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Yexoc/oBANKHI MATEeMATHYECKHIT xkypoan 1. 12 (87) 1962, [ipara

GENERALIZED NORMS OF MATRICES AND THE LOCATION
OF THE SPECTRUM

MirosLAv FIEDLER and ViAstiMiL PTAK, Praha

(Received November 2, 1960)

The authors use norms with values in an ordered vector space to obtain
regularity conditions for matrices. These conditions are used further to define
regions of the complex plane which contain the whole spectrum of a given
matrix.

1. INTRODUCTION

In the present paper we intend to prove some general regularity conditions for
matrices and to deduce location theorems for the spectrum by applying these regula-
rity conditions to matrices AE — A. The main idea of the present work may be
sketched as follows: Consider a linear operator A in an n-dimensional complex
vector space X with a direct decomposition X = X, + ... + X,. The projection
operators on X; will be denoted by P,. Choose now, in each X, a suitable norm g,
and consider the vector

p(x) = (gl(Plx), g2(P2x)7 L] gr(Prx)).
as a generalised norm on X. The operator A is partitioned into blocks by the decom-

position of the identity operator E = P, + P, + ... + P,; we associate with each
block a nonnegative number and construct the matrix

Pi1s =P12> —DP13s - - -
I3(A) = | —Pas, D22 — P23 ---
We show further that A is regular if this matrix p(4) belongs to K, where K is an
important class of matrices discussed by many authors.

2. TERMINOLOGY AND NOTATION

If X and Y are two finite-dimensional vector spaces over the complex field, we shall
denote by L(X, Y) the vector space of all linear transformations from X into Y.
If A€ L(X,Y) we denote by N(4) the kernel of 4, i.e. the set of all x € X such that
Ax = 0. We denote by R(A) the range of 4, i.e. the set of all vectors of the form Ax
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with x € X. Both N(A4) and R(4) are linear subspaces of X and Y. If X = Y, the ele-
ments of L(X, X) will be called linear operators in X. An operator Pe L(X, X) is
called a projection if P2 = P. If Pis a projection in X, put Q = E — P where E is
the identity operator. It is easy to see that Q* = Q and PQ = QP = 0. Further
R(P) = N(Q) and R(Q) = N(P). If these subspaces are denoted by X, and X,
respectively, then X; and X, form a direct decomposition of X, in other words
each x € X may be written in exactly one way in the form x = Xy + x, with x; € X,

Let r be a positive integer and let V' be the real linear space of all vectors of the form
x = (X, X, ..., x,) with real coordinates x;. A vector x is said to be nonnegative
if x; 2 0 for each i. We write then x = 0. Similarly, a matrix W = (wy) of order n
is said to be nonnegative if w,, = 0 for each i and k.

Further, we shall use matrices of two special classes K and Ko. The class K (K, resp.)
contains all real square matrices whose off-diagonal elements are non-positive and
all principal minors positive (non-negative resp.). The fundamental properties of
these matrices may be found in the recent paper of the authors’ [3]- This paper is
in a close connection with the present one and will be here referred to several times.

Now, let us turn to the case when normed spaces are considered. Let g and h
be norms in X and Y respectively, we define a norm p = (g, h) in L(X, Y) in the
following manner. If 4 € L(X , Y), we put

p(A4) = sup (h(4x); g(x) < 1).
This is the usual norm of a linear transformation. If X = Y, we have the case of linear
operators in X; it is then customary to write simply g for (g, g). If Y is the real
line E,, we have the case of linear functionals on X. The norm g, |.]) on L(X, E,) =
= X' is called the adjoint norm of g and will be denoted by g’. Thus
g'(y) = sup (I<x, y1; g(x) £ 1).
In a recent paper [4], the authors have introduced a useful concept of a “reciprocal

norm”; let us recall its definition. If X and Y are linear spaces with norms g and h,
we define a function ¢ = %(g, h) in the following manner: if 4 € L(X, Y), we put

g(4) = inf (h(4x); g(x) = 1).
Clearly we have g(A4) = 0if A is singular. If 4 is regular, it is easy to show that q(A) =

= (p(4™"))™", where p = 1(h, g) on L(Y, X). If X = Y, we write simply ¢ for (g, 9)
in conformity with the convention already introduced for matrices.

