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It is known that retarded functional differential equations (RFDEs)
can be regarded as generalized ordinary differential equations (we write
GODEs). See [2, 6, 7]. In this paper, we prove the equivalence between
RFDEs with pre-assigned moments of impulse effects and a certain class
of GODEs introduced in [8] using some ideas of [2, 6, 7]. We state results
on the existence, uniqueness and continuous dependence of solutions for
this class of GODEs and we use them to obtain fine results concerning
the corresponding impulsive RFDEs.

1. Introduction

The beginning of the theory of impulsive ordinary differential equations
(impulsive ODEs) goes back to 1960 in a paper by V.D. Mil’man and A.D.
Myshkis [5]. The difficulties and peculiarities encountered in this theory
such as “beating,” “dying,” “merging,” noncontinuation of solutions, etc.,
were slowly overcome. In recent years, the qualitative analysis of impulsive
ODEs has been studied extensively and even a significant progress has been
made in the theory of impulsive retarded functional differential equations
(RFDEs).

In order to generalize certain results on continuous dependence of solu-
tions of ODEs with respect to parameters, J. Kurzweil introduced, in 1957,
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what he called generalized ordinary differential equations (GODE) for Eu-
clidean and Banach space-valued functions (see [4]). The theory of GODEs
is extensively described in [8].

The correspondence between GODEs and ODEs is simple. Indeed, it is
known that the ODE

ẋ = f (x, t)
(
ẋ =

dx

dt

)
(1.1)

is equivalent to the integral equation

x(t) = x(t0) +
∫ t

t0

f(x(τ), τ)dτ, (1.2)

when the integral exists in some sense. It is also known that, when the
integral in (1.2) is in the sense of Riemann, Lebesgue (McShane) or Henstock-
Kurzweil, then it can be approximated by a sum of the form

m∑
i=1

f(x(τi), τi)[si − si−1]

or, alternatively, if we define F (x, s) =
∫ s
s0

f(x, σ)dσ, then the integral in
(1.2) can be approximated by

m∑
i=1

∫ si

si−1

f(x(τi), σ)dσ =
m∑

i=1

[F (x(τi), si) − F (x(τi), si−1)] , (1.3)

where t0 = s0 ≤ s1 ≤ . . . ≤ sm = t is a fine partition of the interval
[t0, t] and, for each i, σi is “close” to [si−1, si]. In the second case, the
right-hand side of (1.3) approximates the Kurzweil integral which, in turn,
originates a differential equation in a wider sense when replaced in (1.2).
Such a differential equation is known as a generalized ordinary differential
equation (see Definitions 2.1 and 2.7 in the sequel). In this manner, a one-
to-one relation between ODEs and GODEs can be established.

The correspondence between GODEs and RFDEs without impulses was
first investigated in 1966 by C. Imaz and Z. Vorel and by F. Oliva and Z. Vorel
under rather technical assumptions (see [6] and [7]). Later, M. Federson and
P. Z. Táboas proved in [2] the same correspondence in a setting more close
to [8]. Yet in [2] the theory of GODEs was useful in the investigation of
topological dynamics of RFDEs. More specifically it was proved that, under
very weak conditions where the limiting equations are no longer differential
equations in the usual senses (retarded or even ordinary), it is possible to
construct a local flow by means of GODEs.
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To specify one advantage of the GODEs theory over the classical theory,
we mention an article by Z. Artstein (see [1]). Even in the simple ordinary
case, if we consider certain Carathéodory- and Lipschitz-type conditions,
one is not always able to obtain results which require, for instance, the
completeness of the space of functions (or equations, since we can identify
ẋ = f (x, t) with f) satisfying (*) and (**) below. Indeed, the space of
ODEs fulfilling such conditions does not contain all its limiting equations.
Indeed, consider (1.1) again and assume f : Ω × R → R

n, with Ω ⊂ R
n

open, is measurable in t and continuous in x. Consider also the topology
characterized by the convergence

fk → f0, if
∫ t

0
fk(x, s)ds →

∫ t

0
f0(x, s)ds, (x, t) ∈ Ω × R

and the following properties:
(*) for each compact A ⊂ Ω, there is a locally Lebesgue integrable func-

tion MA (t) such that x ∈ A implies

|f (x, s) ds| ≤ MA (s) ,

where
∫ t+h
t MA (s) ds is uniformly continuous in t;

(**) for each compact A ⊂ Ω, there is a locally Lebesgue integrable func-
tion LA (t) such that x1, x2 ∈ A implies

|f (x1, s) − f (x2, s)| ≤ LA (s) |x1 − x2|.
Let F0 be a continuous nowhere differentiable function. Then there exists

a sequence in C1, say Fj , j = 1, 2, . . ., which converges uniformly to F0.
Moreover, if fj is the derivative of Fj , then

∫ t
0 fj(x, s)ds converges for all

(x, t). However, the limit

F0(x, t) = lim
∫ t

0
fj(x, s)ds

does not have an integral representation as F0(x, t) =
∫ t
0 f(x, s)ds. Since

we can associate an equation of type (1.1) with each fj , it turns out that
the solution of the equation is, up to a constant, the primitive Fj of fj .
Therefore the limiting solution F0 is not a solution of an ODE. But this
kind of problem is overcome when the GODEs theory is applied. Other
examples of applications of GODEs theory can be found in [1], [2], [4] and
[8], among others.

