
PFC/JA-85-6

Generalized Nonlinear Harmonic

Gyrotron Theory

B.G.Danly and R.J.Temkin

Plasma Fusion Center

Massachusetts Institute of Technology

Cambridge, MA 02139

April 1985

This work was supported by the U.S. Department of Energy Contract No. DE-AC02-78ET51013.

By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government's

right to retain a nonexclusive royalty-free licence in and to any copyright covering this paper.



Generalized Nonlinear Harmonic

Gyrotron Theory

B.G.Danly and R.J.Temkin

Plasma Fusion Center

Massachusetts Institute of Technology

Cambridge, MA 02139

April, 1985

1



Abstract

The nonlinear efficiency for a gyrotron oscillator operating at harmonics of the cy-

clotron frequency has been calculated and is presented as a function of generalized param-

eters for the second through fifth harmonics. The numerical results are valid for a wide

range of operating conditions, including voltage, current, beam radius, cavity dimensions,

and operating mode. Relatively high efficiencies are found even at high harmonics; the

maximum transverse efficiencies for harmonics 2,3,4, and 5 are 0.72,0.57,0.45, and 0.36,

respectively. The calculation of the efficiency in terms of generalized parameters allows the

straightforward design and optimization of harmonic gyrotrons. The influence of the axial

profile of the rf field in the gyrotron cavity on the efficiency is also investigated. Improved

efficiency can be achieved with asymmetric field profiles. The implications of these results

for the generation of millimeter and submillimeter wave radiation by harmonic emission

are discussed.

PACS 52.75.Ms, 85.10.Ka
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I. INTRODUCTION

The gyrotron or electron cyclotron maser is one of the most promising sources for

the generation of high power radiation in the microwave to submillimeter region of the

spectrum 1'4. Among its many important applications include the RF heating of fusion

plasmas , plasma diagnostics , and radar.

Gyrotrons operate in circular TE modes near cutoff, that is w/c k (kV + k 1/2

with k1 > k11, where k and kg are the transverse and axial wavenumbers of the waveguide

modes. In this case, we may take w/c = k : k1 = vp/a for TE modes, where a is the

cavity radius and mp is the pth zero of J,4(x). The combination of this condition and

the cyclotron resonance condition, w - nw,, determine the oscillation mode of a gyrotron.

Here w, = eB/mc,- is the relativistic electron cyclotron frequency, n is the harmonic

numberm and e are the relativistic electron rest mass and charge, and -y = (1 - 32)-1/2

with 3 = v/c. The gyrotron interaction results from a phase bunching of electrons by an

RF field due to the energy dependence of their cyclotron frequency.

With the growing demand for sources in the millimeter and submillimeter regions of

the spectrum, increasing the gyrotron operating frequency becomes of primary importance.

Gyrotrons are usually operated at the fundamental of the cyclotron frequency, W : W'.

Because the available magnetic field limits the maximum frequency that can be obtained,

gyrotron operation at the fundamental is limited to lower frequencies. Operation at the

second (w z 2w,) or higher harmonics (w e nwe, n > 2) might prove advantageous for

several reasons. The magnetic field required to produce radiation at a given frequency is

reduced by a factor of n for operation at the n h harmonic. Consequently, much higher

frequencies can be produced with modest magnetic fields. Alternatively, even for microwave

and millimeter wave frequencies, operation at a harmonic allows the use of compact, less
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costly magnets. It appears feasible that millimeter wave radiation could be generated by

a harmonic gyrotron operating with permanent magnets.

During the past several years, impressive results have been obtained with gyrotrons

designed for operation at harmonics of the cyclotron frequency. Zaytsev et al.10 have

reported the 2w, generation of 7 kW at 154 GHz in pulsed operation and the 2W, generation

of 2.4 kW at 157 GHz and 1.5 kW at 326 GHz in CW operation. Several harmonic

experiments have been carried out in the U.S. during the past decade3 '1 1 ", including the

generation of 25 kW at 241 GHz in pulsed operation' 3 . Guo et al. have produced 30 kW

at 37 GHz , and Boulanger et al. have reported the generation of 30 kW at 70 GHz' 5 ,

both by second harmonic operation.

