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Abstract

As surrogate functions of L0-norm, many nonconvex

penalty functions have been proposed to enhance the s-

parse vector recovery. It is easy to extend these noncon-

vex penalty functions on singular values of a matrix to en-

hance low-rank matrix recovery. However, different from

convex optimization, solving the nonconvex low-rank mini-

mization problem is much more challenging than the non-

convex sparse minimization problem. We observe that all

the existing nonconvex penalty functions are concave and

monotonically increasing on [0,∞). Thus their gradients

are decreasing functions. Based on this property, we pro-

pose an Iteratively Reweighted Nuclear Norm (IRNN) al-

gorithm to solve the nonconvex nonsmooth low-rank mini-

mization problem. IRNN iteratively solves a Weighted Sin-

gular Value Thresholding (WSVT) problem. By setting the

weight vector as the gradient of the concave penalty func-

tion, the WSVT problem has a closed form solution. In theo-

ry, we prove that IRNN decreases the objective function val-

ue monotonically, and any limit point is a stationary point.

Extensive experiments on both synthetic data and real im-

ages demonstrate that IRNN enhances the low-rank matrix

recovery compared with state-of-the-art convex algorithms.

1. Introduction

This paper aims to solve the following general noncon-

vex nonsmooth low-rank minimization problem

min
X∈Rm×n

F (X) =

m
∑

i=1

gλ(σi(X)) + f(X), (1)

where σi(X) denotes the i-th singular value of X ∈ R
m×n

(we assume m ≤ n in this work). The penalty function gλ
and loss function f satisfy the following assumptions:
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(a) Lp Penalty [11]
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(b) SCAD Penalty [10]
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(c) Logarithm Penalty [12]
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(d) MCP Penalty [23]
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(e) Capped L1 Penalty [24]
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(f) ETP Penalty [13]
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(g) Geman Penalty [15]
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(h) Laplace Penalty [21]

Figure 1: Illustration of the popular nonconvex surrogate func-

tions of ||θ||0 (left), and their supergradients (right). All these

penalty functions share the common properties: concave and

monotonically increasing on [0,∞). Thus their supergradients

(see Section 2.1) are nonnegative and monotonically decreasing.

Our proposed general solver is based on this key observation.

A1 gλ : R → R
+ is continuous, concave and monotoni-

cally increasing on [0,∞). It is possibly nonsmooth.

A2 f : R
m×n → R

+ is a smooth function of type C1,1,

i.e., the gradient is Lipschitz continuous,

||∇f(X)−∇f(Y)||F ≤ L(f)||X−Y||F , (2)

for any X,Y ∈ R
m×n, L(f) > 0 is called Lipschitz
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Table 1: Popular nonconvex surrogate functions of ||θ||0 and their supergradients.

Penalty Formula gλ(θ), θ ≥ 0, λ > 0 Supergradient ∂gλ(θ)

Lp [11] λθp

{

∞, if θ = 0,

λpθp−1, if θ > 0.

SCAD [10]















λθ, if θ ≤ λ,
−θ2+2γλθ−λ2

2(γ−1)
, if λ < θ ≤ γλ,

λ2(γ+1)
2 , if θ > γλ.











λ, if θ ≤ λ,
γλ−θ
γ−1 , if λ < θ ≤ γλ,

0, if θ > γλ.

Logarithm [12] λ
log(γ+1)

log(γθ + 1) γλ
(γθ+1) log(γ+1)

MCP [23]

{

λθ − θ2

2γ , if θ < γλ,
1
2γλ

2, if θ ≥ γλ.

{

λ − θ
γ
, if θ < γλ,

0, if θ ≥ γλ.

Capped L1 [24]

{

λθ, if θ < γ,

λγ, if θ ≥ γ.











λ, if θ < γ,

[0, λ], if θ = γ,

0, if θ > γ.

ETP [13] λ
1−exp(−γ)

(1 − exp(−γθ)) λγ
1−exp(−γ)

exp(−γθ)

Geman [15] λθ
θ+γ

λγ

(θ+γ)2

Laplace [21] λ(1 − exp(− θ
γ
)) λ

γ
exp(− θ

γ
)

constant of ∇f . f(X) is possibly nonconvex.

