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SUMMARY 
Seismic data are non-linearly related to model parameters such as seismic velocities. 
However, seismic inversion is usually considered in a linear approximation. Such techniques 
as the Born inversion were recently applied to seismic data. 

Non-linear inversion is more complicated and involves extensive calculations. Non-linear 
inversion was developed in the frame work of an unconstrained optimization procedure. It 
uses as a priori information an initial model and probability distribution functions in the data 
and model spaces (This a priori information is called ‘soft’ bounds). 

In this paper, we propose a new technique for solving a constrained non-linear inversion. 
This technique will allow us to use a priori information not only in terms of ‘soft’ bounds, but 
‘hard‘ bounds as well (usually giving more stable and accurate solutions). 

Non-linear inversion is considered as an iterative procedure which involves a dual 
transform at each iteration. A dual transform allows for considering the problem in terms of 
the Lagrangian multipliers. The number of Lagrangian multipliers is equal to the number of 
available data and thus, significantly reduces the dimension of the problem (this is true for 
underdetermined problems only). However, the most important property of the dual 
transform is that it allows us to consider a constrained problem as an unconstrained problem. 

Another important property is that proper constraints incorporate small-wave numbers in 
the generalized inversion. It is shown that conventional (unconstrained non-linear inversion) 
is a special case of the constrained non-linear inversion developed in this paper if the 
truncation operator is represented by the identity matrix. 

1 INTRODUCTION 

One of the most important problems in geophysics is to map 
geological structures from the recorded data. Data are 
usually measured at the surface of the Earth or in boreholes 
(land survey). In marine seismology, receivers are placed in 
towing arrays or on the seafloor. 

The Earth can be interpreted as a bandpass filter: this 
precludes measuring low-frequency and high-frequency 
responses. In exploration geophysics, for example, we 
usually deal with the data in the range of 5-70Hz which 
means that our data are bandlimited. 

The bandlimitation of the data is the major cause of high 
instabilities when 1-D exact inversion is applied to the 
observed data. Recall that exact inversion requires that the 
source be the Dirac &-function and that there be no 
attenuation in the medium. If the Dirac-type source is used 
in the loss-free 1-D medium, then it is possible to uniquely 
recover the acoustic impedance using, for example, a 
layer-stripping approach (Robinson 1982; Santosa & 
Schwetlick 1982; Bube & Burridge 1983; Yagle & Levy 1984 
among others). It was also established that missing 
low frequencies are responsible for high instabilities, 
whereas missing high frequencies affect the resolution and 

do not cause unstable results (Carrion & Patton 1983; 
Santosa, Symes & Raggio 1985; Gray & Symes 1985). 

Seismic data are usually corrupted with noise which leads 
to unstable results especially if the seismic wavelet is not 
minimum-phase (Carrion 1987). 

If we consider a layered medium, then instead of one 
experiment with a point source, we can consider a number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of plane-wave experiments with different angles of 
incidence. This can be done by plane-wave decomposition 
(PWD) or slant stacking (Stoffa et al. 1981; Treitel, 
Gutowski & Wagner 1982; Brysk & McCowan 1986a). PWD 
allows for effective separation of post-critical, critical and 
pre-critical arrivals. 

It was shown that larger offset arrivals fill in missing 
low-frequencies and critical arrivals fill in missing zero- 
frequency (Carrion 1987). Moreover, larger offset data fill in 
missing low-frequencies, so that it becomes possible to 
separately recover density and velocity profiles from a pair 
of experiments with different angles of propagation (Carrion 
1985; Yagle 1985; Santosa & Symes 1985; Brysk & 
McCowan, 1986b). It was shown that the reconstruction of 
densities is poorer than velocities. (Both velocity and 
density profiles have spikes even for perfect data which on 
density profiles are larger than on the velocity profiles.) 
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These spikes can be considered as noise. In order to 
suppress these spurious spikes, a number of pairs of 
plane-wave experiments are used and the results are 
averaged. 

When the medium cannot be presented as a stack of 
homogeneous layers, then inversion becomes much more 
complicated. 

In order to simplify the issue, the problem can be 
linearized and presented as .an inversion of small 
perturbations of the known background velocity. If the 
background velocity is chosen to be constant, then 
linearized inversion and migration become equivalent. In 
particular, a linearized 2.5 inversion with a constant 
background becomes identical to the Stolt migration (Stolt 
1978). Linearized inversion was developed by Cohen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Bleistein (1977) and Bleistein, Cohen & Haigin (1985). 
Linearized multiparameter inversion was recently developed 
by Weglein, Violette & Keho (1986). 

For variable background velocity, Clayton & Stolt (1981) 
introduced a two-step procedure which is based on 
downward extrapolation of the recorded data using a 
downward extrapolation operator based on the WKBJ 
presentation of the wave equation. This operator removes 
the effect of a variable background and pushes reflectors 
located above the new datum level into negative times (an 
important property of downward extrapolation operators). 
However, these operators can handle only pre-critical events 
and are not defined near the turning points of propagating 
plane waves. 