In the theoretical area, several authors have derived the linear theory of a harmonic

gyrotron. Chu has presented a detailed treatment of a harmonic gyrotron in which the

beam-wave coupling coefficient and beam energy gain function are derived." Uhm et al.

have presented a linear stability analysis for the cyclotron maser instability.' In several

cases, nonlinear efficiency calculations for 2w,, operation on a specific cavity mode and

under a specific set of operating conditions have also been carried out. Nusinovich and

Erm have carried out a calculation of gyrotron efficiency for we and 2w, operation which is

generally applicable to any cavity mode and a wide range of operating conditions 18 . The

formalism employed here has been used by other authors."," We present here numerical

results for a generalized nonlinear theory for gyrotrons operating on the first through fifth

harmonics. These results are presented in terms of general normalized parameters and are

thus applicable to many operating conditions.

This paper is organized as follows. The theory is reviewed in section II. The results

for the nonlinear efficiency for the fundamental and the second through fifth harmonics of
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the cyclotron frequency are presented in section III. Application of these results to the case

of a quasioptical gyrotron is also discussed. The implications of the results are discussed

in section IV, and the conclusions are presented in section V.
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I. THEORY

The generalized nonlinear theory for a harmonic gyrotron oscillator can be developed

in the form of generalized pendulum equations.2 ," 2 For an electron moving in combined

electric and magnetic fields, the equations of motion are

= -ev -E (1)
dt

dp e_ =eE - -v x B (2)
dt c

where 0 = ymec 2 is the electron energy, -y = (1 - 02 - g2)-1/2 and Ip = -yfmec is

the electron momentum. For a high Q gyrotron oscillator we specify the electromagnetic

field structure in the cavity to be axially fixed, but we allow it to rotate in the azimuthal

direction. The assumption of an axially fixed field structure is allowed provided the source

term in Maxwell's equations is negligible; the electric field E is then that of a TE cavity

mode. This assumption is not unrealistic for a harmonic gyrotron in which the diffractive

Q (QD) is much higher than the minimum diffractive Q."C' The effect of the rf magnetic

field on the electron motion is negligible provided the phase velocity of the rf field is much

greater than the speed of light, as is the case for a wave near cutoff.20 ,2' The magnetic

field is taken to be the axial static guide field B = BCz, as shown in Fig.1.

The equation for the energy of a single electron can be written in terms of a relative

energy variable w = 1 - -y/yc, and a normalized axial position Z = wz/)311oc as

dw e I Io
- (m - pE (3)

dZ (mc)2W -)O-,31

Here 0110 and -yo are the values of .31 and y at the entrance to the cavity. A subscript zero

indicates that the value of the variable is to be taken at the entrance to the interaction

region. In complex notation, we write p = p, + ipy = p, = p+ ie", where a is defined in
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Fig.1. and E = E1 + ZEY = E+ = IE+te (t*). Then equation (3) can be expressed as

dw e At(
dZ = e)Re (p- E+) (4)
dZ (mc)2W--y1

The equation for the phase of the electron can be derived from eqn.(2);

da CoWc e___o_
- ~Im (p+-E+),()

dZ 0!, L031ip+!

where w, = eBo/mec-.

The electric field for a TEmp mode near cutoff in a circular cross section cavity is

written as

E = (ERR + E4, ,) ei(wt+0),

m
ER = i Eof (z) Jm(kj R) e"im'",

k1R

E4, = Eo f(z) J,' (k R) e' m "

where (R, ,) are coordinates in the coordinate system with origin at the center of the

cavity; k_ = vmp a where vmp is the pth nonvanishing zero of J,(x), and a is the cavity

radius. The field used here is that of a rotating mode. E is the field amplitude, and f(z)

is the axial field distribution, the amplitude of which is normalized to unity. Using Graf's

formula for Bessel functions, the electric field can be reexpressed as a series in a coordinate

system with origin at the electron gyrocenter. 22 The component of the rf field synchronous

with the electron for n h order cyclotron resonance (c 2:: nwc) can then be written as

E =(E,, r + Eo,)e'")

Ern = ni E0 f(z) Jm n(kRe) Jn(kr) e-i" " e

EEn Ec, f(Z) Jm±n(k. Re) J' (k. r) e-iml, e~ "(*~*".