A3 F (X) → ∞ iff ||X ||F → ∞.

Many optimization problems in machine learning and

computer vision areas fall into the formulation in (1). As for

the choice of f , the squared loss f(X) = 1
2 ||A(X)− b||2F ,

with a linear mapping A, is widely used. In this case, the

Lipschitz constant of ∇f is then the spectral radius of A∗A,

i.e., L(f) = ρ(A∗A), where A∗ is the adjoint operator of

A. By choosing gλ(x) = λx,
∑m

i=1 gλ(σi(X)) is exactly

the nuclear norm λ
∑m

i=1 σi(X) = λ||X ||∗. Problem (1)

resorts to the well known nuclear norm regularized problem

min
X

λ||X ||∗ + f(X). (3)

If f(X) is convex, it is the most widely used convex relax-

ation of the rank minimization problem:

min
X

λrank(X) + f(X). (4)

The above low-rank minimization problem arises in many

machine learning tasks such as multiple category classifi-

cation [1], matrix completion [20], multi-task learning [2],

and low-rank representation with squared loss for subspace

segmentation [18]. However, solving problem (4) is usu-

ally difficult, or even NP-hard. Most previous works solve

the convex problem (3) instead. It has been proved that un-

der certain incoherence assumptions on the singular values

of the matrix, solving the convex nuclear norm regularized

problem leads to a near optimal low-rank solution [6]. How-

ever, such assumptions may be violated in real applications.

The obtained solution by using nuclear norm may be sub-

optimal since it is not a perfect approximation of the rank

function. A similar phenomenon has been observed in the

convex L1-norm and nonconvex L0-norm for sparse vector

recovery [7].

In order to achieve a better approximation of the L0-

norm, many nonconvex surrogate functions of L0-norm

have been proposed, including Lp-norm [11], Smoothly

Clipped Absolute Deviation (SCAD) [10], Logarithm [12],

Minimax Concave Penalty (MCP) [23], Capped L1 [24],

Exponential-Type Penalty (ETP) [13], Geman [15], and

Laplace [21]. Table 1 tabulates these penalty functions and

Figure 1 visualizes them. One may refer to [14] for more

properties of these penalty functions. Some of these non-

convex penalties have been extended to approximate the

rank function, e.g. the Schatten-p norm [19]. Another non-

convex surrogate of rank function is the truncated nuclear

norm [16].

For nonconvex sparse minimization, several algorithms

have been proposed to solve the problem with a nonconvex

regularizer. A common method is DC (Difference of Con-

vex functions) programming [14]. It minimizes the non-

convex function f(x)− (−gλ(x)) based on the assumption

that both f and −gλ are convex. In each iteration, DC pro-

gramming linearizes −gλ(x) at x = xk, and minimizes the

relaxed function as follows

xk+1 = argmin
x

f(x)− (−gλ(x
k))−

〈

vk,x−xk
〉

, (5)

where vk is a subgradient of −gλ(x) at x = xk. DC pro-

gramming may be not very efficient, since it requires some

other iterative algorithm to solve (5). Note that the updating

rule (5) of DC programming cannot be extended to solve the

low-rank problem (1). The reason is that for concave gλ,

−
∑m

i=1 gλ(σi(X)) does not guarantee to be convex w.r.t.

X. DC programming also fails when f is nonconvex in

problem (1).

Another solver is to use the proximal gradient algorith-

m which is originally designed for convex problem [3]. It

requires computing the proximal operator of gλ,

Pgλ(y) = argmin
x

gλ(x) +
1

2
(x− y)2, (6)

in each iteration. However, for nonconvex gλ, there may not

exist a general solver for (6). Even if (6) is solvable, differ-
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ent from convex optimization, (Pgλ(y1) − Pgλ(y2))(y1 −
y2) ≥ 0 does not always hold. Thus we cannot perform

Pgλ(·) on the singular values of Y directly for solving

Pgλ(Y) = argmin
X

m
∑

i=1

gλ(σi(X)) + ||X−Y ||2F . (7)

The nonconvexity of gλ makes the nonconvex low-rank

minimization problem much more challenging than the

nonconvex sparse minimization.