In the present paper, we consider the initial-value problem for an RFDE

ẏ (t) = f (yt, t) , yt0 = φ, (1.4)
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where f (φ, t) : PC ([−r, 0], Rn) × [t0, t0 + σ] → R
n, with σ > 0 and r ≥ 0,

and t �→ f (yt, t) is Lebesgue integrable and satisfies conditions similar to
those used in [2]:

(*′) there is a Lebesgue integrable function M : [t0, t0 +σ] → R such that
for all x ∈ PC1 and all u1, u2 ∈ [t0, t0 + σ],∣∣∣ ∫ u2

u1

f (xs, s) ds
∣∣∣ ≤ ∫ u2

u1

M (s) ds;

(**′) there is a Lebesgue integrable function L : [t0, t0 + σ] → R such that
for all x, y ∈ PC1 and all u1, u2 ∈ [t0, t0 + σ],∣∣∣ ∫ u2

u1

[f (xs, s) − f (ys, s)] ds
∣∣∣ ≤ ∫ u2

u1

L (s) ‖xs − ys‖ ds,

where PC1 is a certain open subset of PC([t0 − r, t0 + σ] , Rn). In addition,
we consider impulses

Δy (tk) = Ik (y (tk)) , k = 1, . . . , m,

where tk, k = 1, . . . , m with t0 < t1 < . . . < tk < . . . < tm ≤ t0 + σ are
pre-assigned moments of impulse, y �→ Ik (y) maps R

n into itself and

Δy (tk) := y (tk+) − y (tk−) = y (tk+) − y (tk) , k = 1, 2, . . . , m,

and we are mainly concerned with
• embedding RFDEs fulfilling (*′) and (**′) with impulse operators

fulfilling similar conditions in a space of GODEs.
We prove that under pre-assigned moments of impulse effects, an RFDE
can still be related to a “non-impulsive” GODE with values in a Banach
space and there is a one-to-one relation between the solutions of an impulsive
RFDE and the solutions of the corresponding GODE. We are also concerned
with

• stating fundamental results for impulsive RFDEs by means of the
GODEs theory.

Here we prove existence, uniqueness and continuous dependence of solutions
on the initial data. We also discuss the maximal interval of existence.

Regarding continuous dependence, for instance, our result (namely The-
orem 4.1) encompasses previous ones (see e.g. [2], Theorem 5.3 and [9],
Theorem 4.2; the latter for the case when the impulse operator does not
involve delays). In general, one can not expect that an impulsive delay dif-
ferential system depends on the initial data. In [9], the authors present an
elucidative discussion on continuous dependence of solutions of an impulsive
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delay differential equation whose impulse operators also involve delays. Our
result does not take into account delays in the impulsive operators. On the
other hand, we do not require that f be continuous. In fact, our assumptions
rely on the indefinite integral of f instead.

One of the advantages of treating RFDEs with (or without) impulses by
means of the theory of GODEs is that the theory of GODE is developed
to a great extent. The assumptions usually concern the indefinite integral
(in some sense) of the functions involved in the equations instead of the
functions themselves. This leads to very fine and general results. Also,
because impulsive RFDEs can be regarded as GODEs, it is possible to obtain
good results with short proofs just by transferring the results from one space
to the other through the relation between the solutions.

We organized this paper as follows. In Section 2 we present the basic
knowledge concerning GODEs on the basis of [8]. In Section 3 the rela-
tion between impulsive RFDEs and GODEs is studied under relatively weak
conditions on the entries of the impulsive RFDEs. A continuous dependence
result for GODEs from [8] is used to get a result of this type for RFDEs in
Section 4. Since the results from Sections 3 and 4 are presented for solutions
on compact intervals and have a local character, in Section 5 the elements
of studying global (maximal) solutions of RFDEs are shortly described.

2. Generalized ordinary differential equations

A tagged division of a compact interval [a, b] ⊂ R is a finite collection of
point-interval pairs (τi, [si−1, si]), where a = s0 ≤ s1 ≤ . . . ≤ sk = b is a
division of [a, b] and τi ∈ [si−1, si], i = 1, 2, . . . , k.

A gauge on a set E ⊂ [a, b] is any function δ : E → (0,+∞).
Given a gauge δ on [a, b], a tagged division d = (τi, [si−1, si]) is δ-fine if,

for every i, [si−1, si] ⊂ {t ∈ [a, b] ; |t − τi| < δ (τi)} .
Let X be a Banach space. In the sequel we will use integration specified

by the following definition.

Definition 2.1. A function U (τ, t) : [a, b]× [a, b] → X is Kurzweil integrable
over the interval [a, b] if there is a unique element I ∈ X (I =

∫ b
a DU (τ, t))

such that, given ε > 0, there is a gauge δ of [a, b] such that for every δ-fine
tagged division d = (τi, [si−1, si]) of [a, b], we have

‖S (U, d) − I‖ < ε,

where S (U, d) =
∑

i

[U (τi, si) − U (τi, si−1)].
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This type of integration is due to Jaroslav Kurzweil and it was described
extensively in Chapter I of [8] for the case X = R

n (see Definition 1.2n
in [8]).