Clayton & Stolt (1981) showed that downward extrapola- 
tion removes the effects of a variable background and 
inversion for velocity and density can then be performed as 
for a constant background. 

Bleistein & Gray (1985) extended the earlier results of 
Cohen & Bleistein to the case of variable background as a 
function of depth. 

The mathematical relation between migration and 
inversion was given by Beylkin (1985) who showed that 
linearized inversion in a high-frequency approximation is 
directly related to the inversion of causal Radon transforms 
(CRT). This means that inversion is also related to 
tomography when we try to reconstruct parameters from 
their projections. Beylkin (1985) showed that migration can 
be presented as the first term of the expansion of Fourier 
integral operators. He also showed that the migration 
operator is able to recover not only the location of 
discontinuities but the magnitudes of these discontinuities. 
This is true under two assumptions: (1) the relation between 
the data and the model can be approximated by the Radon 
transform and (2) complete data (when the object is 
surrounded by receivers with infinitesimal distance between 
geophones). 

Bleistein (1987) generalized Beylkin’s results and showed 
that approximate reflection coefficients can be recovered 
from the Kirchhoff data. His results as well as Beylkin 
derivations are true for high-frequency approximations. 
Parsons (1986) showed that WKBJ reflection coefficients 
typically aproximate true amplitudes very well. 

Carrion (1987) showed that for limited apertures, WKBJ 
reflection coefficient can be improved by using a generalized 
inversion (least-squares data fitting) if these WKBJ 
reflection coefficient are taken as the initial model. 

Chung, Carrion & Beylkin (1987) showed that operators 
derived by Beylkin & Bleistein have an important property 
which is that they do not create images in the wrong 
locations. In other words, wavefront sets of the image and 
the true object partially coincide. This is true for any 
Kirchhoff-type operator. 

Inversion becomes very complicated if it is considered in a 
non-linear framework (see an excellent review paper by 
Stolt & Weglein 1985). 

One of the approaches to solving non-linear inverse 
problems is to invert a Born series for a variable background 
velocity (Weglein 1982). 

Yagle (1986) showed an inversion technique for the 
multidimensional Schrodinger potential. Earlier, Coen, 
Cheney & Weglein (1984) demonstrated an inversion 
technique for a variable density medium based on the 
inversion of the 2-D Marchenko equation developed by 
Cheney (1984). 

Recent work on inversion includes Carrion & VerWest 
(1987) who considered inversion in lossy medium. They 
showed that the quality parameter Q can be uniquely 
recovered from normal incidence seismograms if this 
parameter is frequency independent. 

Meadows & Coen (1986) developed a technique for 
inversion in anisotropic medium. This technique is based on 
the state-space approach developed by Shiva & Mendel 
(1983) and Aminzadeh (1984). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 NON-LINEAR GENERALIZED 
INVERSION 

2.1 Definitions 

Recently, substantial interest in the geophysical community 
was devoted to non-linear generalized inversion. This is also 
explained by the close relation of generalized inversion to 
seismic tomography and migration. 

In particular, Tarantola (1984a) and Lailly (1984) showed 
that linearized least-squares inversion is related to the 
Kirchhoff migration. Carrion (1987) showed that the 
linearized least-squares can be reduced to the Backus- 
Gilbert (B-G) inversion. 

Linearized inversion was very well described by Lines & 
Treitel (1984). Treitel & Lines (1982) established a direct 
relation between linear least-squares and deconvolution. 

Let us consider the elastic wave equation which governs 
the propagation of stress in elastic media: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P(x)u i (x)  = Bi(x) + r i j , j (x) ,  (1) 

where Uj(x) is the ith component of the 3-D displacement 
vector, x E R3 is a coordinate vector in a 3-D space, B is the 
vector of body forces, tij is the stress tensor and p is the 
density of the medium. 

It should be mentioned that equation (1) describes the 
propagation of compressional and shear-waves in elastic 
media. 

For small values of strain, the dependence between stress 
and strain can be presented via Hooke’s law: 

(2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt.. = c. e 
IJ ijkl kI? 

where tij is the stress tensor, ekI is the strain tensor and cijkr 
is the elastic fourth-order tensor which can be expressed 
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(this is true only for isotropic media) through two Lam6 
constants A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp :  

Cijkl' A6ij6kl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ p(6ik6jl + 'i16jk). (3) 

Actually, equation (1) is a non-linear equation with respect 
to the unknown phase velocity of compressional V,(x) and 
shear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,(x) waves which are determined by Lam6 constants: 

and 
7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

v,= #. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

(4) 

Equation (1) can be presented in a non-linear functional 
form 

ui = Ui(ym v,, P I  (6) 

which simply means that the displacement vector in elastic 
media is uniquely defined by the distribution of compres- 
sional velocity, shear velocity and density in the medium 
(for fixed sources). 

If this equation is considered at some surface S where the 
receivers are located, then our problem will be to find V,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ,  
and p from the measured response at the surface. Thus, the 
generalized non-linear elastic inversion is to find all elastic 
parameters from the seismic response measured at a surface 
S(&) and non-linearly related to these parameters via 
equation (6). Recall that for high-frequency approximations 
and small perturbations of parameters, non-linear equation 
(6) reduces to the Radon transform. 