Another related work is the Iteratively Reweighted Least

Squares (IRLS) algorihtm. It has been recently extended to

handle the nonconvex Schatten-p norm penalty [19]. Actu-

ally it solves a relaxed smooth problem which may require

many iterations to achieve a low-rank solution. It cannot

solve the general nonsmooth problem (1). The alternative

updating algorithm in [16] minimizes the truncated nuclear

norm by using a special property of this penalty. It contains

two loops, both of which require computing SVD. Thus it is

not very efficient. It cannot be extended to solve the general

problem (1) either.

In this work, all the existing nonconvex surrogate func-

tions of L0-norm are extended on the singular values of a

matrix to enhance low-rank recovery. In problem (1), gλ
can be any existing nonconvex penalty function shown in

Table 1 or any other function which satisfies the assump-

tion (A1). We observe that all the existing nonconvex sur-

rogate functions are concave and monotonically increasing

on [0,∞). Thus their gradients (or supergradients at the

nonsmooth points) are nonnegative and monotonically de-

creasing. Based on this key fact, we propose an Iterative-

ly Reweighted Nuclear Norm (IRNN) algorithm to solve

problem (1). IRNN computes the proximal operator of the

weighted nuclear norm, which has a closed form solution

due to the nonnegative and monotonically decreasing su-

pergradients. In theory, we prove that IRNN monotonically

decreases the objective function value, and any limit point is

a stationary point. To the best of our knowledge, IRNN is

the first work which is able to solve the general problem

(1) with convergence guarantee. Note that for noncon-

vex optmization, it is usually very difficult to prove that

an algorithm converges to stationary points. At last, we

test our algorithm with several nonconvex penalty function-

s on both synthetic data and real image data to show the

effectiveness of the proposed algorithm.

2. Nonconvex Nonsmooth Low-Rank Mini-

mization

In this section, we present a general algorithm to solve

problem (1). To handle the case that gλ is nonsmooth, e.g.,

Capped L1 penalty, we need the concept of supergradient

defined on the concave function.

 1 1 1g( )
T x v x x

1x 2x

 2 3 2g( )
T x v x x

 2 2 2g( )
T x v x x

g( )x

Figure 2: Supergraidients of a concave function. v1 is a super-

gradient at x1, and v2 and v3 are supergradients at x2.

2.1. Supergradient of a Concave Function

The subgradient of the convex function is an extension

of gradient at a nonsmooth point. Similarly, the supergradi-

ent is an extension of gradient of the concave function at a

nonsmooth point. If g(x) is concave and differentiable at x,

it is known that

g(x) + 〈∇g(x),y−x〉 ≥ g(y). (8)

If g(x) is nonsmooth at x, the supergradient extends the

gradient at x inspired by (8) [5].

Definition 1 Let g : Rn → R be concave. A vector v is a

supergradient of g at the point x ∈ R
n if for every y ∈ R

n,

the following inequality holds

g(x) + 〈v,y−x〉 ≥ g(y). (9)

All supergradients of g at x are called the superdifferential

of g at x, and are denoted as ∂g(x). If g is differentiable at

x, ∇g(x) is also a supergradient, i.e., ∂g(x) = {∇g(x)}.

Figure 2 illustrates the supergradients of a concave function

at both differentiable and nondifferentiable points.

For concave g, −g is convex, and vice versa. From this

fact, we have the following relationship between the super-

gradient of g and the subgradient of −g.

Lemma 1 Let g(x) be concave and h(x) = −g(x). For

any v ∈ ∂g(x), u = −v ∈ ∂h(x), and vice versa.