In complex notation, the electric field of a TEmp cavity mode can then be written as

E- = -Er sin (0 + 0b - (m - n)o,,) et ' + E, cos (0 + t - (m - n)o&) ie"&
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where E, and E, are defined by E, E nl and E, = !Ee, . The slow-time scale

phase variable 0 = wt - no has been introduced; the electron phase 6 is related to a by

a = -- ir/2. Evaluation of the real and imaginary parts of Ee" in equations (4) and

(5) leads to the equations of motion

dw = e p'! E, cos(O + v - (m - (6)
dZ -yrmecw

dO ne (I - w)- = 6 - ne , w) E, sin(O- i - (m - n)6,) (7)
dZ o1cmecw p'.

where

'==(02 - 2w +W2)

- omec 1

and 6= 1 - nwco/w, where wco = eB/mecyc, is the magnetic field detuning parameter.

For gyromonotrons, the electron beam at the entrance to the cavity has no bunching,

and, consequently, the value of V at the entrance to the cavity is arbitrary. In general V)

can depend on Z; we assume 0 is constant throughout the interaction region. Choosing

V - (m - n),, = -, and writing w ~ nwo, the above equations reduce to

dw E p, ' sinG 
(8)

dZ nB,

dO E, (1 w)
6d - W - cos 0 (9)dZ Bc, P

The inertial bunching is a result of the action of the azimuthal electric field EO; it is

directly responsible for the variation of electron energy (equation (8)). The force bunching

results from the radial electric field E,. and contributes through equation (9) to the phase

bunching. In most gyrotrons the dominant contribution to the phase bunching is from

the inertial bunching term. Because the Larmor orbit depends on the electron energy, the

argument of the Bessel functions in the expressions for E, and E, can be expressed in

terms of the energy variable;

k. r ~ n = ndO- 1 - (2w - w2) np'
Y ziw32
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At this point it is useful to redefine the dependent and independent variables according

to

2 2__
u -- w ( 1 -

, 00

2 0 110 A

The normalized interaction length is then defined as

0110 A'

Then equations (8) and (9) can be written as

2 F f ( ) ' (10)

d/ 2 n! /3-Lr(1 - 3Lou./2)
A - u - itn _ F f 12 J.(np' )cosO, (11)

where the normalized field amplitude F is defined by

F L3'n4  
j- ) Jm± n(k± Re)

and the detuning parameter A 26-/=02 . The plus and minus signs in the Bessel function

subscript correspond to the two possible rotations of the rf field. The initial conditions are

0 = 0o 4 10, 27r) and u = 0. The efficiency is given by

1= YoY _ 1 _____

'YO - 1 2(1 - -)

where

r7 = "u( OU)),

is the transverse efficiency. The brackets denote an average over initial phase. Equations

(10) and (11) are exact for a gyrotron interaction (kllc/w : 0); only the asynchronous
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components of the rf field have been neglected (slow time scale approximation). As ap-

parent from these equations, the transverse or perpendicular efficiency depends only upon

four normalized parameters, F, yi, A, and 01,.

Under certain conditions, the equations of motion can be simplified further, and the

parameters describing the problem can be reduced to F,p. and A. When the electron

beam is weakly relativistic, and the condition

«0 <1 (12)
2

is satisfied, then p' may be approximated by 20

P1 (02 C- 2w)~ =3-Lo(Il- );;

Furthermore, provided the condition in equation (12) is satisfied, the small argument

expansion of the Bessel functions in equations (10) and (11) can be made. Equations (10)

and (11) then simplify to

du=2F f(g) (1 - u)3 sinG (13)
d

dO
-= A - u - n F f() (1 - u) cosO (14)

In this case the perpendicular efficiency depends only on three parameters (F,yand A).

The efficiency is generally optimized with respect to the magnetic field parameter A; the

optimum value of A is denoted Aop.

The field amplitude F is related to the beam current by an energy balance equation.

The total cavity Q, QT, is related to the total stored energy U and the power dissipated

P by QT = wU/P. The power dissipated is written as

P = A 1 7 V i=nc 2  _LO- 10  IA,

e 2
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where IA is the beam current. Evaluation of the stored energy requires a choice of the

axial field profile.. Most actual axial field profiles are closely approximated by a Gaussian.