Checking the results concerning this integration in [8], it can be easily
seen that the results presented there can be transferred without any changes
to the case of X-valued functions U (τ, t) : [a, b]× [a, b] → X. Let us mention
a few of them. The integral has the usual properties of linearity, additivity
with respect to adjacent intervals, etc.

An important result which will be used later concerns the integrability on
subintervals and is stated next (see Theorem 1.10 in [8]).

Lemma 2.2. Let U (τ, t) : [a, b] × [a, b] → X be integrable over [a, b]. Then∫ d
c DU(τ, t) exists, for each interval [c, d] ⊂ [a, b].

The following result is known as the Saks-Henstock lemma (see Lemma
1.13 in [8]).

Proposition 2.3 (Saks-Henstock lemma). Let U (τ, t) : [a, b] × [a, b] → X.
If, for every ε > 0, δ is a gauge of [a, b] such that for every δ-fine tagged
division d = (τi, si) of [a, b],∥∥∥∑

i

[U (τi, si) − U (τi, si−1)] −
∫

[a,b]
DU (τ, t)

∥∥∥ < ε

then, for a ≤ c1 ≤ η1 ≤ d1 ≤ c2 ≤ η2 ≤ d2 ≤ . . . ≤ cl ≤ ηl ≤ dl ≤ b, with
ηj ∈ [cj , dj ] ⊂ [ηj − δ (ηj) , ηj + δ (ηj)], j = 1, 2, . . . , l,∥∥∥∑

j

[
U (ηj , dj) − U (ηj , cj) −

∫
[cj ,dj ]

DU (τ, t)
]∥∥∥ < ε.

The following result is an important Hake-type theorem (see Theorem
1.14 in [8]).

Lemma 2.4. Let a function U : [a, b] × [a, b] → X be given such that U is
integrable over [a, c] for every c ∈ [a, b) and let the limit

lim
c→b−

[ ∫ c

a
DU(τ, t) − U(b, c) + U(b, b)

]
= I ∈ X

exist. Then the function U is integrable over [a, b] and∫ b

a
DU(τ, t) = I.
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Similarly, if the function U is integrable over [c, b] for every c ∈ (a, b] and
the limit

lim
c→a+

[ ∫ b

c
DU(τ, t) + U(a, c) − U(a, a)

]
= I ∈ X

exists, then the function U is integrable over [a, b] and∫ b

a
DU(τ, t) = I.

This leads to the following (see Theorem 1.16 in [8]).

Lemma 2.5. Let U : [a, b]× [a, b] → X be integrable over [a, b] and c ∈ [a, b].
Then

lim
s→c

[ ∫ s

a
DU(τ, t) − U(c, s) + U(c, c)

]
=

∫ c

a
DU(τ, t).

Remark 2.6. Lemma 2.5 shows that the function given by

s ∈ [a, b] �→
∫ s

a
DU(τ, t) ∈ X,

i.e., the indefinite integral of U, may not be continuous in general. The
indefinite integral is continuous at a point c ∈ [a, b] if and only if the function
U(c, ·) : [a, b] → X is continuous at the point c.

Note that if U : [a, b]× [a, b] → X is integrable over [a, b], then by Lemma
2.2 the indefinite integral of the function U is well defined on the whole
interval [a, b].

Having the concept of Kurzweil integrability of a function U : [a, b] ×
[a, b] → X, we are able to define the notion of a generalized ordinary differ-
ential equation.

Let an open set Ω ⊂ X × R be given. Assume that G : Ω → X is a given
X-valued function G(x, t) defined for (x, t) ∈ Ω.

Definition 2.7. A function x : [α, β] → X is called a solution of the gener-
alized ordinary differential equation

dx

dτ
= DG(x, t) (2.1)

on the interval [α, β] ⊂ R if (x(t), t) ∈ Ω for all t ∈ [α, β] and if the equality

x(v) − x(γ) =
∫ v

γ
DG(x(τ), t) (2.2)

holds for every γ, v ∈ [α, β].
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The integral on the right-hand side of (2.2) has to be understood as the
Kurzweil integral introduced by Definition 2.1.

Given an initial condition (z0, t0) ∈ Ω the following definition of a solution
of the initial-value problem for the equation (2.1) will be used.

Definition 2.8. A function x : [α, β] → X is a solution of the generalized
ordinary differential equation (2.1) with the initial condition x(t0) = z0 on
the interval [α, β] ⊂ R if t0 ∈ [α, β], (x(t), t) ∈ Ω for all t ∈ [α, β] and if the
equality

x(v) − z0 =
∫ v

t0

DG(x(τ), t) (2.3)

holds for every v ∈ [α, β].

Remark 2.9. Let U(τ, t) = G(x(τ), t). In the definition of
∫
[a,b] DG (x (τ) , t)

there are only differences such as

U (τi, si) − U (τi, si−1) = G (x (τi) , si) − G (x (τi) , si−1) .

Thus, adding to G (x(τ), t) a function varying only in x, the solutions of
(2.1) do not change. In particular, subtracting G (x(τ), t0) from G (x(τ), t),
we obtain a normalized representation G1 of G fulfilling G1 (z, t0) = 0 for
every z.