The relationship of the supergradient and subgradien-

t shown in Lemma 1 is useful for exploring some properties

of the supergradient. It is known that the subdiffierential of

a convex function h is a monotone operator, i.e.,

〈u− v,x−y〉 ≥ 0, (10)

for any u ∈ ∂h(x), v ∈ ∂h(y). The superdifferential of

a concave function holds a similar property, which is called

antimonotone operator in this work.

Lemma 2 The superdifferential of a concave function g is

an antimonotone operator, i.e.,

〈u− v,x−y〉 ≤ 0, (11)

for any u ∈ ∂g(x), v ∈ ∂g(y).

3



This can be easily proved by Lemma 1 and (10).

Lemma 2 is a key lemma in this work. Supposing that

the assumption (A1) holds for g(x), (11) indicates that

u ≥ v, for any u ∈ ∂g(x) and v ∈ ∂g(y), (12)

when x ≤ y. That is to say, the supergradient of g is mono-

tonically decreasing on [0,∞). Table 1 shows some usual

concave functions and their supergradients. We also visual-

ize them in Figure 1. It can be seen that they all satisfy the

assumption (A1). Note that for the Lp penalty, we further

define that ∂g(0) = ∞. This will not affect our algorithm

and convergence analysis as shown latter. The Capped L1

penalty is nonsmooth at θ = γ, with the superdifferential

∂gλ(γ) = [0, λ].

2.2. Iteratively Reweighted Nuclear Norm

In this subsection, we show how to solve the general non-

convex and possibly nonsmooth problem (1) based on the

assumptions (A1)-(A2). For simplicity of notation, we de-

note σi = σi(X) and σk
i = σi(X

k).
Since gλ is concave on [0,∞), by the definition of the

supergradient, we have

gλ(σi) ≤ gλ(σ
k
i ) + wk

i (σi − σk
i ), (13)

where

wk
i ∈ ∂gλ(σ

k
i ). (14)

Since σk
1 ≥ σk

2 ≥ · · · ≥ σk
m ≥ 0, by the antimonotone

property of supergradient (12), we have

0 ≤ wk
1 ≤ wk

2 ≤ · · · ≤ wk
m. (15)

This property is important in our algorithm shown latter.

(13) motivates us to minimize its right hand side instead of

gλ(σi). Thus we may solve the following relaxed problem

Xk+1 =argmin
X

m
∑

i=1

gλ(σ
k
i ) + wk

i (σi − σk
i ) + f(X)

= argmin
X

m
∑

i=1

wk
i σi + f(X).

(16)

It seems that updating Xk+1 by solving the above weighted

nuclear norm problem (16) is an extension of the weighted

L1-norm problem in IRL1 algorithm [7] (IRL1 is a special

DC programming algorithm). However, the weighted nu-

clear norm is nonconvex in (16) (it is convex if and only

if wk
1 ≥ wk

2 ≥ · · · ≥ wk
m ≥ 0 [8]), while the weighted

L1-norm is convex. Solving the nonconvex problem (16) is

much more challenging than the convex weighted L1-norm

problem. In fact, it is not easier than solving the original

problem (1).

Algorithm 1 Solving problem (1) by IRNN

Input: µ > L(f) - A Lipschitz constant of ∇f(X).
Initialize: k = 0, Xk, and wk

i , i = 1, · · · ,m.

Output: X∗.

while not converge do

1. Update Xk+1 by solving problem (18).

2. Update the weights wk+1
i , i = 1, · · · ,m, by

wk+1
i ∈ ∂gλ

(

σi(X
k+1)

)

. (17)

end while

Instead of updating Xk+1 by solving (16), we linearize

f(X) at Xk and add a proximal term:

f(X) ≈ f(Xk) + 〈∇f(Xk),X−Xk〉+
µ

2
||X−Xk||2F ,

where µ > L(f). Such a choice of µ guarantees the con-

vergence of our algorithm as shown latter. Then we update

Xk+1 by solving

Xk+1 =argmin
X

m
∑

i=1

wk
i σi + f(Xk)

+ 〈∇f(Xk),X−Xk〉+
µ

2
||X−Xk||2F

=argmin
X

m
∑

i=1

wk
i σi +

µ

2

∥

∥

∥

∥

X−

(

Xk −
1

µ
∇f(Xk)

)
∥

∥

∥

∥

2

F

.