2.2 Least-squares and linear models 

Equation (6) defines the non-linear relation of the 
displacement vector and the medium parameters V,, V ,  and 

P. 
Suppose that we are looking for a solution m 

m=(!) (7) 

which is close enough to the reference model w. Equation 
(6) can then be linearized using the Taylor expansion: 

W m )  ui(W + Fij(mj - m,,d,  (8) 

where Fii is the matrix of FrechCt derivatives (derivatives of 
U with respect to m ) :  

(9) 

Equation (8) can be rewritten as: 

U,(m) = F(m - nb), (10) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUs is the backscattered response associated with the 
perturbed model: 

Us = U ( m )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(m,,). (11) 

The non-linear problem (6) is now linearized and a 
solution m can be found from (10). However, in order to 

solve equation (lo), the inverse of the Frech6t matrix should 
be found. In general, the inverse of F does not exist and 
thus, to find m from (10) is not possible. Instead, we are 
trying to find a generalized solution to (10) using 
least-squares or other norm (for example, L,-norm). In 
least-squares, the mathematics is straightforward and 
moreover, we deal with convex functionals which will 
greatly facilitate the derivation of the main results of this 
paper. Conventional least-squares can be written as: 

E(m) = IlUS - F(m - %>ll~*. (12) 

In order to solve the least-squares problem, the objective 
function E ( * )  should be minimized. This means that we 
should apply V to equation (12) and set it to zero. This is the 
necessary condition for making the objective function 
minimum. This yields: 

FTU, = FTF(m - ano). (13) 

Equation (13) is called the normal equation from which m 
can be estimated (provided that the inverse of the square 
matrix F ~ F  exists). 

2.3 Null vectors 

Minimization of equation (12) will not give us a unique 
solution because of null vectors of the Frech6t matrix F 
which satisfy the following equation: 

F(6m) = 0, (14) 

6m=m-nq,. (15) 

where 

A generalized solution to (12) can be sought in the following 
form: 

6m = am, + cam", (16) 

where m, is a solution which does not correspond to zero 
eigenvalue, m" corresponds to zero eigenvalues and c is a 
constant. It is possible to prove that null vectors are 
perpendicular to m,. For this reason, let us consider the 
following chain of expressions: 

(m", Am,) = (m", Fm,) = (FTm", m,) = 0, (17) 

where A is a non-zero eigenvalue of the Frech6t matrix. This 
means that all solutions to the conventional least-squares are 
located at the hyperplane parallel to the null vector with 
distance from the null vectors being 16m,l. It is also 
important to recall that the objective function in (12) is a 
convex function but not in a strict sense. This means that it 
might have a number of minima which are due to the 
existence of null vectors. 

2.4 The choke of reference velocity 

In order to solve a minimization problem, the reference 
model m, should be chosen. 

If we are solving non-linear problems, then the reference 
model is updated in the course of iterations. 

Let us consider now a kth iteration 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAck represents the noise vector at kth iteration. In this 
equation, Us,k represents the calculated response at the kth 
iteration: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIY,,~(X,,~) denotes the data measured at the location of 
the ith receiver and associated with the model at the kth 
iteration. The Jacobian matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF of the Frech6t derivatives is 
a rectangular matrix of which the column vectors span the 
data space and row vectors span the model space. In 
equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(18), 6mk is a discrete set of values of 
perturbations in the model space: 

Equation (18) is a linear equation and the matrix F can be 
factored using the singular value decomposition (SVD): 

F = DAMT. (21) 

In this equation, D is an N X N matrix, M is an M X M 
matrix and A is a p-diagonal matrix of singular values, 
where p = min (M, N). For underdetermined systems, M is 
larger than N and thus, p = N. 

Symes & Santosa (1987) and Carrion (1987) found that if 
the background reference model has discontinuities, these 
discontinuities add large singular values to the matrix F. If 
the background model produces reflections or multiples, 
then this leads to a significant increase in large singular 
values of the matrix F. Each reflection or multiple adds 
large singular values to the perturbed singular value 
spectrum. When large singular values are added to F by the 
background velocity, results become very inaccurate and 
necessitates a significant number of iterations (Gauss- 
Newton iterations, for example) before any results are 
obtained. Sometimes iterations do not converge at all 
(Carrion 1987). This means that in order to obtain accurate 
results using linearized inversion, the background velocity 
should be chosen in such a way that it does not generate 
reflections and multiples which add large singular values to 
the perturbed model. This will also assure the convergence 
to a generalized solution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.5 ‘Damped’ least-squares 

In order to avoid the problem with null vectors and 
non-uniqueness of a generalized solution, we can modify the 
objective function E: 

In this equation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAL is a positive number and is the so-called 
‘damping’ parameter (see e.g. Lines & Treitel 1984). 

The most important characteristic of the modified 
objective function is that it becomes a convex function in a 
strict sense and thus, has only one minimum (provided that 
A, is not zero). This also guarantees the uniqueness of a 
generalized solution since the minimization of (22) 
eliminates the influence of null vectors. 