Definitions 2.7 or 2.8 do not provide too much information about the
properties of the function x : [α, β] → X which is a solution of (2.1). The
only fact we know implicitly is that the integral

∫ v
γ DG(x(τ), t) exists for

every γ, v ∈ [α, β]. Nevertheless, using Lemma 2.5 the following can be
derived (see Proposition 3.6 in [8]).

Lemma 2.10. If x : [α, β] → X is a solution of the generalized ordinary
differential equation (2.1) on [α, β], then

lim
s→σ

[x(s) − G(x(σ), s) + G(x(σ), σ)] = x(σ)

for every σ ∈ [α, β].

This lemma shows that if x : [α, β] → X is a solution of (2.1), then for
every fixed σ ∈ [α, β] the value of x(s) can be approximated by x(σ) +
G(x(σ), s) − G(x(σ), σ) provided s ∈ [α, β] is sufficiently close to σ.

Now we introduce a class of functions G : Ω → X for which it is possible
to get more specific information about the solutions of (2.1).

Let (a, b) ⊂ R be an interval with −∞ < a < b < ∞ and let us set

Ω = O × [a, b],
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where O ⊂ X is an open set (e.g. O = Bc = {x ∈ X; ‖x‖ < c} for some
c > 0). We will use the set Ω ⊂ X×R in our subsequent study of generalized
differential equations (2.1). Assume that h : [a, b] → R is a nondecreasing
function defined on [a, b].

Definition 2.11. A function G : Ω → X belongs to the class F(Ω, h) if

‖G(x, s2) − G(x, s1)‖ ≤ |h(s2) − h(s1)| (2.4)

for all (x, s2), (x, s1) ∈ Ω and

‖G(x, s2) − G(x, s1) − G(y, s2) + G(y, s1)‖ ≤ ‖x − y‖|h(s2) − h(s1)| (2.5)

for all (x, s2), (x, s1), (y, s2), (y, s1) ∈ Ω.

For functions G ∈ F(Ω, h) we are coming to more specific information
about solutions of the generalized differential equation (2.1). We have the
following (see Lemma 3.10 in [8]).

Lemma 2.12. Assume that G : Ω → X satisfies the condition (2.4). If
[α, β] ⊂ [a, b] and x : [α, β] → X is a solution of (2.1), then the inequality

‖x(s1) − x(s2)‖ ≤ |h(s2) − h(s1)|
holds for every s1, s2 ∈ [α, β].

Let varβ
α x be the variation of a function x : [α, β] → X and let BV ([α, β])

be the space of functions x : [α, β] → X of bounded variation. Lemma 2.12
gives easily the following property of solutions of (2.1).

Corollary 2.13. Assume that G : Ω → X × R satisfies the condition (2.4).
If [α, β] ⊂ (a, b) and x : [α, β] → X is a solution of (2.1), then x is of
bounded variation on [α, β] and

varβ
α x ≤ h(β) − h(α) < +∞.

Every point in [α, β] at which the function h is continuous is a continuity
point of the solution x : [α, β] → X.

Moreover, we have the following (see Lemma 3.12 in [8]).

Lemma 2.14. If x : [α, β] → X is a solution of (2.1) and G : Ω → X × R

satisfies the condition (2.4), then

x(σ+) − x(σ) = lim
s→σ+

x(s) − x(σ) = G(x(σ), σ+) − G(x(σ), σ)

for σ ∈ [α, β) and

x(σ) − x(σ−) = x(σ) − lim
s→σ−

x(s) = G(x(σ), σ) − G(x(σ), σ−)
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for σ ∈ (α, β], where

G(x, σ+) = lim
s→σ+

G(x, s) for σ ∈ [α, β)

and
G(x, σ−) = lim

s→σ−
G(x, s) for σ ∈ (α, β].

Up to this moment, we do not have any information about the existence
of a solution of (2.1). The following result gives us an answer.

Theorem 2.15. Let G : Ω → X belong to the class F(Ω, h), where the
function h is continuous from the left (h(t−) = h(t) for t ∈ (a, b]). Then
for every (x̃, t0) ∈ Ω such that for x̃+ = x̃ + G(x̃, t0+) − G(x̃, t0), we have
(x̃+, t0) ∈ Ω and there exists a Δ > 0 such that on the interval [t0, t0 + Δ]
there exists a unique solution x : [t0, t0 +Δ] → X of the generalized ordinary
differential equation (2.1) for which x(t0) = x̃.

A sketch of the proof. At first, let t0 be a point of continuity of the func-
tion h; i.e. h(t0+) = h(t0). Assume that Δ > 0 is such that [t0, t0 + Δ] ⊂
(a, b), h(t0 + Δ) − h(t0) < 1

2 and that ‖x − x̃‖ ≤ h(t0 + Δ) − h(t0) implies
x ∈ O.

Let Q be the set of functions z : [t0, t0+Δ] → X such that z ∈ BV ([t0, t0+
Δ]) and ‖z(t) − x̃‖ ≤ h(t) − h(t0) for t ∈ [t0, t0 + Δ].

It is easy to show that the set Q ⊂ BV ([t0, t0 + Δ]) is closed.
For s ∈ [t0, t0 + Δ] and z ∈ Q, define

Tz(s) = x̃ +
∫ s

t0

DG(z(τ), t).