(2,1) Let A, Be (X, X) and let g be a norm in X. Then
9(4B) = g(4) g(B) . ¢(4B) = g(4) §(B) .

Proof. If g(A4) = 0, the first inequality is obvious. Suppose that 4(4) + 0 so that
4(4) = (g(A~1))"1. We have then

g(B) = g(A™'AB) < g(4™") g(AB)
which proves the first inequality. The proof of the other estimate is analogous.
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(2,2) Let A, Be L(X, X) and let g be a norm in X. Then
g(4 + B) < g(4) + g(B).

Proof. There exists a vector x, such that g(x,) = 1 and g(Ax,) = §(A). We have
then

d(A + B) < g((4 + B) xo) < g(Ax,) + g(Bx,) =
= §(4) + g(Bxo) < 4(A4) + g(B) g(xo) = 4(4) + g(B)

and the proof is complete.

3. REGULARITY CONDITIONS FOR MATRICES

In this section, we intend to give so me general criteria for the regularity of a matrix
based on the use of generalized norms whose values are nonnegative vectors of an
r-dimensional linear space. We shall also use some properties of the class K which
may be found in [3].

Let n be a fixed positive integer and let X be an n-dimensional vector space over
the complex field. Let r be a positive integer and let Py, ..., P, be projectors in X
such that P;P; = 0 for i # j and that their sum P, + ... + P, equals the identity
operator in X. Let us denote by X, the spaces P;X. Let g; be a norm on X;. Consider
further the space V of all r-tuples of real numbers. The set of indices 1,2, ..., r will
be denoted by R.

With each x € X, let us associate a vector p(x) e V in the following manner:

(x) (gl(Pl X), gZ(P2x)3 sey gr(Prx)) .
1t is not difficult to verify that the mapping p has the following properties:

1° p(x) = 0 for each x € X and p(x) = 0if x = 0,
p(x + y) £ p(x) + p(y),
p(Ax) = |A] p(x) for every complex 1,
4° if p(x) = u + v where u, ve Vand u 2 0, v = 0, then there exist y and z in X
such that x = y + z and p(y) = u, p(z) = v.

It is sufficient to prove property 4° only. Take an x € X and suppose that p(x) =
= u + vwithu = 0and v > 0. Consider a fixed i € R. We have g{(Pxx) = u; + v,.
If g(Px) = 0, put y; = z, = 0. f w; = g,(P;x) > 0, put

u;

v,
y;,=—Px and z;=—Pux.
oWy W,

13 i

Clearly y; + z; = P;x in both cases so that we have y +z = x and p(y) = u,
pz)=vify=y,+ ...+ yandz =z + ... +z.

The mapping p will be called a generalized norm on X.
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Definition. Let 4 be an operator 4 € (X, X). A non-negative matrix .G of order r
is said to be an upper bound for 4 if

p(Ax) £ Gp(x)
for each x € X.

We have the following result:
(3,1) Theorem. Let A € L(X, X) and put
Py = sup {g(P:AP;x); g,(P;x) < 1}
for each i, je R.

Let us denote by p(A) the matrix with eleme nts p,;. Then p(A) is an upper bound
for A such that p(A) < G for every upper bound G of A.