‘Damped’ least-squares were used in geophysics to obtain 
generalized solutions. Keys & Weglein (1983) applied the 
generalized inversion to a I-D rpodel. They also showed that 
the linearized least-squares are directly related to the Born 
inversion. 

Keys (1986) showed that results of the generalized 
inversion depend on the value of the ‘damping’ parameter 
AL. Similar results were reported by Foster & Carrion 
(1986) who applied generalized least-squares inversion to 
slant stacks. 

‘Damped’ least-squares are widely used in tomographic 
reconstruction of velocity anomalies (see e.g. Stork & 
Clayton 1985; Fawcett & Clayton 1984; Bishop et al. 1985). 

Suppose now that the reference model generates multiples 
and reflections which we will denote Equation (22) will 
then be modified: 

a m )  = IIU, + U,,B - F6m112,, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, 116m + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6mB112,,. (23) 

The minimization of E in equation (23) leads to the 
following equation 

LW,,, = ( F ~ F  + A,I)Gm,, (24) 

where 6m, is ‘noise’ which appears due to reflections and 
multiples associated with the reference model. We can see 
from this equation that the magnitude of ‘noise’ will depend 
on the operator itself and on the value of the data associated 
with the background model. 

Therefore, for ‘damped’ least-squares, it is also necessary 
to chose the reference background in such a way that it does 
not generate multiples and reflections associated with large 
singular values. 

Another problem with ‘damped’ least-squares is that the 
‘damping’ is undetermined a priori and usually found using 
trial and error techniques. However, a solution strongly 
depends on the choice of this parameter. In geophysics, 
however, we usually chose this parameter as large as 
possible to be sure that a chosen solution is feasible. 

2.6 A priori information 

In this section, we will consider how a priori information can 
be incorporated into the generalized inversion. The idea of 
inversion is to recover the subsurface parameters from the 
recorded data. This is the so-called ‘pure’ inversion. 
However, in a typical geophysical experiment, some 
additional information is always available. For example, in a 
typical marine experiment, we collect the data in terms of 
pressure using towing arrays of hydrophones. The data are 
always corrupted with noise and thus, it is useful to have 
some a priori information in the data space. Along with the 
data space, it is always possible to introduce some a priori 
information in the model space. For example, in a marine 
experiment, the water layer does not support shear-wave, all 
model parameters (velocities and densities) are positive 
defiant and shear-waves velocities at any fixed point of space 
are less than compressional velocities. Besides that, we 
always know high and low bounds of compressional and 
shear velocities. For layered media, these bounds can be 
estimated from conventional velocity analysis using hyper- 
bolic or elliptic moveouts. For more complicated media, low 
and high bounds can be found from migration velocities. 
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The data can be treated as random variable. Random 

variable can be defined by the probability distribution 
function P. If the probability distribution function is known, 
then the variance can be determined from: 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= P U , I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUs - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(Us))*P(U,), (25) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(*) is the expected (mean) value of a random 
variable. Covariance matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACd in the data space is defined 
as : 

c ,  - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI dUs[Us,t - E(Us,l)l[Us,~ - E(us,~)lpd(u~)~ (26) 

In the model space, the covariance matrix can be written as: 

C; = Pm[m. - ~(m,)l[m, - E ~ I P A ~ ) .  (27) 

When we define the probability function P, then variance 
and covariance can be defined. It is conventional to us? the 
term ‘soft’ bounds for determining the probability function 
in the data space or in the model space. When the 
probability function is determined in the model space, this 
will mean that the probability distribution of a solution m in 
the model space is known. This is also an example of a ‘soft’ 
bound. 

Recall that there are an infinite number of probability 
functions which satisfy the same covariance matrix. We will 
use this when we discuss the possibility of ‘softening’ ‘hard’ 
bounds. 

Tarantola (1984b) recently presented a technique for 
non-linear inversion with ‘soft’ bounds. Usually, the 
probability function is chosen to be Gaussian, since the 
probability distribution of a sum of random variables with 
different probability distributions tends to Gaussian if the 
number of variables is large enough. 

Besides ‘soft’ bounds, we also can incorporate a priori 
information in terms of ‘hard’ bounds. ‘Hard’ bounds can be 
imposed on a solution in the model space. For example: 

A,  + 5 rn, 5 B, + m,,., (28) 

E T C d E  5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, (29) 

or in the data space 

where y can be chosen with a 95 confidence region 
according to a chi-squared distribution (Camon, Auyeung 
& Mersereau 1988). 