(18)

Problem (18) is still nonconvex. Fortunately, it has a closed

form solution due to (15).

Lemma 3 [8, Theorem 2.3] For any λ > 0, Y ∈ R
m×n

and 0 ≤ w1 ≤ w2 ≤ · · · ≤ ws (s = min(m,n)), a global-

ly optimal solution to the following problem

minλ

s
∑

i=1

wiσi(X) +
1

2
||X−Y||2F , (19)

is given by the weighted singular value thresholding

X∗ = USλw(Σ)V T , (20)

where Y = UΣV
T is the SVD of Y, and Sλw(Σ) =

Diag{(Σii − λwi)+}.

It is worth mentioning that for the Lp penalty, if σk
i = 0,

wk
i ∈ ∂gλ(σ

k
i ) = {∞}. By the updating rule of Xk+1 in

(18), we have σk+1
i = 0. This guarantees that the rank of

the sequence {Xk} is nonincreasing.
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Iteratively updating wk
i , i = 1, · · · ,m, by (14) and

Xk+1 by (18) leads to the proposed Iteratively Reweight-

ed Nuclear Norm (IRNN) algorithm. The whole procedure

of IRNN is shown in Algorithm 1. If the Lipschitz constant

L(f) is not known or computable, the backtracking rule can

be used to estimate µ in each iteration [3].

3. Convergence Analysis

In this section, we give the convergence analysis for the

IRNN algorithm. We will show that IRNN decreases the

objective function value monotonically, and any limit point

is a stationary point of problem (1). We first recall the fol-

lowing well-known and fundamental property for a smooth

function in the class C1,1.

Lemma 4 [4, 3] Let f : Rm×n → R be a continuously dif-

ferentiable function with Lipschitz continuous gradient and

Lipschitz constant L(f). Then, for any X,Y ∈ R
m×n, and

µ ≥ L(f),

f(X) ≤ f(Y)+ 〈X−Y,∇f(Y)〉+
µ

2
||X−Y||2F . (21)

Theorem 1 Assume that gλ and f in problem (1) satisfy

the assumptions (A1)-(A2). The sequence {Xk} generated

in Algorithm 1 satisfies the following properties:

(1) F (Xk) is monotonically decreasing. Indeed,

F (Xk)−F (Xk+1) ≥
µ− L(f)

2
||Xk−Xk+1||2F ≥ 0;

(2) lim
k→∞

(Xk −Xk+1) = 0;

(3) The sequence {Xk} is bounded.

Proof. First, since Xk+1 is a global solution to problem

(18), we get

m
∑

i=1

wk
i σ

k+1
i + 〈∇f(Xk),Xk+1 −Xk〉+

µ

2
||Xk+1 −Xk||2F

≤

m
∑

i=1

wk
i σ

k
i + 〈∇f(Xk),Xk −Xk〉+

µ

2
||Xk −Xk||2F .

It can be rewritten as

〈∇f(Xk),Xk −Xk+1〉

≥ −
m
∑

i=1

wk
i (σ

k
i − σk+1

i ) +
µ

2
||Xk −Xk+1||2F .

(22)

Second, since the gradient of f(X) is Lipschitz continuous,

by using Lemma 4, we have

f(Xk)− f(Xk+1)

≥〈∇f(Xk),Xk −Xk+1〉 −
L(f)

2
||Xk −Xk+1||2F .

(23)

Third, since wk
i ∈ ∂gλ(σ

k
i ), by the definition of the super-

gradient, we have

gλ(σ
k
i )− gλ(σ

k+1
i ) ≥ wk

i (σ
k
i − σk+1

i ). (24)

Now, summing (22), (23) and (24) for i = 1, · · · ,m, to-

gether, we obtain

F (Xk)− F (Xk+1)

=

m
∑

i=1

(

gλ(σ
k
i )− gλ(σ

k+1
i )

)

+ f(Xk)− f(Xk+1)

≥
µ− L(f)

2
||Xk+1 −Xk||2F ≥ 0.

