if

$$
\theta_{\nu}\left(x^{*}\right) \leq \theta_{\nu}\left(x^{*, 1}, \ldots, x^{*, \nu-1}, x^{\nu}, x^{*, \nu+1}, \ldots, x^{*, N}\right) \quad \forall x^{\nu}:\left(x^{\nu}, x^{*,-\nu}\right) \in X
$$

holds for all $\nu=1, \ldots, N$.

Generalized Nash Equilibrium Problems: Comments

$\triangleright x^{*}$ is a generalized Nash equilibrium if and only if $x^{*, \nu}$ solves the optimization problem

$$
\min _{x^{\nu}} \theta_{\nu}\left(x^{\nu}, x^{*,-\nu}\right) \quad \text { s.t. } \quad x^{\nu}:\left(x^{\nu}, x^{*,-\nu}\right) \in X
$$

for all $\nu=1, \ldots, N$.

Generalized Nash Equilibrium Problems: Comments

$\triangleright x^{*}$ is a generalized Nash equilibrium if and only if $x^{*, \nu}$ solves the optimization problem

$$
\min _{x^{\nu}} \theta_{\nu}\left(x^{\nu}, x^{*,-\nu}\right) \quad \text { s.t. } \quad x^{\nu}:\left(x^{\nu}, x^{*,-\nu}\right) \in X
$$

for all $\nu=1, \ldots, N$.
\triangleright The feasible set of player ν, i.e.,

$$
X_{\nu}\left(x^{-\nu}\right):=\left\{x^{\nu} \mid\left(x^{\nu}, x^{-\nu}\right) \in X\right\}
$$

depends on the decisions $x^{-\nu}$ taken by the other players.

Generalized Nash Equilibrium Problems: Comments

$\triangleright x^{*}$ is a generalized Nash equilibrium if and only if $x^{*, \nu}$ solves the optimization problem

$$
\min _{x^{\nu}} \theta_{\nu}\left(x^{\nu}, x^{*,-\nu}\right) \quad \text { s.t. } \quad x^{\nu}:\left(x^{\nu}, x^{*,-\nu}\right) \in X
$$

for all $\nu=1, \ldots, N$.
\triangleright The feasible set of player ν, i.e.,

$$
X_{\nu}\left(x^{-\nu}\right):=\left\{x^{\nu} \mid\left(x^{\nu}, x^{-\nu}\right) \in X\right\}
$$

depends on the decisions $x^{-\nu}$ taken by the other players.
\triangleright If $X=X_{1} \times \ldots \times X_{N}$, the GNEP reduces to a standard NEP.

Generalized Nash Equilibrium Problems: Comments

$\triangleright x^{*}$ is a generalized Nash equilibrium if and only if $x^{*, \nu}$ solves the optimization problem

$$
\min _{x^{\nu}} \theta_{\nu}\left(x^{\nu}, x^{*,-\nu}\right) \quad \text { s.t. } \quad x^{\nu}:\left(x^{\nu}, x^{*,-\nu}\right) \in X
$$

for all $\nu=1, \ldots, N$.
\triangleright The feasible set of player ν, i.e.,

$$
X_{\nu}\left(x^{-\nu}\right):=\left\{x^{\nu} \mid\left(x^{\nu}, x^{-\nu}\right) \in X\right\}
$$

depends on the decisions $x^{-\nu}$ taken by the other players.
\triangleright If $X=X_{1} \times \ldots \times X_{N}$, the GNEP reduces to a standard NEP.

- The so-called normalized Nash equilibria form a subset of the set of all solutions of a GNEP. This set coincides with the set of all solutions in case the GNEP is a standard NEP.

Generalized Nash Equilibrium Problems: Applications

\triangleright Oligopoly models using joint resources

Generalized Nash Equilibrium Problems: Applications

\triangleright Oligopoly models using joint resources
\triangleright Network problems with capacity constraints

Generalized Nash Equilibrium Problems: Applications

\triangleright Oligopoly models using joint resources
\triangleright Network problems with capacity constraints
\triangleright Environmental models (as formulated in the Kyoto protocol)

Generalized Nash Equilibrium Problems: Applications

\triangleright Oligopoly models using joint resources
\triangleright Network problems with capacity constraints
\triangleright Environmental models (as formulated in the Kyoto protocol)

- First GNEP models introduced by Debreu (1952), Arrow and Debreu (1954), Rosen (1965)

Generalized Nash Equilibrium Problems: Applications

\triangleright Oligopoly models using joint resources
\triangleright Network problems with capacity constraints
\triangleright Environmental models (as formulated in the Kyoto protocol)
\triangleright First GNEP models introduced by Debreu (1952), Arrow and Debreu (1954), Rosen (1965)
\triangleright Alternative names for a GNEP: pseudo-game, social equilibrium problem, equilibrium programming, coupled constraint equilibrium problem, abstract economy

Assumptions

Throughout, we assume that the GNEP satisfies the following assumptions:
\triangleright The cost functions θ_{ν} are continuous (later also assumed to be continuously differentiable)