2.7 Softening ‘hard’ bounds 

In this section, we will consider how ‘hard’ bounds can be 
softened. ‘Hard’ bounds restrict the length of a solution 
vector in the model space. ‘Hard’ bounds can be smoothed 
if instead of limiting the length of a solution, we determine 
the probability distribution of the solution in the model 
space. Suppose this distribution is Gaussian 

which defines the probability in the model space with 
variance a,,,. The probability that a solution lies between m, 

rn2 

“Softened” bounds 

Figure 1. Softening ‘hard’ bounds leads to adding some ambiguous 
information which might contradict the correct information about 
the possible length of a solution. 

and m, + Sm is 

Pm(Sm) = P,,,(m)Sm. (31) 

ISml I A .  (32) 

‘Hard’ bounds specify the largest length of the model vector 

In order to find the variance of a solution, equation (31) 
should be integrated from --m to -m. The square-root of this 
integral will give the confidence interval, which can be much 
larger than A which specifies ‘hard‘ bounds in equation (32). 
This means that ‘soft’ bounds may introduce incorrect 
information about a solution. (See also Backus 1987.) 

Suppose now that we choose the probability distribution 
function in the model space as follows: 

Gaussian for Iml 5 A 
elsewhere . Prn(m) = ( (33) 

This probability function satisfies ‘hard’ bounds (32). The 
covariance matrix, however, with this probability function 
will be the same if other probability functions are 
considered. However, other probability functions will 
contradict ‘hard’ bounds (32) (Fig. 1). 

Therefore, in later sections, we will consider non-linear 
inversion of seismic data with ‘hard’ bounds. 

2.8 Hardening ‘soft’ bounds 

In the previous section, we saw that softening ‘hard’ bounds 
can lead to the introduction of some ambiguous information 
which will contradict ‘hard’ bounds constraints. This will 
lead to inaccurate and sometimes erroneous solutions. 

In this section, we will discuss what might happen if ‘soft‘ 
bounds are hardened. Let us introduce ‘soft’ bounds 
constraints in terms of the covariance operator C‘ which 
describes white noise in the data space. This operator will 
then be a diagonal identity matrix. The expression 

will describe a multidimensional sphere with radius IR,I. If 
the noise is not white, then equation (34) with a covariance 
matrix C‘ will describe an ellipsoid. ‘Soft’ bounds in terms 
of white noise can be hardened if the sphere (34) is bounded 
by a sphere of radius R* which is larger than R,  (R* > R e ) .  

These hardened constraints can then be written as 
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Hardened" soft bounds defined 

by the threshold probability 

I i  True bounds for a solution 
in the model space. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHardening 'soft' bounds depends on the choice of the threshold of probability distribution function and thus, may introduce 
erroneous information about solution. 

We see that hardening 'soft' bounds in the data space alone 
will not give us any explicit restrictions on the length of a 
solution. Let us discuss what happens if we harden 'soft' 
bounds in the model space. For this reason, let us consider a 
probability function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,(m). Then the probability that a 
solution les between m, and m + m, is P(m)Gm. In order to 
harden 'soft' bounds (the probability function P), we should 
define a threshold probability P*. The threshold probability 
function means that if the probability in the model space is 
less than P*, the probability should be set to zero. This we 
will call 'hardening' soft bounds in the model space. 

P(m) if P z P *  
p(m) = I 0  elsewhere' 

The threshold probability will define the confidence 
interval and thus, will put some constraints on the length of 
a solution vector. However, this maximum length of a 
solution vector will depend on our choice of the threshold 
and thus, is subjectively biased. Fig. 2 describes this 
statement. We see that softening 'hard' bounds or hardening 
'soft' bounds can introduce ambiguous information about a 
solution. Instead, 'hard' bounds should be introduced in the 
inversion independently. 

3 NON-LINEAR GENERALIZED 
INVERSION WITHOUT CONSTRAINTS 

3.1 Basic principles of unconstrained non-linear inversion 

In this section, we will consider an unconstrained non-linear 
generalized inversion. Recently, this type of inversion was 
developed by Tarantola (1984b), Gauthier, Virieux & 
Tarantola (1986), McAulay (1986), Pan, Phinney & Odom 
(1986) and Mora (1987), among others. 

The idea of the unconstrained generalized inversion is the 
following. We will try to fit the observed data D by the 
computed response U(m). We will consider the objective 
function E ( * )  which can be written as: 

E(m) = IID - U(m)ll2L, + 45 11~m112, (37) 

which can be also written as: 

E(m) = (D - U(m))=(Cd)-'(D - U(m)) 

+ A,6mT(C")-'6m (38) 

(assuming that functions are real. If functions are not real, 
then the transpose operation should be changed on adjoint). 

Let us apply V to equation (38). This will yield: 

m - m, = A , ~ C ~ F ~ ( C ~ ) - ' ( D  - U(m)> (39) 

which is similar to Tarantola (1984b, equation 14). The next 
step is to regularize equation (39). For this reason, we will 
write equation (39) in the 'Tichonov' form: 

m = m, + [A,I + CmFT(Cd)-'F]-' 

x (Cm)FT(Cd)-'[D - U(m) + F(m - %)I. (40) 

This equation can be solved using an iteration procedure 

mk+l = m, + [A,I + (Cm)Fl(Cd)-lFk)-l]Cm) 

x F;(Cd)-'[D - U(m) + Fk(m, -%)I. (41) 

This equation is also similar to one suggested by 
Tarantola (1986). In equation (41), the 'damping' parameter 
A, stabilizes the inversion since it removes small eigenvalues 
from zero. We should also mention that since covariance is a 
symmetric positive definite matrix, then the operator 
A,I + C,FTC-'F has always inverse (provided that the 
damping parameter is a positive number). 