(25)

Thus F (Xk) is monotonically decreasing. Summing all the

inequalities in (25) for k ≥ 1, we get

F (X1) ≥
µ− L(f)

2

∞
∑

k=1

||Xk+1 −Xk||2F , (26)

or equivalently,

∞
∑

k=1

||Xk −Xk+1||2F ≤
2F (X1)

µ− L(f)
. (27)

In particular, it implies that lim
k→∞

(Xk − Xk+1) = 0. The

boundedness of {Xk} is obtained based on the assumption

(A3). �

Theorem 2 Let {Xk} be the sequence generated in Algo-

rithm 1. Then any accumulation point X∗ of {Xk} is a

stationary point of (1).

Proof. The sequence {Xk} generated in Algorithm 1 is

bounded as shown in Theorem 1. Thus there exists a matrix

X∗ and a subsequence {Xkj} such that lim
j→∞

Xkj = X∗.

From the fact that lim
k→∞

(Xk−Xk+1) = 0 in Theorem 1, we

have lim
j→∞

Xkj+1 = X∗. Thus σi(X
kj+1) → σi(X

∗) for

i = 1, · · · ,m. By the choice of w
kj

i ∈ ∂gλ(σi(X
kj )) and

Lemma 1, we have −w
kj

i ∈ ∂
(

−gλ(σi(X
kj ))

)

. By the

upper semi-continuous property of the subdifferential [9,

Proposition 2.1.5], there exists −w∗
i ∈ ∂ (−gλ(σi(X

∗)))

such that −w
kj

i → −w∗
i . Again by Lemma 1, w∗

i ∈

∂gλ(σi(X
∗)) and w

kj

i → w∗
i .

Denote h(X,w) =
∑m

i=1 wiσi(X). Since Xkj+1

is optimal to problem (18), there exists G
kj+1 ∈

∂h(Xkj+1,wkj ), such that

G
kj+1 +∇f(Xkj ) + µ(Xkj+1 −Xkj ) = 0. (28)

Let j → ∞ in (28), there exists G
∗ ∈ ∂h(X∗,w∗), such

that

0 = G
∗ +∇f(X∗) ∈ ∂F (X∗). (29)

Thus X∗ is a stationary point of (1). �
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4. Extension to Other Problems

Our proposed IRNN algorithm can solve a more general

low-rank minimization problem as follows,

min
X

m
∑

i=1

gi(σi(X)) + f(X), (30)

where gi, i = 1, · · · ,m, are concave, and their super-

gradients satisfy 0 ≤ v1 ≤ v2 ≤ · · · ≤ vm, for any

vi ∈ ∂gi(σi(X)), i = 1, · · · ,m. The truncated nuclear

norm ||X ||r =
∑m

i=r+1 σi(X) [16] satisfies the above as-

sumption. Indeed, ||X ||r =
∑m

i=1 gi(σi(X)) by letting

gi(x) =

{

0, i = 1, · · · , r,

x, i = r + 1, · · · ,m.
(31)

Their supergradients are

∂gi(x) =

{

0, i = 1, · · · , r,

1, i = r + 1, · · · ,m.
(32)

The convergence results in Theorem 1 and 2 also hold since

(24) holds for each gi. Compared with the alternating up-

dating algorithms in [16], which require double loops, our

IRNN algorithm will be more efficient and with stronger

convergence guarantee.

More generally, IRNN can solve the following problem

min
X

m
∑

i=1

g(h(σi(X))) + f(X), (33)

when g(y) is concave, and the following problem

min
X

wih(σi(X)) + ||X−Y||2F , (34)

can be cheaply solved. An interesting application of (33)

is to extend the group sparsity on the singular values. By

dividing the singular values into k groups, i.e., G1 =
{1, · · · , r1}, G2 = {r1 + 1, · · · , r1 + r2 − 1}, · · · , Gk =

{
∑k−1

i ri + 1, · · · ,m}, where
∑

i ri = m, we can de-

fine the group sparsity on the singular values as ||X ||2,g =
∑k

i=1 g(||σGi
||2). This is exactly the first term in (33) by

letting h be the L2-norm of a vector. g can be noncon-

vex functions satisfying the assumption (A1) or specially

the convex absolute function.