Assumptions

Throughout, we assume that the GNEP satisfies the following assumptions:
\triangleright The cost functions θ_{ν} are continuous (later also assumed to be continuously differentiable)
\triangleright The cost functions $\theta_{\nu}\left(\cdot, x^{-\nu}\right)$ are convex as a mapping of x^{ν} alone

Assumptions

Throughout, we assume that the GNEP satisfies the following assumptions:
\triangleright The cost functions θ_{ν} are continuous (later also assumed to be continuously differentiable)
\triangleright The cost functions $\theta_{\nu}\left(\cdot, x^{-\nu}\right)$ are convex as a mapping of x^{ν} alone
\triangleright The common strategy space has a representation of the form

$$
X:=\{x \mid g(x) \leq 0\}
$$

with a function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ whose components g_{i} are convex (later also assumed to be continuously differentiable)

(Regularized) Nikaido-Isoda Function and Merit Function

The Nikaido-Isoda-function of a GNEP (or NEP) is defined by

$$
\Psi(x, y):=\sum_{\nu=1}^{N}\left[\theta_{\nu}\left(x^{\nu}, x^{-\nu}\right)-\theta_{\nu}\left(y^{\nu}, x^{-\nu}\right)\right]
$$

(Regularized) Nikaido-Isoda Function and Merit Function

The Nikaido-Isoda-function of a GNEP (or NEP) is defined by

$$
\Psi(x, y):=\sum_{\nu=1}^{N}\left[\theta_{\nu}\left(x^{\nu}, x^{-\nu}\right)-\theta_{\nu}\left(y^{\nu}, x^{-\nu}\right)\right]
$$

Given a parameter $\alpha>0$, the corresponding regularized Nikaido-Isoda-function is defined by

$$
\Psi_{\alpha}(x, y)=\sum_{\nu=1}^{N}\left[\theta_{\nu}\left(x^{\nu}, x^{-\nu}\right)-\theta_{\nu}\left(y^{\nu}, x^{-\nu}\right)-\frac{\alpha}{2}\left\|x^{\nu}-y^{\nu}\right\|^{2}\right]
$$

(Regularized) Nikaido-Isoda Function and Merit Function

The Nikaido-Isoda-function of a GNEP (or NEP) is defined by

$$
\Psi(x, y):=\sum_{\nu=1}^{N}\left[\theta_{\nu}\left(x^{\nu}, x^{-\nu}\right)-\theta_{\nu}\left(y^{\nu}, x^{-\nu}\right)\right]
$$

Given a parameter $\alpha>0$, the corresponding regularized Nikaido-Isoda-function is defined by

$$
\Psi_{\alpha}(x, y)=\sum_{\nu=1}^{N}\left[\theta_{\nu}\left(x^{\nu}, x^{-\nu}\right)-\theta_{\nu}\left(y^{\nu}, x^{-\nu}\right)-\frac{\alpha}{2}\left\|x^{\nu}-y^{\nu}\right\|^{2}\right] .
$$

Let

$$
V_{\alpha}(x):=\max _{y \in X} \Psi_{\alpha}(x, y)=\Psi_{\alpha}\left(x, y_{\alpha}(x)\right)
$$

where

$$
y_{\alpha}(x):=\operatorname{argmax}_{y \in X} \Psi_{\alpha}(x, y)
$$

denotes the uniquely defined maximizer.

Constrained Optimization Reformulations of Normalized Nash Equilibria

The mapping V_{α} has the following properties:
$\triangleright V_{\alpha}$ is continuously differentiable.

Constrained Optimization Reformulations of Normalized Nash Equilibria

The mapping V_{α} has the following properties:
$\triangleright V_{\alpha}$ is continuously differentiable.
$\triangleright V_{\alpha}(x) \geq 0$ for all $x \in X$.

Constrained Optimization Reformulations of Normalized Nash Equilibria

The mapping V_{α} has the following properties:
$\triangleright V_{\alpha}$ is continuously differentiable.
$\triangleright V_{\alpha}(x) \geq 0$ for all $x \in X$.
$\triangleright V_{\alpha}\left(x^{*}\right)=0$ if and only if x^{*} is a normalized Nash equilibrium.

Constrained Optimization Reformulations of Normalized Nash Equilibria

The mapping V_{α} has the following properties:
$\triangleright V_{\alpha}$ is continuously differentiable.
$\triangleright V_{\alpha}(x) \geq 0$ for all $x \in X$.
$\triangleright V_{\alpha}\left(x^{*}\right)=0$ if and only if x^{*} is a normalized Nash equilibrium.
\triangleright Hence x^{*} is a normalized Nash equilibrium if and only if it solves the optimization problem

$$
\min V_{\alpha}(x) \text { subject to } x \in X
$$

with $V_{\alpha}\left(x^{*}\right)=0$.