We assume the axial field profile is given by

f(z) = -(kllz)2 or f(g) = e )- (15)

where k, = 2/L defines the effective cavity length L. The energy balance equation can

then be written as

F 2 = r7- 1, (16)

where a normalized current parameter I has been introduced. I is defined by

3 QT IA 2 A\n-3) n " ± n (k. Re)

=0.238 x 10- Y 01o~~3  -L (2- (rm2),(m)'yo Q)0\L/ "! (vMP - rn2 gg (,

where IA is the beam current in amps. Once the optimized efficiency is calculated for

specific values of F and 1, the beam current necessary to achieve that value of F and r_

is given by equation (16).

Because the optimized efficiency can be written as a function of only two parameters,

771 = r1_ (F. p), the results of a numerical integration of equations (13) and (14) can be

conveniently presented in the form of a single contour plot of the efficiency r/1 in F-p

space. The corresponding contour plot of efficiency as a function of the beam current

parameter I and cavity length y can be obtained by application of eqn.(16) to the data in

the rjL (F, p) contour plot. The 7- (I, It) contour plot is most useful for determination of

theoretical efficiencies for given values of beam current. The r_ (F, p) contour plot is most

useful for the optimization of gyrotron design, because the relevant design constraints such

as wall loading, beam voltage depression, and beam thickness effects, can be expressed in

terms of the F and p parameters in a straightforward manner. 23
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III. RESULTS

The efficiency of gyrotron operation at the fundamental of the cyclotron frequency and

at the second through the fifth harmonics has been calculated. The equations describing

the weakly relativistic gyrotron (eqns.(13) and (14)) were integrated numerically using a

fourth order Runge-Kutta algorithm for the Gaussian axial field profile given by eqn.(15).

The limits chosen for the integration over the axial field profile were = -v/3p/2 to

-- v' /2, which correspond to the e- power points of the axial rf field; they are a good

approximation to actual tapered gyrotron resonators.4', The ensemble average over initial

phase was carried out by integrating 32 different particles, evenly distributed in phase,

and averaging the resulting single particle efficiencies. Optimization of the efficiency with

respect to the magnetic field parameter (A) was also performed. The optimized efficiency

was calculated for a large number (800-1600) of different values of F and A; the rip(F, A)

isoefficiency contour plots are generated from this data.

Results for the optimized efficiency at the fundamental cyclotron resonance are shown

in Figs. 2 and 3. The perpendicular efficiency (solid lines) as a function of normalized rf

field amplitude and cavity length (F-ju contour plot) is shown in Fig. 2; the efficiency as

a function of the normalized beam current and cavity length (I-A contour plot) is shown

in Fig. 3. Contours of the optimum magnetic field detuning (A0 g) are shown as dashed

lines in Fig. 2.

The starting current of a gyrotron operating at the nth harmonic is given in terms of

the normalized parameter I by 24

IST (A, y = 4 x, (17)
7r/ p -, n

where x = PA/4; the starting current is a function of A. Minimizing Eq. (17) with respect

to A yields the minimum starting current, denoted IMIN IST(AMIN), which is given
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by Eq. (17) with

Sn _(n 2

S= Xmin = L- 2 + (18)

The minimum starting current is shown on Fig. 3 by a dashed line labeled IMIN. The

gyrotron will not oscillate for currents below this line.

The other starting current shown on Fig. 3 is the line I = IST(At), which is labeled

I = ISTART. For currents below this line, the beam current is above the starting current

at the magnetic field corresponding to the optimum efficiency. This region is referred to as

the soft-excitation regime. For currents above the line I = ]START, the starting current

is higher than the beam current, and the device operates in the hard-excitation regime.

To operate in this regime, the device must be started in a soft excitation zone and then

detuned to the hard excitation zone operating point by changing the current, voltage,

magnetic field, or other parameters. Thus the line I = ISTART delineates the hard and

soft excitation regions of the gyrotron, while the line I = IMIN determines the minimum

operating current necessary for oscillation.