Proof. Take an xe€ X and an i € R. Since x = Zij, we have
JjeR

9{Pidx) = g ) PiAP;x) £ ¥ piyg (P;x)
JjeR JjeR
whence p(4x) < p(A) p(x) so that p(A4) is an upper bound for 4. Further, let G =

= (g,;) be an upper bound for 4 and let i, j be fixed indices in R. We intend to show
that p;; < g,;. If x € X is arbitrary, we have, G being an upper bound for 4,

9{PiAPx) £ 3. gugu PP ;%) = 919 (Pp¥)
€R N
It follows that g(P.AP;x) < g,; whenever g,(P,x) < 1, so that p;; < g,; according
to the definition of p,;.

Definition. Let 4 be an operator 4 & L(X, X). A matrix H is said to be a lower
bound for A if

p(4x) z Hp(x)
foreach xe X.

We shall associate with every A e L(X , X ) a special lower bound which will be
important in further applications.

(3.2) Let Ac (X, X) and put
i = inf {g(P;APx); g(Px) = 1}
for each i e R. Let us denote by p(A4) the matrix

P11, —Pi2. —P13s + -5 —P1r
~P21s D225 —P23> - -5 ~ D2y

Then p(A) is a lower bound for A.
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Proof. Take an x € X. We have for the i-th coordinate
[p(4x)]); = g{P:Ax) = g ZRPiAij) >
. J€
z g{(PAPx) — Z*.gi(PiAij) Z pugdPix) — E,.Pijgj(ij)‘z [5(4) p(x)];
JFL JFi
which completes the proof.
(3,3) Theorem. Let A € L(X, X) and let H be a lower bound for A such that H € K.

Then A is regular. Further, p(A™") < H™ .

Proof. Take an x € X such that Ax = 0. Then 0 2 p(Ax) = Hp(x). The matrix H
being of class K, we have') H™* = 0 whence 0 = p(x) so that p(x) = 0, and, conse-
quently, x = 0. Since p(4x) = Hp(x) for each x € X, we have H™'p(y) = p(4A™'y)
for each y € X so that H™! = p(A~*) according to (3,1).

(3,4) Let Ay, A€ L(X, X) and A = Ay + A,. Let H be a lower bound for A,
and G an upper bound for A,. If H — G € K then A is regular.

Proof. According to the preceding theorem, it is sufficient to show that H — G
is a lower bound for 4. To see that, take an arbitrary x € X. Since 4 = 4, + 4,,
we have

p(4x) Z p(Asx) — p(42%) 2 Hp(x) — Gp(x) = (H — G) p(x)
and the proof is complete.
(3,5) Let Ay, Aye L(X,X) and A = A, + A,. Let H be a lower bound for A,

and G an upper bound for A,. Suppose that He K. If E — H™'Ge K then A is
regular.

Proof. We have H — G = H(E — H™'G) and both H and E — H™'G have
nonnegative inverses. It follows that H — G has a nonnegative inverse as well.
Since H e K and G = 0, we have?) H — G e K and our assertion follows from the
preceding theorem. ’

For the special lower bound p, we have the following estimate:
(3,6) Let A,Be L(X, X). Then
pA + B) = p(4) — p(B).
Proof. If i is a fixed index, we have
pif{A + B) Z pu(A) — pu(B)
by (2,2). If i + j, we have clearly ;
pifA4 + B) < pifA) + pi(B)
and the proof is complete.

1y [3], th. 4,3.
2y 3], th. (4,3).
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4. THE LOCATION OF THE SPECTRUM OF A MATRIX

In this section we use the regularity conditions for matrices to obtain estimates of
the spectrum. The notation is the same as in the preceding section. First, we shall
prove two lemmas.

@,1) Let £,,¢,, 0,d be real numbers such that d 20 and ¢, 2 ¢ — \/E >0
fori=1,2and 0 £ Y& + ¢&,). Then £,&, = 6® — d. Moreover, if £, > o — Jd
for i = 1,2, then £,¢, > ¢ — d.

Proof. We may clearly assume &, = &,. Suppose that £,&, < 6% — d; it follows
that .
¢ —d> 5152 = %(61 + fz)z - %(51 - &2)2 2 o - 5;(51 - 52)2 .