The integral on the right-hand side exists (see Corollary 3.16 in [8]) and for
s ∈ [t0, t0 + Δ], (2.4) implies

‖Tz(s) − x̃‖ =
∥∥∥∫ s

t0

DG(z(τ), t)
∥∥∥ ≤ h(s) − h(t0)

and it follows that T maps Q into itself.
Take t0 ≤ s1 < s2 ≤ t0 + Δ and z1, z2 ∈ Q. Then, using (2.5), we obtain

‖Tz2(s2) − Tz1(s2) − [Tz2(s1) − Tz1(s1)]‖

=
∥∥∥∫ s2

s1

D[G(z2(τ), t) − G(z1(τ), t)]
∥∥∥ ≤

∥∥∥∫ s2

s1

D‖z2(τ) − z1(τ)‖h(t)
∥∥∥

≤ sup
τ∈[s1,s2]

‖z2(τ) − z1(τ)‖ · (h(s2) − h(s1))
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≤ sup
τ∈[t0,t0+Δ]

‖z2(τ) − z1(τ)‖ · (h(s2) − h(s1))

≤ ‖z2 − z1‖BV ([t0,t0+Δ]) · (h(s2) − h(s1)).

Note that ‖z‖BV ([t0,t0+Δ]) = ‖z(t0)‖+vart0+Δ
t0

z defines a norm in BV ([t0, t0+
Δ]). Hence,

‖Tz2 − Tz1‖BV ([t0,t0+Δ]) ≤ ‖z2 − z1‖BV ([t0,t0+Δ]) · (h(t0 + Δ) − h(t0))

<
1
2
‖z2 − z1‖BV ([t0,t0+Δ])

and T is a contraction. By the Banach fixed-point theorem the result follows.
Now we consider when t0 is not a point of continuity of h. Take h̃(t) =

h(t) for t ≤ t0 and h̃(t) = h(t) − h(t0+) for t > t0. Then the function h̃
is continuous at t0, continuous from the left and nondecreasing. Defining
G̃(x, t) = G(x, t) for t ≤ t0 and G̃(x, t) = G(x, t)− [G(x̃, t0+)−G(x̃, t0)] for
t > t0 it is easy to check that G̃ ∈ F(Ω, h̃) and, as above, a solution z of
dz

dτ
= DG̃(z, t) with z(t0) = x̃+ exists. Defining x(t0) = x̃ and x(t) = z(t)

for t > t0 we have a solution of (2.1) for which x(t0) = x̃. �

Remark 2.16. The assumption of the continuity from the left of the func-
tion h in Theorem 2.15 shows that the solutions of (2.1) are also continuous
from the left (cf. Lemma 2.12). Given a solution x of (2.1), the limit x(σ−)
exists for every σ in the domain of x. This follows again by Lemma 2.12
and, by Lemma 2.14, we have the relation

x(σ) = x(σ−) + G(x(σ), σ) − G(x(σ), σ−)

which describes the discontinuity of the given solution.

We close the short survey of results on generalized differential equations
with the following simple convergence result (see Theorem 8.2 in [8]).

Theorem 2.17. Assume that Gp : Ω → X belongs to the class F(Ω, h) for
p = 0, 1, . . . and that

lim
p→∞

Gp(x, t) = G0(x, t)

for (x, t) ∈ Ω. Let xp : [α, β] → X, p = 1, 2, . . . be a solution of the
generalized differential equation

dx

dτ
= DGp(x, t)
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on [α, β] ⊂ (a, b) such that

lim
p→∞

xp(s) = x(s), s ∈ [α, β],

and (x(s), s) ∈ Ω for s ∈ [α, β]. Then x : [α, β] → X is of bounded variation
on [α, β] and it is a solution of the generalized differential equation

dx

dτ
= DG0(x, t) on [α, β].

3. Impulsive retarded differential equations in the frame of

generalized ordinary differential equations

Consider the following initial-value problem for a retarded functional dif-
ferential equation with impulses:⎧⎪⎨⎪⎩

ẏ (t) = f (yt, t) , t 
= tk

Δy (tk) = Ik (y (tk)) , k = 1, . . . , m

yt0 = φ,

(3.1)

where tk, k = 1, . . . , m with t0 < t1 < . . . < tk < . . . < tm ≤ t0 + σ, σ > 0,
are pre-assigned moments of impulse, y �→ Ik (y) maps R

n into itself and

Δy (tk) := y (tk+) − y (tk−) = y (tk+) − y (tk) , k = 1, 2, . . . , m;

that is, we suppose y is left continuous at t = tk and that the lateral limit
y(tk+) exists, k = 1, 2, . . . , m.

We write PC([a, b], X) to denote the space of piecewise continuous func-
tions from an interval [a, b] ⊂ R to a Banach space X.

We consider PC([a, b], X) equipped with the usual supremum norm, ‖ · ‖,
and we assume φ ∈ PC([−r, 0], Rn), r ≥ 0, and that f(φ, t) maps some open
subset of PC

(
[−r, 0], Rn

)
× [t0, t0 + σ] to R

n.
Given a function y : [t0 − r, t0 + σ] → R

n, we consider yt : [−r, 0] → R
n

given by
yt (θ) = y (t + θ) , θ ∈ [−r, 0], t ∈ [t0, t0 + σ] .