The gyrotron parameter space defined by F and u has more than one high efficiency

region. Gyrotrons are typically designed and operated with field amplitudes and cavity

lengths which correspond to operation in the high efficiency region with the lowest F and

p (e.g. F - 0.1, p - 15 - 20 in Fig. 2). It is this region for which the technological

constraints are most easily satisfied. There are other high efficiency regions in the F-

p parameter space which can have efficiencies comparable to or greater than the peak

efficiencies in these usual operating regions. For the fundamental cyclotron interaction, a

second high efficiency region is present for F - 0.3, u - 25. For operation in this second

region, the electron beam is bunched by the rf field, and energy is extracted from the

bunch. However, before exiting the cavity, the bunch slips in phase enough for the rf field
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to begin doing work on the bunch. The bunch then advances in phase to the point where

the bunch again does work on the rf field, and the field energy has increased by the time

the electrons exit the cavity. This process is analagous to the synchrotron oscillations of

the electrons in the ponderomotive potential well of a free electron laser. Such a process

is more susceptible to velocity spread and space charge effects. Because of these problems

and other technological constraints, it is unclear whether a device could be designed to

operate in these additional high efficiency zones. We focus only on the region of F-p

parameter space containing the first high efficiency zone, and all quoted peak efficiencies

are for this first high efficiency region. Parts of these additional high efficiency regions are

visible on some of the isoefficiency contour plots shown.

The second harmonic isoefficiency F-p and I-pu contour plots are shown in Figs. 4 and

5, respectively. The Aopt contours are shown on Fig. 4; the I = IMIN and I = ISTART

lines are shown on Fig. 5. The peak efficiency is 77; = 0.72 and occurs for F = 0.22 and

y = 16.0.

The F-p and I-u contour plots for the fundamental and second harmonic shown here

are in good agreement with those previously calculated by Nusinovich and Erm.'8 They

are shown here for completeness. Isoefficiency contour plots for higher harmonics have not

been previously presented.

The third harmonic isoefficiency F-it and I-Ii contour plots are shown in Figs. 6 and

7. respectively. The peak efficiency at the third harmonic is t17 = 0.57, which occurs for

F = 0.15 and p = 16.75. The fourth harmonic isoefficiency F-p and I-p contour plots are

shown in Figs. 8 and 9. The peak efficiency at the fourth harmonic occurs at F = 0.09

and p = 21.0 and is Y_ = 0.45. The fifth harmonic F-p and i-p contour plots are shown

in Figs. 10 and 11. The peak efficiency at the fifth harmonic is 7_ = 0.36 and occurs at

14



F = 0.055 and u = 26.0.

A generalized expression for the starting current as a function of the detuning pa-

rameter A can be derived from equations (17) and (18). The ratio of IsT(A) and the

minimum starting current IMIN can be written as

IST(A) n 2 12
N jexp 2x2 ( - (19)

MI ,AMIN UX AMI N

where x is given by equation (18) and AMIN = 4x p. For n/p < 1, which is almost

always valid for harmonic gyrotrons, equation (19) simplifies to

IS T(A) (A exp - ). (20)
(I AMN ) 2 MIN

This simple expression for the starting current has no explicit dependence on harmonic

number or cavity length (p); the normalized IST depends only on the single magnetic field

parameter A. Equation (20) is plotted in Fig. 12.

Calculations have also been performed for the case where the longitudinal rf field

profile is an asymmetric gaussian. It is well known that the gyrotron efficiency is strongly

dependent on the axial field profile. Although complicated axial field profiles can yield

very high efficiencies. 4 it is often difficult to realize them in practice. One class of axial

field profiles which are not physically unrealistic and can be easily modeled are those of

an asymmetric gaussian. An asymmetric gaussian field profile with asymmetry parameter

A can be defined by

exp (A+1)z]] for z < 0;

exp - (A+]) 2 for z > 0.L_

For A = 1, the symmetric gaussian of equation (15) is recovered. For A > 1 the field profile

is that of an asymmetric gaussian for which the peak of the rf field is shifted towards the
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output end (z > 0) of the cavity. This profile has the same stored energy and e- width

for A - 1 as does the symmetric gaussian. so the definition of the current parameter is

unchanged.