3.2 The small wave number problem in unconstrained 
inversion 

It was shown that non-linear unconstrained inversion does 
not efficiently recover small wave numbers (see Gauthier et 

al. 1986: Mora 1987). 
There are two basic reasons why non-linear generalized 

unconstrained inversion is not able to reconstruct small 
wave numbers. The first reason is that the seismic data are 
band-limited and thus, information about low-frequencies is 
missing. Low-frequencies and thus, small wave numbers can 
be picked up from larger offset events. 

Secondly, travel-time curves for limited aperture CDP 
data have much less information about small vertical wave 
numbers than transmitted data. 

However, the most important problem is that small wave 
number information which is contained in CDP data is not 
enough to accommodate non-linear generalized uncon- 
strained inversion. Thus, the most crucial problem in 
non-linear unconstrained generalized inversion is where to 
get more information about small wave numbers and how to 
incorporate this information into the inversion procedure. 
Fig. 3 illustrates this statement. Mora (1987) suggested 
adding small wave numbers by including the VSP data which 
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Figure 3. CDP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdata which have hyperbolic trajectories do not 
contain small vetical wave numbers, whereas borehole data contain 
smaller vertical wave numbers. 

Figure 5. Epigraph of a non-convex function (top) and a convex 
function (bottom). 

have a substantial contribution from direct transmitted 
waves. Thus, the problem is not only to include large 
apertures but to also include transmitted arrivals from 
borehold data. 

In the following sections, we will see how small wave 
numbers can be obtained from ‘hard’ bounds which means 
that only CDP data can accommodate constrained 
non-linear generalized inversions. 

4 CALCULUS OF CONVEX FUNCTIONALS 

4.1 Convex sets and functions 

In this section, we will recall the major properties of the 
calculus of convex functionals. A subset C is said to be 
convex if ax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ (1 - a)y  belongs to this subset whenever zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
and y are in the subset and 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 1. This simply means that 
for every pair of points in C the straight line segment linking 
these points lies wholly within C (Fig. 4). 

Figure 4. An example of a convex sheet. 

When we try to solve constrained optimization problems, 
it is important to introduce convex functions defined on 
convex subsets. 

One of the important characteristics of convex functions is 
the epigraph of functions. (Fig. 5) depicts a convex and a 
non-convex function. 

The function f is called a convex function if the epigraph 
of this function, epi(f), is a convex subset and a concave 
function iff is convex. 

Iff is a proper convex function, then: 

f W  + (1 - a)Y) 5 + (1 - alf(y) (42) 

whenever x and y belong to the effective domain of this 
function and 0 5 a 5 1. 

Remark. The effective domain dom f ( x )  is a set bounded 
by this function itself where f is not infinity. ( I f (x) l  < m), 

The function is convex when its effective domain dom (f) is 
convex. 

4.2 Example 1 

Let us prove that the objective function E in equation (12) is 
convex. Since in this equation, Us does not depend on the 
model m, it is sufficient to prove that llF6rnl) is convex. We 
will consider function 

f = F{UX + (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ) ~ } .  (43) 

We will rewrite this equation in the L, norm and apply the 
triangular inequality. This yields: 

IIF{M + (1 - a)y } l l 5  lal IlFxll + I1 - al llFY II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(44) 

which proves that the function is convex. However, in order 
to analyse this function in terms of strict convexity, we 
should show that this function has only one minimum. We 
see that it is not the case. As discussed before, it is possible 
to see that any null vector can be added or subtracted from 
a solution and the whole objective function E does not 
change. This means that this function is convex but not in a 
strict sense. Fig. 6 illustrates this statement. 

4.3 Affine minorants and Fenchel transform 

Hyperplanes (lines in the 2-D plane) which intersect the 
effective domain of the convex function at most at the 
boundary points are called affine minorants. Fig. 7 shows 
affine minorants of a convex function. 

Let us consider hyperplanes (lines in the 2-D plane) 

Z(x)  = cTx - b, (45) 

where c is a constant vector which defines the angle of 
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Figure 6. The objective function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof conventional least-squares is 
convex but not in a strict sense. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 7. Affine minorants of a convex function. 

inclination of the line and b is the intercept. It is clear that 
in order that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ ( x )  be a minorant, the following inequality 
should hold: 

cTx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- b - f ( ~ )  I 0. (46) 

Let us determine now the least value b can take to remain a 
minorant (for fixed c). It is possible to see that the least 
value for b will be defined by a minorant which intersects 
with the function itself and thus, satisfies the following 
equation: 

f*(c) =sup (c'x -f(x)). (47) 
X 

(See e.g. Ekeland & Turnbull 1983). This least value of b is 
called the Fenchel transform of the convex function f(x) 
(see Fig. 8). 

Figure 8. Minorants of the convex function and its Fenchel 
transform which finds the least intercept of all minorants with the 
same angle of inclination. 