5. Experiments

In this section, we present several experiments on both

synthetic data and real images to validate the effectiveness

of the IRNN algorithm. We test our algorithm on the matrix

completion problem

min
X

m
∑

i=1

gλ(σi(X)) +
1

2
||PΩ(X−M)||2F , (35)
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Figure 3: Comparison of matrix recovery on (a) random data

without noise, and (b) random data with noise.

where Ω is the set of indices of samples, and PΩ : Rm×n →
R

m×n is a linear operator that keeps the entries in Ω un-

changed and those outside Ω zeros. The gradient of squared

loss function in (35) is Lipschitz continuous, with a Lips-

chitz constant L(f) = 1. We set µ = 1.1 in Algorithm 1.

For the choice of gλ, we test all the penalty functions listed

in Table 1 except for Capped L1 and Geman, since we find

that their recovery performances are sensitive to the choices

of γ and λ in different cases. For the choice of λ in IRN-

N, we use a continuation technique to enhance the low-rank

matrix recovery. The initial value of λ is set to a larger val-

ue λ0, and dynamically decreased by λ = ηkλ0 with η < 1.

It is stopped till reaching a predefined target λt. X is ini-

tialized as a zero matrix. For the choice of parameters (e.g.,

p and γ) in the nonconvex penalty functions, we search it

from a candidate set and use the one which obtains good

performance in most cases 1.

5.1. LowRank Matrix Recovery

We first compare our nonconvex IRNN algorithm with

state-of-the-art convex algorithms on synthetic data. We

conduct two experiments. One is for the observed matrix

M without noise, and the other one is for M with noise.

For the noise free case, we generate the rank r matrix M

as ML MR, where ML ∈ R
150×r, and MR ∈ R

r×150 are

generated by the Matlab command randn. 50% elements

of M are missing uniformly at random. We compare our

algorithm with Augmented Lagrange Multiplier (ALM) 2

[17] which solves the noise free problem

min
X

||X ||∗ s.t. PΩ(X) = PΩ(M). (36)

For this task, we set λ0 = ||PΩ(M)||∞, λt = 10−5λ0,

and η = 0.7 in IRNN, and stop the algorithm when

||PΩ(X−M)||F ≤ 10−5. For ALM, we use the default

parameters in the released codes. We evaluate the recov-

ery performance by the Relative Error defined as ||X̂ −

1Code of IRNN: https://sites.google.com/site/canyilu/.
2Code: http://perception.csl.illinois.edu/matrix-rank/

sample_code.html.
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(a) Original Image (b) Noisy Image (c) APGL (d) LMaFit (e) TNNR-ADMM (f) IRNN-Lp (g) IRNN-SCAD

Figure 4: Comparison of image recovery by using different matrix completion algorithms. (a) Original image. (b) Image

with Gaussian noise and text. (c)-(g) Recovered images by APGL, LMaFit, TNNR-ADMM, IRNN-Lp, and IRNN-SCAD,

respectively. Best viewed in ×2 sized color pdf file.

M ||F /||M ||F , where X̂ is the recovered solution by a cer-

tain algorithm. If the Relative Error is smaller than 10−3,

X̂ is regarded as a successful recovery of M. We repeat

the experiments 100 times with the underlying rank r vary-

ing from 20 to 33 for each algorithm. The frequency of

success is plotted in Figure 3a. The legend IRNN-Lp in

Figure 3a denotes the Lp penalty function used in problem

(1) and solved by our proposed IRNN algorithm. It can be

seen that IRNN with all the nonconvex penalty functions

achieves much better recovery performance than the con-

vex ALM algorithm. This is because the nonconvex penalty

functions approximate the rank function better than the con-

vex nuclear norm.