The presence of even a moderate asymmetry in the axial field profile can substantially

increase both the maximum efficiency and the efficiency at other operating points corre-

sponding to non-optimum parameters. The F-p isoefficiency contour plot for the second

harmonic and an asymmetry parameter of A = 2 is shown in Fig. 13. Such a field profile

is not unrealistic for moderate and high diffractive Q gyrotron cavities. The use of an

asymmetric gaussian field profile for the design of harmonic gyrotrons would allow lower

wall loadings (lower F) than would a symmetric gaussian at the same efficiency 23

The results presented can also be applied to gyrotrons with open, Fabry-Perot type

resonators with a suitable redefinition of parameters. Operation at the fundamental in

such a resonator has bjen considered by Sprangle et al. 25; operation at harmonics has

been considered by Levush and Manheirner 26 . For a thin pencil beam propagating at a

right angle to the optical axis of the quasioptical Fabry-Perot resonator, the equations of

motion may be written as 27

du ni kxs = 2 F cos (kyg - ) f() (1 - u) sin0

dO 
n,,fu= A - u - nF cos (ky - 2 f() (1C- u)3 cosO

where k = 27r/A and yg is the electron guiding center coordinate along the resonator

axis. The field distribution function f( ) is a gaussian given by f(-) =exp-(2g/y)j,

this corresponds to the transverse profile of a TEMc,1 , gaussian beam. The dimensionless

parameters F, 1, and y, are defined as follows for the quasioptical gyrotron,
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FEo n-4 E (n
F Bo \2"- n!)

I 1.514 x 10-5 32(n-3) )2 n)2

30 d. uy \w 2'n!

The magnetic field parameter A is unchanged. The TEMO, gaussian beam e- radius

is w,. and d is the separation of the mirrors which form the quasioptical cavity. The

results presented in Figures 2-12 are immediately applicable to the case of a quasioptical

gyrotron with a pencil electron beam (kyg = constant). For an annular electron beam,

where yg Re sin p with p E [0,27r), an additional average over the electron guiding

centers yg is required to obtain the efficiency of a quasioptical gyrotron.

The above results for a circular symmetric cavity with a rotating rf field and a Fabry-

Perot cavity with a pencil beam can be extended to other field and cavity configura-

tions. Luchinin and Nusinovich have presented an analytic theory which relates the or-

bital efficiency as calculated above to the efficiency of gyrotrons with other geometrical

configurations2". The above results are thus applicable to other configurations. such as

that of a circular cavity with disturbed axial symmetry (e.g. slots) or a Fabry-Perot cavity

with an annular electron beam. Consequently, these nonlinear results allow the optimiza-

tion of the design of harmonic gyrotrons with many different geometries.
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IV. DISCUSSION

The general nonlinear results presented here have application to the design and anal-

ysis of harmonic gyrotrons. Because the efficiency and optimum magnetic detuning have

been calculated as functions of generalized parameters, the results are valid for a wide

range of operating conditions. In particular. provided the condition in equation (12) is

satisfied, the results are valid for arbitrary cavity mode, voltage, current, beam radius,

electron pitch factor, and cavity length.

As an example of the application of this nonlinear theory to an actual harmonic

gyrotron experiment, we consider the second harmonic generation of 25 kW of rf power at

241.02 GHz in the TE,,, 2 ,1 mode."3 For this experiment, the electron beam parameters

were 3_,/31( = 1.5, V6 = 64.3kV, IA = 6 A, and Re = 1.82mm. The rf longitudinal field

profile was calculated from a computer code29 and fitted with a gaussian. The width of the

gaussian determines L in the definition of p. For this experiment, L = 1.26 cm, y = 18.2,

and the diffractive and ohmic Q are 4800 and 15770. respectively. The current parameter is

I = 6.35 x 10-3 for a current of 6 A. From Figure 5, the transverse efficiency is 77 = 0.43,

and the total efficiency is thus rT = 0.23. The discrepancy between the theoretical and

experimental efficiency is probably due to a lower ohmic Q, higher diffractive Q due to an

improperly matched window, or beam velocity spread. 3

The value of presenting the efficiency in terms of normalized parameters lies not only in

the wide applicability of the results to experimental conditions, but also the resulting ability

to achieve optimized gyrotron designs. Ohmic heating of the walls, voltage depression of

the beam. beam thickness, and space charge effects all result in design constraints which

can be expressed in terms of the same generalized parameters 23. The combination of these

constraints and the isoefficiency contour plots allows a straightforward optimization of the
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design of harmonic gyrotrons.