4.4 Example 2 

Let us calculate the Fenchel transform of the function f ( x )  

given as: 
if x 1 0  

f ( x )  = ("' x 3 + 1 ,  + i f x z O '  

Let us apply the Fenchel transform to this function: 

f * (C )  =sup {cx -f(x)}. (49) 
X 

The point where the function cx -f(x) is maximum for 
x < 0 is x = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~1.2. For positive x ,  the point when the function 
c x - f ( x )  is maximum is x = m .  Then the Fenchel 
transform of f ( x )  is 

4.5 Primal and dual problems 

Let us formulate the primal problem. We will try to 
minimize the model vector subject to some constraints 
(using 'hard' bounds constraints). 

The primal problem can be formulated as follows: 

- l16m11t2, if A i s  6 m i s  Bi, €7(Cd) - 1c1 y 

m otherwise 
PRIM( am) = [ ' 

(51) 

(see e.g. Carrion et al. 1988). The primal problem (51) can 
be presented as a sum of two primal problems 

PRZM(6m) = PRIMl(6m) + PRIM,(€),  (52)  

where 

- IlSmllt,, 

00 otherwise 
if Ai 1 6mi I Bi 

PRIMl(Gm) = [' (53) 

and 

PRIM, = [ 0, if eT(cd)-'c I y 
(54) 

m otherwise 

Along with the primal problem, we will consider the 
perturbation problem which can be written as: 

P E R T ( 6 m ,  a) = PRZM,(Gm) + PRIM,(€ + a). (55)  

It is possible to see that (see e.g. Ekeland & Turnbull 1983) 

the primal perturbed problem can be transformed to the 
dual problem PERT* with respect to unknown parameters 
which are called Lagrangian multipliers. 

PERT*(FTA) = -PRIM;(FTA) - PRIM:(-A),  (56) 

where PRIM: and PRIM: are Fenchel transforms of two 
primal problems in the model and data space (PRIM, and 
PRIM,, respectively). Fenchel transforms of these functions 
were presented by Carrion et af. (1987). Here we will write 
only the final result: 

PRIM: = -; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAllTFTA1lt, + ATFTFTA 

PRIM:(-A) = V m  - u:a. 

(57) 

(58) 

and 
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Then, the dual problem can be presented as: 

PERT*(I)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 IImT(a)lI:, - a T m T a  + u:a - VXFE5. 
(59) 

The primal problem (51) with constraints in the model 
and data space can be expressed in terms of the dual 
problem with respect to unknown Lagrangian multipliers 1. 

We solve the maximization problem (59) and find optimal 
Lagrangian multipliers. When optimal Lagrangian multi- 
pliers are found, the model vector is computed from: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(60) m = m, + mTa, 
where T is the so-called truncation operator which is defined 
as : 

1 Bi if B i <  6mi 

ci, if Ai < 6mi < Bi 

Tc= Ai if 6mi<Ai  (61) 

In the next section, we will discuss how the constrained 
elastic non-linear problem can be solved. 

5 SOLUTION TO A CONSTRAINED 
ELASTIC PROBLEM 

5.1 Iteration procedure for solving the non-linear 
problem 

In the previous sections, we considered how a constrained 
generalized inverse problem can be solved via the dual 
transform. Let us now develop an algorithm for solving 
non-linear generalized constrained inversion. 

We will define the generalized non-linear inversion as: to 
find the model vector m which satisfies the non-linear wave 
equation (1) which can be written in the functional form (6). 
We deal with the measured data D and will minimize the 
objective function 

a m )  = Ilm - mollt, 

Ai 2 {m - w}i 5 Bi 

(D - U(m))'c-'(o - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(m) )  5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy. 

(62) 

(63) 

(64) 

subject to 

and 

Equation (64) can be written as: 

[os - Fk(mk - Mo]TC-l[Ds - Fk(mk - m,] 5 y. (65) 

This equation shows that if we know F, at each iteration, we 
can solve a non-linear problem iteratively. It is interesting to 
note that (65) guarantees that a solution will converge. 

However, the problem (62)-(63) and (65) has a solution 
expressed in the dual space as: 

mk = m, + 'IF:&. (66) 

This suggests the following steps in solving the non-linear 
constrained problem: 

1. The generalized inverse problem presented in terms of 

2. The primal non-linear problem is linearized using the 

3. For each linear iteration, the dual problem is solved 

the primal problem (62)-(64) 

computed Jacobian matrix-Frechet derivatives. 

using the Fenchel transform applied to the perturbed 
primal problem. 

5.2 Convergence 

Let us consider an iteration procedure in the dual space: 

mk+l - m, = mrh,. (67) 

Suppose that with growing k, iterations diverge. This means 
that we can choose any number L that 

11% - moll = L. (68) 

IIFbm - DSII 2 IlFll 116mll - IlDSll = L IlFll - llD,ll (69) 

If it is true that 

and can be large since L can be arbitrarily large. This 
contradicts the inequality (65). This means that if the primal 
problem is stable, the dual problem is stable as well. It is 
also clear that if the primal problem converges, the dual 
problem converges as well. One of the problems which 
remains open is the convergence of the primal non-linear 
problem. Convergence will certainly depend upon the 
non-linear functional U(m).  