Unconstrained Optimization Reformulations of Normalized Nash Equilibria

Let $0<\alpha<\beta$ be given and define the corresponding functions V_{α}, V_{β} as before. Let

$$
V_{\alpha \beta}(x):=V_{\alpha}(x)-V_{\beta}(x)
$$

Unconstrained Optimization Reformulations of Normalized Nash Equilibria

Let $0<\alpha<\beta$ be given and define the corresponding functions V_{α}, V_{β} as before. Let

$$
V_{\alpha \beta}(x):=V_{\alpha}(x)-V_{\beta}(x)
$$

Then
$\triangleright V_{\alpha \beta}$ is continuously differentiable.

Unconstrained Optimization Reformulations of Normalized Nash Equilibria

Let $0<\alpha<\beta$ be given and define the corresponding functions V_{α}, V_{β} as before. Let

$$
V_{\alpha \beta}(x):=V_{\alpha}(x)-V_{\beta}(x)
$$

Then
$\triangleright V_{\alpha \beta}$ is continuously differentiable.
$\triangleright V_{\alpha \beta}(x) \geq 0$ for all $x \in \mathbb{R}^{n}$.

Unconstrained Optimization Reformulations of Normalized Nash Equilibria

Let $0<\alpha<\beta$ be given and define the corresponding functions V_{α}, V_{β} as before. Let

$$
V_{\alpha \beta}(x):=V_{\alpha}(x)-V_{\beta}(x)
$$

Then
$\triangleright V_{\alpha \beta}$ is continuously differentiable.
$\triangleright V_{\alpha \beta}(x) \geq 0$ for all $x \in \mathbb{R}^{n}$.
$\triangleright V_{\alpha \beta}\left(x^{*}\right)=0$ if and only if x^{*} is a normalized Nash equilibrium.

Unconstrained Optimization Reformulations of Normalized Nash Equilibria

Let $0<\alpha<\beta$ be given and define the corresponding functions V_{α}, V_{β} as before. Let

$$
V_{\alpha \beta}(x):=V_{\alpha}(x)-V_{\beta}(x)
$$

Then
$\triangleright V_{\alpha \beta}$ is continuously differentiable.
$\triangleright V_{\alpha \beta}(x) \geq 0$ for all $x \in \mathbb{R}^{n}$.
$\triangleright V_{\alpha \beta}\left(x^{*}\right)=0$ if and only if x^{*} is a normalized Nash equilibrium.
\triangleright Hence x^{*} is a normalized Nash equilibrium if and only if it solves the unconstrained optimization problem

$$
\min V_{\alpha \beta}(x), \quad x \in \mathbb{R}^{n},
$$

with $V_{\alpha \beta}\left(x^{*}\right)=0$.

Modified Merit Function

Let $\alpha>0$ be a given parameter. Recall the definition of the regularized Nikaido-Isoda-function

$$
\Psi_{\alpha}(x, y)=\sum_{\nu=1}^{N}\left[\theta_{\nu}\left(x^{\nu}, x^{-\nu}\right)-\theta_{\nu}\left(y^{\nu}, x^{-\nu}\right)-\frac{\alpha}{2}\left\|x^{\nu}-y^{\nu}\right\|^{2}\right]
$$

and the corresponding merit function

$$
V_{\alpha}(x):=\max _{y \in X} \Psi_{\alpha}(x, y)=\Psi_{\alpha}\left(x, y_{\alpha}(x)\right)
$$

Now define the modified merit function

Modified Merit Function

Let $\alpha>0$ be a given parameter. Recall the definition of the regularized Nikaido-Isoda-function

$$
\Psi_{\alpha}(x, y)=\sum_{\nu=1}^{N}\left[\theta_{\nu}\left(x^{\nu}, x^{-\nu}\right)-\theta_{\nu}\left(y^{\nu}, x^{-\nu}\right)-\frac{\alpha}{2}\left\|x^{\nu}-y^{\nu}\right\|^{2}\right]
$$

and the corresponding merit function

$$
V_{\alpha}(x):=\max _{y \in X} \Psi_{\alpha}(x, y)=\Psi_{\alpha}\left(x, y_{\alpha}(x)\right)
$$

Now define the modified merit function

$$
\hat{V}_{\alpha}(x):=\max _{y \in \Omega(x)} \Psi_{\alpha}(x, y)=\Psi_{\alpha}\left(x, \hat{y}_{\alpha}(x)\right)
$$

where

$$
\hat{y}_{\alpha}(x):=\operatorname{argmax}_{y \in \Omega(x)} \Psi_{\alpha}(x, y)
$$

and

$$
\Omega(x):=X_{1}\left(x^{-1}\right) \times \ldots \times X_{N}\left(x^{-N}\right)
$$

Constrained Optimization Reformulations of All Nash Equilibria

The mapping \hat{V}_{α} has the following properties:
$\triangleright \hat{V}_{\alpha}$ in general nondifferentiable.