The problem of mode competition and multimode oscillation has not been discussed

here. Operation at harmonics of the cyclotron frequency can be hampered by mode com-

petition from the fundamental and lower harmonics of we 30,31. However, careful choice of

operating mode, cavity design, and beam placement can allow high efficiency single mode

operation at harmonics of the cyclotron frequency.
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V. CONCLUSIONS

Numerical results have been presented for the nonlinear efficiency of gyrotron opera-

tion for the fundamental and second through fifth harmonics of the cyclotron frequency.

Efficiencies as high as 0.72, 0.57, 0.45, and 0.36 are reported for the second, third, fourth,

and fifth cyclotron harmonics, respectively.

The effect of asymmetric longitudinal field profiles has been demonstrated, and the

second harmonic efficiency has been presented for an asymmetric gaussian field profile

with asymmetry parameter A = 2. Such field profiles should be physically realizable in

actual cavity designs. Presentation of the nonlinear efficiency in terms of general normal-

ized parameters allows both the calculation of the efficiency for non-optimum parameters

such as may occur in experiments and the optimization of the design of harmonic gy-

rotrons. The existence of moderate efficiencies even for the higher (3w, - 5w,) harmonics

substantiates arguments for the development of high frequency (millimeter and submil-

limeter wave) gyrotrons by operation at harmonics. Alternatively, for lower microwave

frequencies, operation at harmonics could allow the use of very low magnetic fields.
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FIGURE CAPTIONS

Fig. 1 Coordinate system and definition of variables for analysis of harmonic gyrotron.

Fig. 2 Contour plot of transverse efficiency 7rL (solid lines) and optimum magnetic field

zopt (dashed lines) as a function of field amplitude F and cavity length /I for

fundamental cyclotron interaction (W Z we).

Fig. 3 Contour plot of transverse efficiency r-, (solid lines) as a function of normal-

ized beam current I and cavity length p for fundamental (w ~ w,) cyclotron

interaction. The I = IMIN and I = ISTART(Aopt) lines are shown.

Fig. 4 Contour plot of transverse efficiency r;L (solid lines) and optimum magnetic field

opt (dashed lines) as a function of field amplitude F and cavity length A for the

second harmonic cyclotron interaction (w - 2we).

Fig. 5 Contour plot of transverse efficiency i; (solid lines) as a function of normalized

beam current I and cavity length ju for the second harmonic (w - 2w,) cyclotron

interaction. The I = IMIN and I = ISTART(VOpt) lines are shown.

Fig. 6 Contour plot of transverse efficiency ,;j (solid lines) and optimum magnetic field

A0 pt (dashed lines) as a function of field amplitude F and cavity length yL for the

third harmonic cyclotron interaction (c - 3w,).

Fig. 7 Contour plot of transverse efficiency r7. (solid lines) as a function of normalized

beam current I and cavity length A for the third harmonic (w z 3wc) cyclotron

interaction. The I = IMIN and I = ISTAR T(Aopt) lines are shown.

Fig. 8 Contour plot of transverse efficiency i_ (solid lines) and optimum magnetic field

Apt (dashed lines) as a function of field amplitude F and cavity length U for the

fourth harmonic cyclotron interaction (w ; 4w,).
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Fig. 9 Contour plot of transverse efficiency rij (solid lines) as a function of normalized

beam current 1 and cavity length yu for the fourth harmonic (w ; 4w,) cyclotron

interaction. The I = ]MIN and 1 = ISTART(AOp) lines are shown.

Fig. 10 Contour plot of transverse efficiency r7_ (solid lines) and optimum magnetic field

A0 pt (dashed lines) as a function of field amplitude F and cavity length y for the

fifth harmonic cyclotron interaction (w z 5w,).

Fig. 11 Contour plot of transverse efficiency 171 (solid lines) as a function of normalized

beam current I and cavity length pu for the fifth harmonic (w a 5w,) cyclotron

interaction. The I = IMIN and I = ISTART(Ao~p) lines are shown.

Fig. 12 Generalized starting current as a function of relative magnetic field.

Fig. 13 Contour plot of transverse efficiency rL (solid lines) and optimum magnetic field

opt (dashed lines) as a function of field amplitude F and cavity length p for the

second harmonic and an asymmetric field profile with A = 2.
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