Hence &, — &, > 2\/3‘ Now,
&ié, = [%(51 + 62) + %(51 - 52)] fz 2 (U + ﬂ) (‘7 - \/2) =0 ~d> 6162 .
This contradiction proves the first part of the lemma. The rest is obvious.

, 4,2) Let 5y n,, 0 be non-negative real numbers such that o > i(n, + n,).
Then 6* > yyn, and for i = 1,2 6 — /o> —nqm, S m < 0 + /o> — nn,
Proof. Since o > X, + n,) = /n11, We have 6> — nyn, > 0. Let i be one of
the indices 1,2. If 5, = 0, the inequalities considered are valid. Let thus ; > 0. Then
n{26 — n;) > nyn,, whence (n; — 0)*> = o* — n20¢ — n;) < 6* — nyn,. Conse-

quently, ]‘ni — o| < /6% — nyn, which completes the proof.
(4,3) Theorem. Let A € L(X, X),

pij = sup {g{P:AP;x); g{(P;x) <1}, (i,jeR),
pi(A) = inf {g[P(A4 — AE) Px]; g{P:x) = 1}

for every complex number A.
Let ¢y, ¢,, ..., ¢, be real numbers such that the matrix

Cis —DPi12>++0 ~ D1y
M= =P21> €25 vy — P2y
~Prts T Pr2s --0 Cr

belongs to K,. Let C; (i € R) be the set of all complex numbers z such that p,{z) < ¢,.

Then all proper values of A are contained in \J C,.
ieR

Proof. Let A non € U C,. Then p;{(2) > ¢; for each ie R. By (4,6) of [3], the
matrix fek
P11(4), —P12s --s Pss
P(A = AE) = | = P21, P2a(A), -, Doy

—Prts T DPr2s ces ﬁrr(l)
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belongs to K and, since p(4 — AE) is a lower bound for A — AE according to (3,2),
A — AE is regular by (3,4). Thus all proper values of 4 are contained in {J C;.

ieR
(4,4) Theorem. Let A € L(X, X),
pi; = sup {g{PAPx); g{Pyx) £ 1}

fori,jeR. Let ¢y, ¢,, ..., ¢, be real numbers such that the matrix
Cys —Pi2s -5 — D1y

M = —DP21s Cas «ov5s T Pop

belongs to K,. Let
pifA) = inf {g[P(4 — JE) Px]; g{(Px) 2 1}.
For i,jeR, i = j, let C;; denote the set of those complex numbers z which satisfy
the inequality
ﬁii(z) ﬁjj(z) = ¢
Then, each proper value of A is contained in some Cy; (i % j).
Proof. Let A be a complex number fulfilling the conditions A non e C;; for all
i,jeR,i =% j. Then
bidA) bif2) > e (i) .
According to (4,10) of [3], the matrix
P1a(A)s =Pizs s = D1y
"ﬁ(A _ /IE) — | ~Pa21> P22(A), -0y — P2y

, . ~Drts = Pr2s - DolA)
belongs to K. By (3,2) and (3,4), A — AE is regular. The proof is complete.

{4,5) Theorem. Let A, D, Be I(X,X), A= D + B, and let P.DP; =0 for
i#j,i,jeR. For ieR and J complex, let us denote by p;(A) the number
inf {g,[ P(D — AE) P;x]; g{(P:x) = 1}, let p;; = sup {g(P,BP;x); g(P;x) < 1},i,jeR.
Let real numbers cy, ¢, ..., ¢, satisfy the following conditions:

1° the matrix

‘ €1 — P11> — P12 s TPy

— P21 €2 = P225 .45 —Pap

belongs to K.