Constrained Optimization Reformulations of All Nash Equilibria

The mapping \hat{V}_{α} has the following properties:
$\triangleright \hat{V}_{\alpha}$ in general nondifferentiable.
$\triangleright \hat{V}_{\alpha}(x) \geq 0$ for all $x \in X$.

Constrained Optimization Reformulations of All Nash Equilibria

The mapping \hat{V}_{α} has the following properties:
$\triangleright \hat{V}_{\alpha}$ in general nondifferentiable.
$\triangleright \hat{V}_{\alpha}(x) \geq 0$ for all $x \in X$.
$\triangleright \hat{V}_{\alpha}\left(x^{*}\right)=0$ if and only if x^{*} is a Nash equilibrium.

Constrained Optimization Reformulations of All Nash Equilibria

The mapping \hat{V}_{α} has the following properties:
$\triangleright \hat{V}_{\alpha}$ in general nondifferentiable.
$\triangleright \hat{V}_{\alpha}(x) \geq 0$ for all $x \in X$.
$\triangleright \hat{V}_{\alpha}\left(x^{*}\right)=0$ if and only if x^{*} is a Nash equilibrium.
\triangleright Hence x^{*} is a Nash equilibrium if and only if it solves the optimization problem

$$
\min \hat{V}_{\alpha}(x) \text { subject to } x \in X
$$

with $\hat{V}_{\alpha}\left(x^{*}\right)=0$.

Unconstrained Optimization Reformulations of All Nash Equilibria

Natural idea: Let $0<\alpha<\beta$ be given, define the corresponding functions $\hat{V}_{\alpha}, \hat{V}_{\beta}$ as before. Let

$$
\hat{V}_{\alpha \beta}(x):=\hat{V}_{\alpha}(x)-\hat{V}_{\beta}(x)
$$

Unconstrained Optimization Reformulations of All Nash Equilibria

Natural idea: Let $0<\alpha<\beta$ be given, define the corresponding functions $\hat{V}_{\alpha}, \hat{V}_{\beta}$ as before. Let

$$
\hat{V}_{\alpha \beta}(x):=\hat{V}_{\alpha}(x)-\hat{V}_{\beta}(x)
$$

Then
$\triangleright \hat{V}_{\alpha \beta}$ in general nondifferentiable.

Unconstrained Optimization Reformulations of All Nash Equilibria

Natural idea: Let $0<\alpha<\beta$ be given, define the corresponding functions $\hat{V}_{\alpha}, \hat{V}_{\beta}$ as before. Let

$$
\hat{V}_{\alpha \beta}(x):=\hat{V}_{\alpha}(x)-\hat{V}_{\beta}(x)
$$

Then
$\triangleright \hat{V}_{\alpha \beta}$ in general nondifferentiable.
$\triangleright \hat{V}_{\alpha \beta}(x) \geq 0$ for all $x \in \mathbb{R}^{n}$.

Unconstrained Optimization Reformulations of All Nash Equilibria

Natural idea: Let $0<\alpha<\beta$ be given, define the corresponding functions $\hat{V}_{\alpha}, \hat{V}_{\beta}$ as before. Let

$$
\hat{V}_{\alpha \beta}(x):=\hat{V}_{\alpha}(x)-\hat{V}_{\beta}(x)
$$

Then
$\triangleright \hat{V}_{\alpha \beta}$ in general nondifferentiable.
$\triangleright \hat{V}_{\alpha \beta}(x) \geq 0$ for all $x \in \mathbb{R}^{n}$.
$\triangleright \hat{V}_{\alpha \beta}\left(x^{*}\right)=0$ if and only if x^{*} is a Nash equilibrium.

Unconstrained Optimization Reformulations of All Nash Equilibria

Natural idea: Let $0<\alpha<\beta$ be given, define the corresponding functions $\hat{V}_{\alpha}, \hat{V}_{\beta}$ as before. Let

$$
\hat{V}_{\alpha \beta}(x):=\hat{V}_{\alpha}(x)-\hat{V}_{\beta}(x)
$$

Then
$\triangleright \hat{V}_{\alpha \beta}$ in general nondifferentiable.
$\triangleright \hat{V}_{\alpha \beta}(x) \geq 0$ for all $x \in \mathbb{R}^{n}$.
$\triangleright \hat{V}_{\alpha \beta}\left(x^{*}\right)=0$ if and only if x^{*} is a Nash equilibrium.
\triangleright Hence x^{*} is a Nash equilibrium if and only if it solves the unconstrained optimization problem

$$
\min \hat{V}_{\alpha \beta}(x), \quad x \in \mathbb{R}^{n}
$$

with $\hat{V}_{\alpha \beta}\left(x^{*}\right)=0$.

Unconstrained Optimization Reformulation Not Well-Defined

But: If $x \notin X$, then $\Omega(x)$ might be empty. Hence $\hat{V}_{\alpha}(x), \hat{V}_{\beta}(x)$ and $\hat{V}_{\alpha \beta}(x)$ are not necessarily defined in this case!!!