For the noisy case, the data are generated by PΩ(M) =
PΩ(ML MR)+0.1×randn. We compare our algorith-

m with convex Accelerated Proximal Gradient with Line

search (APGL) 3 [20] which solves the noisy problem

min
X

λ||X ||∗ +
1

2
||PΩ(X)− PΩ(M)||2F . (37)

For this task, we set λ0 = 10||PΩ(M)||∞, and λt = 0.1λ0

in IRNN. All the chosen algorithms are run 100 times with

the underlying rank r lying between 15 and 35. The rela-

tive errors can be ranging for each test, and the mean errors

by different methods are plotted in Figure 3b. It can be

seen that IRNN for the nonconvex penalty outperforms the

convex APGL for the noisy case. Note that we cannot con-

clude from Figure 3 that IRNN with Lp, Logarithm and ET-

P penalty functions always perform better than SCAD and

MCP, since the obtained solutions are not globally optimal.

5.2. Application to Image Recovery

In this section, we apply matrix completion for image

recovery. As shown in Figure 4, the real image may be

corrupted by different types of noises, e.g., Gaussian noise

or unrelated text. Usually the real images are not of low-

3Code: http://www.math.nus.edu.sg/˜mattohkc/NNLS.html.

rank, but the top singular values dominate the main infor-

mation [16]. Thus the corrupted image can be recovered

by low-rank approximation. For color images which have

three channels, we simply apply matrix completion for each

channel independently. The well known Peak Signal-to-

Noise Ratio (PSNR) is employed to evaluate the recovery

performance. We compare IRNN with some other ma-

trix completion algorithms which have been applied for

this task, including APGL, Low-Rank Matrix Fitting (L-

MaFit) 4. [22] and Truncated Nuclear Norm Regularization

(TNNR) [16]. We use the solver based on ADMM to solve

a subproblem of TNNR in the released codes (denoted as

TNNR-ADMM) 5. We try to tune the parameters to be op-

timal of the chosen algorithms and report the best result.

In our test, we consider two types of noises on the real

images. The first one replaces 50% of pixels with random

values (sample image (1) in Figure 4 (b)). The other one

adds some unrelated texts on the image (sample image (2)

in Figure 4 (b)). Figure 4 (c)-(g) show the recovered images

by different methods. It can be observed that our IRNN

method with different penalty functions achieves much bet-

ter recovery performance than APGL and LMaFit. Only

the results by IRNN-Lp and IRNN-SCAD are plotted due

to the limit of space. We further test on more images and

plot the results in Figure 5. Figure 6 shows the PSNR val-

ues of different methods on all the test images. It can be

seen that IRNN with all the evaluated nonconvex functions

achieves higher PSNR values, which verifies that the non-

convex penalty functions are effective in this situation. The

nonconvex truncated nuclear norm is close to our methods,

but its running time is 3∼5 times of that for ours.

6. Conclusions and Future Work

In this work, the nonconvex surrogate functions of L0-

norm are extended on the singular values to approximate

4Code: http://lmafit.blogs.rice.edu/.
5Code: https://sites.google.com/site/zjuyaohu/.
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Figure 5: Comparison of image recovery on more images. (a)

Original images. (b) Images with noises. Recovered images by (c)

APGL, and (d) IRNN-Lp. Best viewed in ×2 sized color pdf file.

the rank function. It is observed that all the existing non-

convex surrogate functions are concave and monotonically

increasing on [0,∞). Then a general solver IRNN is pro-

posed to solve problem (1) with such penalties. IRNN is the

first algorithm which is able to solve the general noncon-

vex low-rank minimization problem (1) with convergence

guarantee. The nonconvex penalty can be nonsmooth by

using the supergradient at the nonsmooth point. In theory,

we proved that any limit point is a local minimum. Ex-

periments on both synthetic data and real images demon-

strated that IRNN usually outperforms the state-of-the-art

convex algorithms. An interesting future work is to solve

the nonconvex low-rank minimization problem with affine

constraint. A possible way is to combine IRNN with Alter-

nating Direction Method of Multiplier (ADMM).
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