2° foranindexie R, foralll % i(l e R)and all complex A there exist numbers h,
such that

G+ <h, £ ﬁii(}') + ﬁu(/l)-
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If C¥ is the set of all complex numbers z such that

ﬁii(z) = %I?SX [hil + pii— pu— \/(hil = Pii — Pu)2 - 4’(Ci - pii) (01 - Pu)] >

C{(j € R) the set of those complex z satisfying p;{z) < ¢; and C = {J C,, then
il
1°CqcCy;2°C, 0 C =0
3° if d, is the dimension of P;X then exactly d; proper values (with corresponding

multiplicities) of A are contained in C¥, all remaining proper values of A being
contained in C.

Proof. If we put ¢ = h;; — py; — Pu, s = ¢; — Py Nz = € — Py N (4,2), we
obtain that :

%[hn + P = Pu — \/(hil - Pii — Pu)2 - 4(Ci - pii) (Cz - Pu)] = ¢

Thus, C¥ = C,. Suppose that 1 € C; n C. Then there exists an index [ # i such that
Ae C,. According to assumption 2°,

¢+ e < PilA) + Puld) = ¢ + ¢

which is a contradiction. Thus, C; n C = §. It remains to prove 3°. Let Anone
none Cf v C.Letj, keR,j = k. We shall prove that

(P32 — pis) (Pul2) — P > (¢; = pj) (e = Pi) -
Let us distinguish two cases:
a) Let p;{4) > ¢;, Puld) > ¢ then the inequality considered is fulfilled since
¢,, — Pmm = 0 for m € R according to assumption 1°.
b) Let one of the indices j, k, say j, satisfy ﬁjj(,l) < c;. Then, since Anone C,
i = i and (A non e C})

%[hik + Pii — Pk — \/(hik = Pii — pkk)2 - 4(Ci - pii) (Ck - pkk)] <
<pfA) =S¢
Now, put for a moment,
ﬁii(”{) — Pii = C1 ﬁkk(’{) —P=C&, ¢~ Pu=MNs Ck— P = N2,
%(hik - Pii — Pkk) =0, %(hik - Piu pkk)z - (Ci - pii) (Ck - pkk) =d.

Thus, ny 2 & > 0 — \/3. By (4.2), 1, 2 0 — \/B since ¢ > 3(1, + 1,). If follows
that &, + o — \/d. But

g = %(hik - Pii — pkk) = %(ﬁii(/l) - pu) + %Z(ﬁkk(}“) - pkk) = %(51 + &)
according to our assumption. By (4,1),
(ﬁii(/l) - pii) (ﬁkk()“) - pkk) = §6, > o’ —d = (Ci - Pﬁ) (Ck - Pu)

and the inequality considered is valid, too.
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By theorem (4,10) of [3], the matrix

1311()-) - Pi1» — P12, caey —P1r
M, = —P21» 1522('1) — D225 -+ - —Par
| =

—Pr1» —Pra2» [ERE) ﬁrr(}') = Prr
belongs to K. From (3,6), applied for D — AE and B, it follows that p(4 — AE) =
= M,. Consequently,”) p(4 — AE) e K. By (3,2) and (3,4), A — AE is regular. Thus,
all proper values of A are contained in C} U C, the sets C} and C being disjoint.
Now, let 0 < ¢ < 1 and let us denote by A(¢) the matrix D + ¢B. Since the matrix

¢1 ~ €pi1s —Epyas ey —Epy,

- ) Cy — s cves —EDay
M(¢) = P21 2 — &p22 ¢p;

—"éprl’ —gprZ# ey € — fprr

belongs to K, the assumptions of our theorem are valid for 4(&) = D + ¢B as well.
The sets C; and C being independent of &, all proper values of A(¢) are contained
in C; L C. Since C; is disjoint from C, a continuity argument yields that C; contains
the same number of proper values of A(0) = D and A(1) = A. Since P,DP, = 0
for u = v, it follows that D — AE singular if and only if P,DP; — AP; is singular
in P;X for some index j e R. Now, P,DP, — AP, is singular in P, X for exactly d,
numbers 4 (each considered with its multiplicity); all of them are contained in C,
since p;(4) = O for these values of A. If j # i, P;DP; — AP, is regular in P;X
for A non e C;. But C; is disjoint from C;, and consequently, exactly d; proper values
of D are contained in C,. Since C; — C¥ contains no proper values of A, the proof
is complete.