Unconstrained Optimization Reformulation Not Well-Defined

But: If $x \notin X$, then $\Omega(x)$ might be empty. Hence $\hat{V}_{\alpha}(x), \hat{V}_{\beta}(x)$ and $\hat{V}_{\alpha \beta}(x)$ are not necessarily defined in this case!!!

Solution: All previous results remain true if we redefine $\hat{V}_{\alpha}(x), \hat{V}_{\beta}(x)$ and $\hat{V}_{\alpha \beta}(x)$ in the following way for the unconstrained reformulation:

$$
\begin{aligned}
\hat{V}_{\alpha}(x) & :=\max _{y \in \Omega\left(P_{X}(x)\right)} \Psi_{\alpha}(x, y) \\
\hat{V}_{\beta}(x) & :=\max _{y \in \Omega\left(P_{X}(x)\right)} \Psi_{\beta}(x, y) \\
\hat{V}_{\alpha \beta}(x) & :=\hat{V}_{\alpha}(x)-\hat{V}_{\beta}(x)
\end{aligned}
$$

Numerical Example for Unconstrained Nonsmooth Reformulation

Example 1: $\left\{(\alpha, 1-\alpha) \left\lvert\, \alpha \in\left[\frac{1}{2}, 1\right]\right.\right\} \quad$ Example 2: $\{(5,9)\} \cup\{(\alpha, 15-\alpha) \mid \alpha \in[9,10]\}$

Numerical Example for Unconstrained Nonsmooth Reformulation

Example 3: $\left\{(\alpha, 1-\alpha) \left\lvert\, \alpha \in\left[0, \frac{2}{3}\right]\right.\right\}$

Example 4: $\left\{\left(\alpha, \sqrt{1-\alpha^{2}}\right) \left\lvert\, \alpha \in\left[0, \frac{4}{5}\right]\right.\right\}$

Fixed Point Characterization of Normalized Nash Equilibria

Recall that

$$
\Psi_{\alpha}(x, y)=\sum_{\nu=1}^{N}\left[\theta_{\nu}\left(x^{\nu}, x^{-\nu}\right)-\theta_{\nu}\left(y^{\nu}, x^{-\nu}\right)-\frac{\alpha}{2}\left\|x^{\nu}-y^{\nu}\right\|^{2}\right] .
$$

and

$$
y_{\alpha}(x):=\operatorname{argmax}_{y \in X} \Psi_{\alpha}(x, y)
$$

Fixed Point Characterization of Normalized Nash Equilibria

Recall that

$$
\Psi_{\alpha}(x, y)=\sum_{\nu=1}^{N}\left[\theta_{\nu}\left(x^{\nu}, x^{-\nu}\right)-\theta_{\nu}\left(y^{\nu}, x^{-\nu}\right)-\frac{\alpha}{2}\left\|x^{\nu}-y^{\nu}\right\|^{2}\right] .
$$

and

$$
y_{\alpha}(x):=\operatorname{argmax}_{y \in X} \Psi_{\alpha}(x, y)
$$

Then
x^{*} is a normalized Nash equilibrium $\Longleftrightarrow x^{*}$ is a fixed point of the mapping y_{α}, i.e. $y_{\alpha}\left(x^{*}\right)=x^{*}$.

Fixed Point Characterization of Normalized Nash Equilibria

Recall that

$$
\Psi_{\alpha}(x, y)=\sum_{\nu=1}^{N}\left[\theta_{\nu}\left(x^{\nu}, x^{-\nu}\right)-\theta_{\nu}\left(y^{\nu}, x^{-\nu}\right)-\frac{\alpha}{2}\left\|x^{\nu}-y^{\nu}\right\|^{2}\right]
$$

and

$$
y_{\alpha}(x):=\operatorname{argmax}_{y \in X} \Psi_{\alpha}(x, y)
$$

Then
x^{*} is a normalized Nash equilibrium $\Longleftrightarrow x^{*}$ is a fixed point of the mapping y_{α}, i.e. $y_{\alpha}\left(x^{*}\right)=x^{*}$.
Note that the corresponding fixed point iteration (Picard iteration)

$$
x^{k+1}:=y_{\alpha}\left(x^{k}\right), \quad k=0,1,2, \ldots
$$

is, usually, not convergent even under very favourable assumptions.

Relaxation Method

Modification of the Picard fixed point iteration leads to the Relaxation method by Uryasev and Rubinstein (1994):

Choose $\alpha=0$ and

$$
x^{k+1}:=t_{k} y_{\alpha}\left(x^{k}\right)+\left(1-t_{k}\right) x^{k}, \quad k=0,1,2, \ldots
$$

Convergence shown under a number of (difficult to verify) assumptions provided that

$$
t_{k} \downarrow 0 \quad \text { and } \quad \sum_{k=0}^{\infty} t_{k}=\infty
$$

Relaxation Method

Modification of the Picard fixed point iteration leads to the Relaxation method by Uryasev and Rubinstein (1994):

Choose $\alpha=0$ and

$$
x^{k+1}:=t_{k} y_{\alpha}\left(x^{k}\right)+\left(1-t_{k}\right) x^{k}, \quad k=0,1,2, \ldots
$$

Convergence shown under a number of (difficult to verify) assumptions provided that

$$
t_{k} \downarrow 0 \quad \text { and } \quad \sum_{k=0}^{\infty} t_{k}=\infty
$$

Comment: The natural choice $t_{k}:=1 /(k+1)$ gives very slow convergence in practice. Other modifications exists which are either very expensive to compute or still have some heuristics in it.