Now we introduce some notation. Let PCt0 be the set of all functions y :
[t0, t0 + σ] → R

n such that for k = 1, 2, . . . , m, y is continuous at t 
= tk,
y is left continuous at t = tk and the right limit y (tk+) exists. Given
φ ∈ PC ([−r, 0], Rn), we also define

PCφ,t0 =
{

y : [t0 − r, t0 + σ] → R
n ; yt0 = φ, y|[t0,t0+σ] ∈ PCt0

}
These two spaces are complete under the norm induced by

PC([t0 − r, t0 + σ], Rn).
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Let us recall the concept of a solution to the problem (3.1).

Definition 3.1. A function y ∈ PCφ,t0 such that (yt, t) ∈ PC ([−r, 0], Rn)×
[t0, t0 + σ] for t0 ≤ t < t0 + σ and moreover

(i) ẏ (t) = f (yt, t), for almost every t, t 
= tk,
(ii) y (tk+) = y (tk) + Ik (y (tk)), k = 1, 2, . . . , m,

is called a solution of (3.1) in [t0, t0 + σ] (or sometimes also in [t0 − r, t0 + σ])
with the initial condition (φ, t0).

The impulsive system (3.1) is known to be equivalent to the “integral”
equation

y (t) = y(t0) +
∫ t

t0

f (ys, s) ds +
∑

t0< tk≤ t

Ik(y(tk)), t ∈ [t0, t0 + σ], yt0 = φ,

when the integral exists in the Lebesgue sense (cf. [3]).
For T ∈ (t0,∞) define the left continuous Heaviside function concentrated

at T as follows:

HT (t) =
{

0 for t0 ≤ t ≤ T

1 for T < t.

Then ∑
t0< tk≤ t

Ik(y(tk)) =
m∑

k=1

Ik(y(tk))Htk(t)

and the system (3.1) is equivalent to

y (t) = y(t0)+
∫ t

t0

f (ys, s) ds+
m∑

k=1

Ik(y(tk))Htk(t), t ∈ [t0, t0 +σ], yt0 = φ.

(3.2)
Let PC1 ⊂ PCφ,t0 be an open set (in the topology of PC([t0 − r, t0 + σ] , Rn))
with the following property: if y = y (t), t ∈ [t0 − r, t0 + σ], is an element of
PC1 and t̄ ∈ [t0 − r, t0 + σ], then ȳ given by

ȳ (t) =
{

y (t) , t0 − r ≤ t ≤ t̄

y (t̄+) , t̄ < t ≤ t0 + σ

also belongs to PC1.
Denote by | · | a norm in R

n. We consider f (φ, t) : PC ([−r, 0], Rn) ×
[t0, t0 + σ] → R

n, t �→ f (yt, t) to be Lebesgue integrable and the following
conditions are fulfilled:
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(A) there is a Lebesgue integrable function M : [t0, t0 +σ] → R such that
for all x ∈ PC1 and all u1, u2 ∈ [t0, t0 + σ],∣∣∣ ∫ u2

u1

f (xs, s) ds
∣∣∣ ≤ ∫ u2

u1

M (s) ds;

(B) there is a Lebesgue integrable function L : [t0, t0 + σ] → R such that
for all x, y ∈ PC1 and all u1, u2 ∈ [t0, t0 + σ],∣∣∣ ∫ u2

u1

[f (xs, s) − f (ys, s)] ds
∣∣∣ ≤ ∫ u2

u1

L (s) ‖xs − ys‖ ds.

Concerning the impulse functions Ik : R
n → R

n, k = 1, . . . , m, we assume
the following conditions:

(A’) there is a constant K1 > 0 such that for all k = 1, . . . , m and all
x ∈ R

n

|Ik(x)| ≤ K1;

(B’) there is a constant K2 > 0 such that for all k = 1, . . . , m and all
x, y ∈ R

n

|Ik(x) − Ik(y)| ≤ K2|x − y|.
Suppose f (φ, t) : PC([−r, 0], Rn)×[t0, t0 + σ] → R

n and for each y ∈ PC1

the mapping t �→ f (yt, t) is integrable in the Lebesgue sense. For y ∈ PC1,
let

F (y, t) (ϑ) =

⎧⎪⎨⎪⎩
0, t0 − r ≤ ϑ ≤ t0 or t0 − r ≤ t ≤ t0∫ ϑ
t0

f (ys, s) ds, t0 ≤ ϑ ≤ t ≤ t0 + σ;∫ t
t0

f (ys, s) ds, t0 ≤ t ≤ ϑ ≤ t0 + σ.

(3.3)

Then given (y, t) ∈ PC1 × [t0 − r, t0 + σ], equation (3.3) defines an element
F (y, t) of C ([t0 − r, t0 + σ], Rn) and F (y, t) (τ) ∈ R

n is the value of F (y, t)
at a point τ ∈ [t0 − r, t0 + σ] ; that is,

F : PC1 × [t0 − r, t0 + σ] → C([t0 − r, t0 + σ], Rn),

where C([a, b], Rn) denotes the Banach space of continuous functions from
[a, b] to R

n with the supremum norm. (A proof of this fact is a straightfor-
ward adaptation of [2], Proposition 2.1.)