In [4], the notions of tensor products have been used to obtain more convenient
estimates. We shall recall the most important properties specialized for matrices and
I,-norms. These norms can be easily evaluated if p = 1, 2, and 0.

If A and B = (b,;) are matrices, then 4 ® B denotes the partitioned matrix

Abyy, Aby,, ...
Aby,, Ab,,, ...

Especially, if a, b = (b;) are column vectors with ny, n, respectively rows, i.e. in
linear spaces X;, X, of dimensions n,, n, respectively, then all column vectors
spanned by tensor products

ab,
a®b={ab,

3y 31, th. 4,6.
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with a € X; and be X, form a linear space X5 of dimension ny = nyn,. If xe X,
(i =1,2, 3) with coordinates x;, x,, ..., x,, and p = 1 then the /,-norm of x is

gip(x) = (i |x|Pyre.

i=1

It is easy to see that if 4 and B are square matrices of orders n;, n, respectively,
a € X, and b € X, vectors, then

(A®B)(a®b)=Ada® Bb, g3, (a®b) =g, (a)g,(b).
If we define as usually the norm of a matrix C € L(X, X)
9:(C) = sup {g:,(Cx) 5 gi,(¥) = 1}
xeXy
and the “reciprocal norm”
é;_,,(C) = inf {g,-,,,(Cx) i gis(x) = 1),
xeX;
i = 1,2, 3, then the following theorem follows from theorem (6, 2) of [4]:

4,6) If A, (i = 1,2) are square matrices of orders n; and E; identity matrices
of orders n;, then

3,(41 ® E; — By ® 4)) S §1,,(Ar — AE) + g5,,(42 — 2Ey)
for every complex number A.

Remark. This inequality can be used in theorem (4, 5) specialized for matrices
and [ -norms since it is possible to choose

hy=pD;,®E, - E ® D)
where D, is the corresponding matrix of P, DP,.
@4,7) If in (4,6) Ay = c,E,, then
§3.(Ay ® E; — Ey ® Ay) = g1 ,(A1 — E1);
if Ay = ¢,E,, then
é3.p(A1 ®E,-E® Az) = éz.p(Az - ClEz)'
Proof. Let A, = ¢,E,. Then
G4y ® Ey — Eq ® A5) = §5,[(41 — ¢:E;) ® E,].
But g5 (B; ® E;) = gy ,,(B,) since the /,-norm has the property that the norm of
a direct sum g <C1,2> with C; square is equal to max [g(C,), 9(C,)]. Thus,
, G

d3,(Bi ® E;) = § 1‘,1,(31) as well and the first part is proved. The proof of the second
part is analogous.
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5. SPECIAL CASES

In this section we shall specialize the results obtained in section 4 and we intend
to show that the well known theorems of S. A. GERSHGORIN, A. OSTROWSKI,
Ky FAN and A. BRAUER are contained therein.

The first special case is obtained if » = n, i.e. if the dimensions of P, X are all
equal to 1. Then, for A = (a;;), p;; = lagl, Pi(A) = Ja,; — .