Relaxation Method Viewed as Descent Method

Take $\alpha>0$. The relaxation method

$$
x^{k+1}:=t_{k} y_{\alpha}\left(x^{k}\right)+\left(1-t_{k}\right) x^{k}, \quad k=0,1,2, \ldots
$$

can be rewritten as

$$
x^{k+1}:=x^{k}+t_{k} d^{k}, \quad k=0,1,2, \ldots
$$

with the direction vector

$$
d^{k}:=y_{\alpha}\left(x^{k}\right)-x^{k}, \quad k=0,1,2, \ldots
$$

Relaxation Method Viewed as Descent Method

Take $\alpha>0$. The relaxation method

$$
x^{k+1}:=t_{k} y_{\alpha}\left(x^{k}\right)+\left(1-t_{k}\right) x^{k}, \quad k=0,1,2, \ldots
$$

can be rewritten as

$$
x^{k+1}:=x^{k}+t_{k} d^{k}, \quad k=0,1,2, \ldots
$$

with the direction vector

$$
d^{k}:=y_{\alpha}\left(x^{k}\right)-x^{k}, \quad k=0,1,2, \ldots
$$

Under suitable (definiteness) assumptions, d^{k} has the descent property

$$
\nabla V_{\alpha}\left(x^{k}\right)^{T} d^{k}<0
$$

Hence t_{k} can be chosen by an inexact (Armijo-type) line search rule.

Relaxation Method with Inexact Line Search

(S.0) Choose $x^{0} \in X, \beta, \sigma \in(0,1)$, and set $k:=0$.

Relaxation Method with Inexact Line Search

(S.0) Choose $x^{0} \in X, \beta, \sigma \in(0,1)$, and set $k:=0$.
(S.1) Check a suitable termination criterion (like $V_{\alpha}\left(x^{k}\right) \leq \varepsilon$ for some $\varepsilon>0$).

Relaxation Method with Inexact Line Search

(S.0) Choose $x^{0} \in X, \beta, \sigma \in(0,1)$, and set $k:=0$.
(S.1) Check a suitable termination criterion (like $V_{\alpha}\left(x^{k}\right) \leq \varepsilon$ for some $\varepsilon>0$).
(S.2) Compute $y_{\alpha}\left(x^{k}\right)$ and set $d^{k}:=y_{\alpha}\left(x^{k}\right)-x^{k}$.

Relaxation Method with Inexact Line Search

(S.0) Choose $x^{0} \in X, \beta, \sigma \in(0,1)$, and set $k:=0$.
(S.1) Check a suitable termination criterion (like $V_{\alpha}\left(x^{k}\right) \leq \varepsilon$ for some $\varepsilon>0$).
(S.2) Compute $y_{\alpha}\left(x^{k}\right)$ and set $d^{k}:=y_{\alpha}\left(x^{k}\right)-x^{k}$.
(S.3) Compute $t_{k}=\max \left\{\beta^{l} \mid l=0,1,2, \ldots\right\}$ such that

$$
V_{\alpha}\left(x^{k}+t_{k} d^{k}\right) \leq V_{\alpha}\left(x^{k}\right)-\sigma t_{k}^{2}\left\|d^{k}\right\|
$$

Relaxation Method with Inexact Line Search

(S.0) Choose $x^{0} \in X, \beta, \sigma \in(0,1)$, and set $k:=0$.
(S.1) Check a suitable termination criterion (like $V_{\alpha}\left(x^{k}\right) \leq \varepsilon$ for some $\varepsilon>0$).
(S.2) Compute $y_{\alpha}\left(x^{k}\right)$ and set $d^{k}:=y_{\alpha}\left(x^{k}\right)-x^{k}$.
(S.3) Compute $t_{k}=\max \left\{\beta^{l} \mid l=0,1,2, \ldots\right\}$ such that

$$
V_{\alpha}\left(x^{k}+t_{k} d^{k}\right) \leq V_{\alpha}\left(x^{k}\right)-\sigma t_{k}^{2}\left\|d^{k}\right\|
$$

(S.4) Set $x^{k+1}:=x^{k}+t_{k} d^{k}, k \longleftarrow k+1$, and go to (S.1).