The idea of defining the function F by (3.3) comes from the pioneering
work of Z. Vorel, C. Imaz and F. Oliva ([6], [7]) where RFDEs have been
related to GODEs for the first time.

Assume that conditions (A) and (B) are satisfied for the map f (φ, t) :
PC ([−r, 0], Rn) × [t0, t0 + σ] → R

n.
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Given x ∈ PC1 and t0 ≤ s1 < s2 < t0 + σ we have for F : PC1 × [t0 −
r, t0 + σ] → C([t0 − r, t0 + σ], Rn) given by (3.3) the following:

F (x, s2) (ϑ) − F (x, s1) (ϑ) =

⎧⎪⎨⎪⎩
0, ϑ ∈ [t0 − r, s1],∫ ϑ
s1

f (xs, s) ds, ϑ ∈ [s1, s2],∫ s2

s1
f (xs, s) ds, ϑ ∈ [s2, t0 + σ].

(3.4)

Hence, for an arbitrary x ∈ PC1 and for t0 ≤ s1 < s2 < t0 + σ, we have by
(A)

‖F (x, s2) − F (x, s1) ‖ = sup
ϑ∈[t0−r,t0+σ]

|F (x, s2) (ϑ) − F (x, s1) (ϑ)| = (3.5)

= sup
ϑ∈[s1,s2]

|F (x, s2) (ϑ) − F (x, s1) (ϑ)| = sup
ϑ∈[s1,s2]

∣∣∣ ∫ ϑ

s1

f (xs, s) ds
∣∣∣

≤ sup
ϑ∈[s1,s2]

∫ ϑ

s1

M(s)ds =
∫ s2

s1

M(s)ds.

Similarly, using (3.4) and (B), we get that if x, y ∈ PC1 and t0 ≤ s1 < s2 <
t0 + σ then

‖F (x, s2) − F (x, s1) − F (y, s2) + F (y, s1) ‖ (3.6)

= sup
ϑ∈[s1,s2]

|
∫ ϑ

s1

[f (xs, s) − f (ys, s) ds]| ≤
∫ s2

s1

L(s)‖xs − ys‖ds

≤ sup
ϑ∈[s1−r,s2]

|x(ϑ) − y(ϑ)|
∫ s2

s1

L(s)ds ≤ ‖x − y‖
∫ s2

s1

L(s)ds.

Define h1 : [t0, t0 + σ] → R by

h1(t) =
∫ t

t0

[M(s) + L(s)]ds, t ∈ [t0, t0 + σ].

The function h1 is (absolutely) continuous and nondecreasing since M, L :
[t0, t0 + σ] → R are nonnegative almost everywhere.

According to (3.5) and (3.6) we have

‖F (x, s2) − F (x, s1)‖ ≤ |h1(s2) − h1(s1)| (3.7)

for all (x, s2), (x, s1) ∈ PC1 × [t0, t0 + σ] and

‖F (x, s2)−F (x, s1)−F (y, s2) + F (y, s1)‖ ≤ ‖x− y‖|h1(s2)− h1(s1)| (3.8)

for all (x, s2), (x, s1), (y, s2), (y, s1) ∈ PC1 × [t0, t0 + σ].
Let us consider the impulsive terms of the problem (3.1).
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Given an arbitrary y ∈ PC1, let

J(y, t)(ϑ) =
m∑

k=1

Htk(t)Htk(ϑ)Ik(y(tk)) (3.9)

for ϑ ∈ [t0−r, t0+σ] and t ∈ [t0, t0+σ]. (Htk is the left continuous Heaviside
function concentrated at tk.)

If t0 ≤ s1 < s2 ≤ t0 + σ, we have

J(y, s2)(ϑ) − J(y, s1)(ϑ) =
m∑

k=1

[Htk(s2) − Htk(s1)]Htk(ϑ)Ik(y(tk)) (3.10)

for ϑ ∈ [t0 − r, t0 + σ]. So for t0 ≤ s1 < s2 ≤ t0 + σ and x ∈ PC1 we have

‖J(x, s2) − J(x, s1)‖ = sup
ϑ∈[t0−r,t0+σ]

m∑
k=1

[Htk(s2) − Htk(s1)]Htk(ϑ)|Ik(x(tk))|

(3.11)

≤
m∑

k=1

[Htk(s2) − Htk(s1)]K1

and, similarly, if x, y ∈ PC1 we get

‖J(x, s2)−J(x, s1)−J(y, s2)+J(x, s1)‖ ≤
m∑

k=1

[Htk(s2)−Htk(s1)]K2‖x−y‖PC .

(3.12)
Define h2 : [t0, t0 + σ] → R by

h2(t) = max(K1, K2) ·
m∑

k=1

Htk(t).