Put p; = ¥ la;l, q; = Y. la;;| and consider the matrix

JFi JFi
¢ —lagl, oo —lay,l
W = vla'le’ Ca, ey —"la2nl
—[anll’ —Ianzla cens Cn

We have shown in (6,8) of [3] that We K, if ¢; = p, for all ie{1,2,...,n} =
or if ¢; = g, for all ie N. Similarly, We K, if ¢, = piql ™ for some 0 < a < 1.
The preceding remarks and the theorems (4,3), (4,4) and (4,6) of the present paper
yield immediately the well-known estimates of S. A. Gershgorin [5], A. Ostrowski [6]
and A. Brauer [1]:

(5,1) Let A be a matrix and let p;, = Z‘la,-jt, q; = Y. laj]. Then the spectrum
of A is contained in each of the following Js:lbsets of thel:olmplex plane:

(1) the union of the circular disks |a;; — A| < p; for ie N;

(2) the union of the circular disks |a;; — | £ q; for ie N;

(3) the union of the circular disks |a; — A| < piq; * for i € N and any ( fixed) «,
0<a<l;

(4) the union of all ovals
la;; — Al Ia'jj —- A = p"pi‘qf a‘]} *
fori,je N andi =+ j, where o is a number, 0 < o < 1.
Moreover, if la;; — a;;| > p; + p;foralli,je N, i % j, then each circular region
la;; — Al £ p; contains exactly one proper value of A.

Further, a combination of theorem (4, 3) of the present paper and of theorem (6,4)
of [3] yields immediately the following estimate which is a generalization of a result
of A. Ostrowski [6].

(5,2) Let A = (a;;) be a matrix,letp > 1 and put g, = Y |a,l, gp) = ( X, la;;|?)'"?
J¥i Jj¥i

for i€ N. Further, let ky, ..., k, be positive numbers. Denote by W the set of those
j€N for which [g{p)] 'g; > k;. If W = 0, put

m = max (1 + k)7,
jew
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the number q being connected with p by the relation p + q = pq. Let M, be the
set of those j € N for which (1 + kI)™' < m%0;k; % where

a (g,-g(;)){'

o=y (1L+ k) +m! Y ok

ieMo ieN—Mo

Put

If either W = 0 or ¢ < 1 then the spectrum of A is contained in the union of the
circular disks |a; — Al £ kig(p) for ieN.

Analogously, from the theorem (6,5) of [3] follows the following theorem due
to K. FaN and A. J. HorrMaN ([ 2], the 1,5):

(5,3) If, in the notation of the preceding theorem, there exists a positive o such

tnat
C\e
Z (_g‘__> < oc"(] + oc") R
ien \g{p)
then the spectrum of A is contained in the union of the circular disks
lay; — 4] < 0‘91‘(17) , ieN.

Let us turn now our attention to another important special case when r = 2. We
shall formulate these theorems in terms of matrices, the norms being specialized for
the case of I,-norms (indices of g, , will be omitted).

(5,4) Theorem. Let A = D + B be a partitioned matrix

A = (Dl + By, By )
By, Dy + By,
where Dy, D, (and By, B,,) are square matrices of orders dy, d, resp. Let us denote
by p;; the lnorms (i,j = 1,2)

Py = 5“}? {g(Bijx); g(x) =1
XEX |
where X ; is the space of d-rowed column vectors, and by E; (j = 1, 2) the identity
matrix in L(X;, X ).

If

h = é(Dl ® E; — E; ® D) < pyy + Paz + 2\/-17121’21 ,
then the regions C¥, C¥ resp. of those complex z numbers fulfilling the inequalities
Ct: é(Dl —zE;) £ %[h + P11 — P2z — \/((h = P11 1722)2 - 4P12P21)] .
C;k: é(Dz - ZEz) = %[h - P;1 + P2z — \/((h - P11y — P22)2 - 4P12P21)]
respectively, contain dy, d, resp. proper values of A, each considered with its

multiplicity.
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Proof. Follows immediately from theorem (4,5) if we choose ¢; = pyy +
+ \/(p12p21)9 ¢y = P2z + /(P12P21)-

Remark 1. If, in the notation of the preceding theorem, D, = ¢,E,, the lemma
(4,7) enables us to simplify the estimate since then h = g(D, — ¢,E,) and p(D, —
— zEy) = |z — ¢4].