Convergence Properties

\triangleright The previous algorithm is well-defined (note that a modified and derivative-free Armijo-type rule is used there)

Convergence Properties

\triangleright The previous algorithm is well-defined (note that a modified and derivative-free Armijo-type rule is used there)
\triangleright Every accumulation point of a sequence generated by the algorithm is a normalized Nash equilibrium of the GNEP

Convergence Properties

\triangleright The previous algorithm is well-defined (note that a modified and derivative-free Armijo-type rule is used there)
\triangleright Every accumulation point of a sequence generated by the algorithm is a normalized Nash equilibrium of the GNEP
\triangleright Local rate of convergence unknown, but numerical examples indicate a (relatively) fast linear rate

Numerical Results: River Basin Pollution Game

This test problem is the river basin pollution game taken from Krawczyk and Uryasev (Environmental Modeling and Assessment 5, 2000, pp. 63-73). The cost functions are quadratic with linear constraints. The assumptions for convergence are satisfied.

k	x_{1}^{k}	x_{2}^{k}	x_{3}^{k}	$V_{\alpha}\left(x^{k}\right)$	stepsize
0	0.000000	0.000000	0.000000	90.878301693511	0.000
1	19.325863	17.174698	3.811533	0.118402581670	1.000
2	20.704303	16.105378	3.049526	0.003663469196	1.000
3	21.036699	16.036757	2.808432	0.000213429907	1.000
4	21.118197	16.029540	2.746408	0.000012918766	1.000
5	21.138222	16.028243	2.731024	0.000000789309	1.000
6	21.143173	16.027948	2.727213	0.000000047954	1.000
7	21.144471	16.027877	2.726212	0.000000001927	1.000
8	21.144714	16.027858	2.726025	0.000000000000	1.000

Numerical Results: Internet Switching Model

This test problem is an internet switching model introduced by Kesselman et al. and also analysed by Facchinei et al. We modify this example slightly and add the additional constraint $x^{\nu} \geq 0.01, \nu=$ $1, \ldots, N$ and use $N=10$ players.

k	x_{1}^{k}	x_{2}^{k}	$V_{\alpha}\left(x^{k}\right)$	stepsize
0	0.100000	0.100000	0.026332722333	0.000
1	0.087172	0.087172	0.002241194298	0.250
2	0.090379	0.090379	0.000039775125	0.250
3	0.089905	0.089905	0.000002517609	0.250
4	0.090024	0.090024	0.000000156756	0.250
5	0.089994	0.089994	0.000000010751	0.250
6	0.090002	0.090002	0.000000000671	0.250
7	0.090000	0.090000	0.000000000000	0.250

Numerical Results: Oligopoly Model

This is the Cournot oligopoly problem with shared constraints and nonlinear cost functions as described in Outrata, Kocvara, and Zowe (1998). We use the parameter $P=100$ (total production activity).

k	x_{1}^{k}	x_{2}^{k}	x_{3}^{k}	$V_{\alpha}\left(x^{k}\right)$	stepsize
0	10.000000	10.000000	10.000000	1836.050150600377	0.000
1	17.833057	19.050570	20.189450	4.898567426891	1.000
2	15.207025	18.069382	20.605731	0.389727842587	1.000
3	14.408253	17.849904	20.795588	0.033154445717	1.000
4	14.161948	17.805303	20.868540	0.002976203103	1.000
5	14.085260	17.797975	20.894315	0.000278156683	1.000
6	14.061205	17.797524	20.903000	0.000026779751	1.000
7	14.053616	17.797912	20.905860	0.000002633959	1.000
8	14.051210	17.798178	20.906771	0.000000263170	1.000
9	14.050445	17.798303	20.907059	0.000000026572	1.000
10	14.050201	17.798354	20.907149	0.000000000000	1.000

Newton's Method Based on Fixed Point Formulation

Recall that

$$
\begin{aligned}
x^{*} \text { is a normalized Nash equilibrium } & \Longleftrightarrow x^{*} \text { is a fixed point of } y_{\alpha}, \text { i.e. } x^{*}=y_{\alpha}\left(x^{*}\right) \\
& \Longleftrightarrow x^{*} \text { is a solution of } F_{\alpha}(x)=0,
\end{aligned}
$$

where $F_{\alpha}(x):=x-y_{\alpha}(x)$.

Newton's Method Based on Fixed Point Formulation

Recall that

$$
\begin{aligned}
x^{*} \text { is a normalized Nash equilibrium } & \Longleftrightarrow x^{*} \text { is a fixed point of } y_{\alpha}, \text { i.e. } x^{*}=y_{\alpha}\left(x^{*}\right) \\
& \Longleftrightarrow x^{*} \text { is a solution of } F_{\alpha}(x)=0,
\end{aligned}
$$

where $F_{\alpha}(x):=x-y_{\alpha}(x)$. Apply a (suitable!) nonsmooth Newton method to the nonlinear system of equations $F_{\alpha}(x)=0$:

$$
x^{k+1}:=x^{k}-H_{k}^{-1} F_{\alpha}\left(x^{k}\right) \quad \forall k=0,1,2, \ldots \quad \text { with } \quad H_{k} \approx F_{\alpha}^{\prime}\left(x^{k}\right)
$$