5.3 Computation of Frechkt derivatives 

Computation of the FrechCt derivatives has been discussed 
in several papers for acoustic or elastic set-up (see Tarantola 
1984b; Gauthier et al. 1986; Pan, Phinney & Odom 1988; 
Mora, 1987). Let us recall basic principles of calculations of 
the FrechCt derivatives. Besides the Frechet matrix, we 
should calculate the transpose to the FrechCt matrix. This 
can be done using the equality 

( F h ,  U) = (am, FTU). (70) 

FrechCt derivatives should be calculated at each iteration. 
When the FrechCt derivatives are calculated and the 
transposed FrechCt matrix is found, a solution is sought 
from equation (66). 

5.4 Small wave numbers from constraints 

In this section, we will consider how small wave numbers 
can be obtained from constraints. Suppose that we solve 
unconstrained generalized problem. Then we should set 
T = I. Then for the unconstrained problem 

= m, + Flak. (71) 

Suppose that the initial model is taken to be homogeneous. 
Then if for CDP data we do not have small wave numbers, 
the result will not have small wave numbers either. In 
particular, if in the course of calculations, FgAk becomes 
small, the final result will be almost homogeneous (flat) 
corresponding to the lack of small wave numbers. 

Suppose now that we have constraints in the form of 
'hard' bounds. For small values of FkAk we will then have 

[TF&J = Ai  (72) 

and thus, a result will not be flat (since information about 
small wave numbers is incorporated in the constraints). Fig. 
9 illustrates this concept. 
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.- 
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 -  
cu 

2 -  

- 
> 

6 EXAMPLE:  1-D INVERSION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Let us illustrate the proposed technique on a simple 
example of 1-D data. More complicated numerical examples 
related to inversion of 2-D and 3-D data will be published 
elsewhere. However, the convergence can be easier seen on 
a simple example of I-D inversion. Fig. 10 shows the 
acoustic impedance as function of detph. Fig. 11 shows 
constraints imposed on a solution. The constraints were 
chosen to satisfy positiveness of the acoustic impedance 
function (lower constaint). Higher constraint was chosen in 
the form of the ramp function which prevent the acoustic 
impedance to rapidly grow in the course of calculations. Fig. 
12 represents the initial guess which does not include low 
velocity zones. 

Figure 13 is a result after seven iterations. Finally Fig. 14 
depicts the acoustic impedance after 16 iterations. It 

lower bound 

"positive funct ion" 
constraint  

z 

Lower "hard" bourd  

s inforrna!ion 
about small wave-numbers 
This will allow for inverting 
CDP data even with poor presei' 
tation of small wav%-nL;-ibers I? 

the data spectrum 

Figure 9. Small wave numbers in constrained generalized inversion 
can be incorporated in terms of proper constraints. 

TRUE MODEL 

0.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.0 

Figure 10. Acoustic impedance. Model. 

INITIAL MODEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 
Figure 12. Initial guess which does not contain low velocity zones. 

Figure 11. Constraints in the model space. The lower constraint makes velocity to remain positive in the course of iterations. The higher 
constraint in the form of 'ramp' function precludes the velocity rapidly grow in positive direction. 
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E :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

ITERATION NO. 16 ITERATION NO. 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 
t I  

h 
n I1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t5 
L I 

Figure 13. Acoustic impedance after seven iterations. 

matches the model very well. Although a non-impulsive 
source was used for inversion, results do not show 
instabilities related to the band-limited nature of the source. 

7 CONCLUSION 

In this paper, I* considered a constrained generalized 
non-linear inversion. It was shown that the generalized 
non-linear problem with constraints can be reduced to an 
unconstrained generalized problem in the dual space. In the 
dual space, constraints are introduced in terms of the 
truncation operator which becomes the identity matrix for 
unconstrained problems. 

The problem in the dual space is considered in terms of 
the optimal Lagrangian multipliers which are calculated 
directly using the Fenchel transform applied to the primal 
problem. 

The role of constraints in exploration geophysics is to 
incorporate maximum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori information into the inversion 
procedure. It is well-known that, in general, CDP data are 
poorly represented by small vertical wave numbers. Thus, 
unconstrained inversion of only CDP data usually gives 
inaccurate results. Therefore, it is always useful to 
incorporate VSP data in the generalized unconstrained 
inversion. The generalized unconstrained inversion becomes 
a mixture of tomography and non-linear least-squares 
filtering of the CDP data. 

Properly chosen constraints incorporate small wave 
numbers into generalized inversion and thus, is possible to 
invert CDP data without using tomographic (transmission) 
arrivals. 

Another advantage of the method is that it reduces the 
dimension of the problem (as discussed by Carrion et al. 
1987). This property is especially useful for underdeter- 
mined systems where the number of unknowns is much 
more than thc number of available data. 

L 

r 
-l 

Figure 14. After 16 iterations acoustic impedance converges to the 
true model. 
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