Remark 2. If p = 2 and if D,, D, are both normal, then C} (i = 1, 2) is the sphe-
rical neighborhood of the set of all proper values of D; and 4 is the distance of these
sets (cf. [4], section 8).

(5,5) Theorem. Let the matrix A = (aij) be partitioned in the following manner:

dqg, a
A=<j1 L.
as, Az

If b = §(ayE;, — Azs) < 2/p1p, where py = g(ay), pa = g'(ay), then the cir-
cular disk

z — ay,] < 3[h —/(B* — 4p,p,)]

contains exactly one proper value of A; all remaining proper values are contai-
ned in the region

9(422 — zE,) = ;[h - \/(hz — 4p1p,)] -
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Pesrome

OBOBHEHHBIE HOPMBI MATPHUILL U PACIIOJIOXXEHWUE
X CIEKTPA

MUPOCHAB ®UAJIEP u BJIACTUMMII TITAK (Miroslav Fiedler a Viastimil Ptak), Ipara

Iycts X n-mepHOE KOMIIIEKCHOE BEeKTOPHOE HpocTpaHcTso. Ilon o6oGmenHoi
HOPMO#1 IoApasymMeBaeTcst 0TOOpaxeHHe p NPOCTPAHCTBA X B HEOTPHIATEIHHYIO
4aCTh F-MEPHOTO NEHCTBUTENBHOIO JMHEHHOIrO NMPOCTPAHCTBA, ONpEENeHHOE Clie-
ayromum o6pazom:

ITycTh 1ano mpsiMoe pasjoxenue npocrpancrsa X = X, + ... + X, 4 B KaxXI0M
n3 NpOCTpaHcTB X; kaxas-aulOyap HopMa ¢;. Eciu [ = P, + ... + P, - cooTBeT-
CTBYIOILIEE PA3I0KEHHE CAUHUYIHOTO ONEPATOPA B CYMMY HPOSKLHOHHBIX ONEPATOPOB
(takuto X; = P.X), T0 0606mennas HopMa p(x) onpesieiena bopmytoi

p(x) = (g 1(P1x), ooy g,(P,x)) .

B nacrosimei pabore moHATHE 0GOGIIEHHON HOPMBI MCIOIbL3YeTCA IUIS BHEIBONA
YCHOBMH DEryNAPHOCTH MATPHIL W JUISL MCCIEJOBAHMM DPACIOJNOXKEHHS CHEKTPa
MaTpHL B KOMILJIEKCHOM IUIOCKOCTH.

B naparpade 3 nokasbIBaroTCs HEKOTOpHlE JOCTATOYHBIC YCJIOBMS IS PEryIsp-
HOCTH MATPHIIBI, MCTIOJIL3YIOUIME ONpEAeNCHHYI0 00OCIIEHHYI0O HOPMY MAaTpHLI,
KOTOpas MoJryyaeTcs U3 0OCOLICHHO! HOPMBI BEKTOpPA aHAJIOTUIHBIM 06pa3oM Kak
B KJIACCHYECKOM CJlyYde HOPMa JIMHEHHOT0 OTepaTopa MoJiyueHa U3 HOPMBI BEKTOPA.

OcHoBHbIE pe3ysIbTaThl coziepxkaTcs B reopemax (3,3), (3,4) u (3,5). B naparpage 4
HPUMEHSIOTCSL 9TU TEOPEMBI K MaTpumam Buma AE — A 1 [0xa3bIBAIOTCS [MMEHHO
B (4,3) 1 (4,4)] TeOpeMBI 0 PACIOJIOXKEHHIO CTIEKTPA MATPHILL. B nociaeHeM napa-
rpade CuENEANM3UPYIOTCS Pe3yNsTaTHl maparpada 4 (Hanp. mis r=n u r = 2)
U yKa3biBaeTCA, YTO oHM o0OobmiaroT m3BecTHbIC TeopeMel I'epuiropuna, Bpayepa,
OcTpoBckoro u ap.
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