Newton's Method Based on Fixed Point Formulation

Recall that

$$
\begin{aligned}
x^{*} \text { is a normalized Nash equilibrium } & \Longleftrightarrow x^{*} \text { is a fixed point of } y_{\alpha}, \text { i.e. } x^{*}=y_{\alpha}\left(x^{*}\right) \\
& \Longleftrightarrow x^{*} \text { is a solution of } F_{\alpha}(x)=0,
\end{aligned}
$$

where $F_{\alpha}(x):=x-y_{\alpha}(x)$. Apply a (suitable!) nonsmooth Newton method to the nonlinear system of equations $F_{\alpha}(x)=0$:

$$
x^{k+1}:=x^{k}-H_{k}^{-1} F_{\alpha}\left(x^{k}\right) \quad \forall k=0,1,2, \ldots \quad \text { with } \quad H_{k} \approx F_{\alpha}^{\prime}\left(x^{k}\right)
$$

Then
\triangleright The method is locally quadratically convergent under very weak assumptions.

Newton's Method Based on Fixed Point Formulation

Recall that

$$
\begin{aligned}
x^{*} \text { is a normalized Nash equilibrium } & \Longleftrightarrow x^{*} \text { is a fixed point of } y_{\alpha}, \text { i.e. } x^{*}=y_{\alpha}\left(x^{*}\right) \\
& \Longleftrightarrow x^{*} \text { is a solution of } F_{\alpha}(x)=0,
\end{aligned}
$$

where $F_{\alpha}(x):=x-y_{\alpha}(x)$. Apply a (suitable!) nonsmooth Newton method to the nonlinear system of equations $F_{\alpha}(x)=0$:

$$
x^{k+1}:=x^{k}-H_{k}^{-1} F_{\alpha}\left(x^{k}\right) \quad \forall k=0,1,2, \ldots \quad \text { with } \quad H_{k} \approx F_{\alpha}^{\prime}\left(x^{k}\right)
$$

Then
\triangleright The method is locally quadratically convergent under very weak assumptions.
\triangleright The method finds the exact solution locally in just one iteration for quadratic games.

Numerical Results: River Basin Pollution Game

This test problem is the river basin pollution game taken from Krawczyk and Uryasev (Environmental Modeling and Assessment 5, 2000, pp. 63-73). The cost functions are quadratic with linear constraints. The assumptions for convergence are satisfied.

k	x_{1}^{k}	x_{2}^{k}	x_{3}^{k}	$\left\\|y_{\alpha}\left(x^{k}\right)-x^{k}\right\\|$	Innerlt
0	10.000000	10.000000	10.000000	12.0479757781438828	0
1	21.144791	16.027846	2.725969	0.0000000000000000	6

Numerical Results: Internet Switching Model

This test problem is an internet switching model introduced by Kesselman et al. and also analysed by Facchinei et al. We modify this example slightly and add the additional constraint $x^{\nu} \geq 0.01, \nu=$ $1, \ldots, N$ and use $N=10$ players.

k	x_{1}^{k}	x_{2}^{k}	$\left\\|y_{\alpha}\left(x^{k}\right)-x^{k}\right\\|$	Innerlt
0	0.100000	0.100000	0.1622713514699797	0
1	0.090238	0.090238	0.0037589337871505	4
2	0.090000	0.090000	0.0000000000000000	3

Numerical Results: Oligopoly Model

This is the Cournot oligopoly problem with shared constraints and nonlinear cost functions as described in Outrata, Kocvara, and Zowe (1998). We use the parameter $P=100$ (total production activity).

k	x_{1}^{k}	x_{2}^{k}	x_{3}^{k}	x_{4}^{k}	x_{5}^{k}	$\left\\|y_{\alpha}\left(x^{k}\right)-x^{k}\right\\|$	Innerlt
0	10.000000	10.000000	10.000000	10.000000	10.000000	22.5856681233344716	0
1	14.742243	17.889842	20.649363	22.776440	23.942112	0.5830566903965523	7
2	14.050339	17.798223	20.907147	23.111451	24.132840	0.0002091129151843	5
3	14.050091	17.798381	20.907187	23.111428	24.132914	0.0000000000000000	2

Summary

\triangleright We presented two smooth optimization reformulations of normalized NE

Summary

\triangleright We presented two smooth optimization reformulations of normalized NE
\triangleright We presented two nonsmooth optimization reformulations of NE

Summary

\triangleright We presented two smooth optimization reformulations of normalized NE
\triangleright We presented two nonsmooth optimization reformulations of NE
\triangleright We gave a fixed-point formulation of normalized NE and re-interpreted the relaxation method as a descent method.

Summary

\triangleright We presented two smooth optimization reformulations of normalized NE
\triangleright We presented two nonsmooth optimization reformulations of NE
\triangleright We gave a fixed-point formulation of normalized NE and re-interpreted the relaxation method as a descent method.
\triangleright We gave a nonsmooth Newton-type method for the computation of normalized NE.

Many thanks for your attention!