Then h2 is left continuous and nondecreasing while by (3.11) and (3.12) we
get

‖J(x, s2) − J(x, s1)‖ ≤ h2(s2) − h2(s1) (3.13)

and

‖J(x, s2)−J(x, s1)−J(y, s2)+J(x, s1)‖ ≤ ‖x− y‖(h2(s2)−h2(s1)) (3.14)

provided x, y ∈ PC1 and t0 ≤ s1 < s2 ≤ t0 + σ.
Now, consider F (y, t) from (3.3) and J(y, t) from (3.9) and let

G(y, t) = F (y, t) + J(y, t) (3.15)
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for y ∈ PC1 and t ∈ [t0 − r, t0 + σ]. Then G(y, t) belongs to PC([t0 − r, t0 +
σ], Rn); that is,

G : PC1 × [t0 − r, t0 + σ] → PC([t0 − r, t0 + σ], Rn).

By (3.7) and (3.13), we have

‖G(x, s2)−G(x, s1)‖ ≤ ‖F (x, s2)−F (x, s1)‖+ ‖J(x, s2)− J(x, s1)‖ (3.16)

≤ h1(s2) − h1(s1) + h2(s2) − h2(s1) = h(s2) − h(s1),

where h(t) = h1(t) + h2(t) is nondecreasing and continuous from the left.
Similarly, (3.8) and (3.14) yield

‖G(x, s2)−G(x, s1)−G(y, s2) + G(y, s1)‖ ≤ ‖x− y‖(h(s2)−h(s1)). (3.17)

The inequalities (3.16) and (3.17) show the following.

Proposition 3.2. If the conditions (A), (B), (A’), (B’) are satisfied then
the function G given by (3.15) belongs to the class F(Ω, h), where Ω =
PC1 × [a, b] for any [a, b] ⊂ [t0, t0 + σ].

Consider the generalized ordinary differential equation

dx

dτ
= DG (x, t) , (3.18)

where G is given by (3.15). We will work now with a specific initial-value
problem for the equation (3.18).

Let φ ∈ PC ([−r, 0], Rn) be given.
A function x (t) defined on the interval [t0 − r, t0 + σ] and taking values

in PC1 is a solution of the generalized ordinary differential equation (3.18)
in the interval [t0, t0 + σ], with initial condition x (t0) ∈ PC1 given for
φ ∈ PC ([−r, 0], Rn) by

x(t0)(ϑ) =
{

φ(ϑ − t0) for ϑ ∈ [t0 − r, t0],
x(t0)(t0) for ϑ ∈ [t0, t0 + σ]

if for every v ∈ [t0, t0 + σ], we have

x (v) = x (t0) +
∫ v

t0

DG (x (τ) , t)

= x (t0) +
∫ v

t0

DF (x (τ) , t) +
∫ v

t0

DJ(x(τ), t).
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Lemma 3.3. Let x (t) be a solution of (3.18) in the interval [t0, t0 + σ],
with G given by (3.15) and with initial condition x (t0) ∈ PC1 given by
x(t0)(ϑ) = φ(ϑ) for ϑ ∈ [t0 − r, t0], x(t0)(ϑ) = x(t0)(t0) for ϑ ∈ [t0, t0 + σ] .
Then if v ∈ [t0, t0 + σ] , we have

x (v) (ϑ) = x (v) (v) , ϑ ≥ v, ϑ ∈ [t0 − r, t0 + σ] (3.19)

and
x (v) (ϑ) = x (ϑ) (ϑ) , v ≥ ϑ, ϑ ∈ [t0 − r, t0 + σ] . (3.20)

Proof. Assume that ϑ ≥ v. Since x is a solution of (3.18), we have

x(v)(v) = x(t0)(v) +
∫ v

t0

DG(x(τ), t)(v)

and similarly

x(v)(ϑ) = x(t0)(ϑ) +
∫ v

t0

DG(x(τ), t)(ϑ).

Since x(t0)(ϑ) = x(t0)(v) by the properties of the initial condition, we have

x(v)(ϑ) − x(v)(v) =
∫ v

t0

DG(x(τ), t)(ϑ) −
∫ v

t0

DG(x(τ), t)(v).

Since the integral
∫ v
t0

DG(x(τ), t) exists, for every ε > 0 there is a gauge δ

on [t0, t0 + σ] such that if (τi, [si−1, si]) is a δ-fine division of [t0, v], then∥∥∥∑
i

[G(x(τi), si) − G(x(τi), si−1)] −
∫ v

t0

DG(x(τ), t)
∥∥∥ < ε.

Therefore, we have

|x(v)(ϑ) − x(v)(v)| < 2ε +
∣∣∣ ∑

i

[G(x(τi), si) − G(x(τi), si−1)](ϑ)

−
∑

i

[G(x(τi), si) − G(x(τi), si−1)](v)
∣∣∣.

By the definition of G in (3.15), the form of F given in (3.3) and of J in
(3.9), it is a matter of routine to check that for every i we have

G(x(τi), si)(ϑ) − G(x(τi), si−1)(ϑ) = G(x(τi), si)(v) − G(x(τi), si−1)(v)

and this implies by the last inequality above that

|x(v)(ϑ) − x(v)(v)| < 2ε.

Since this holds for an arbitrary ε > 0, the relation (3.19) is satisfied.
For the second relation assume that ϑ ≤ v.
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By the definition of a solution of (3.18), we have similarly as in the first
part of the proof

x(v)(ϑ) = x(t0)(ϑ) +
∫ v

t0

DG(x(τ), t)(ϑ)

and

x(ϑ)(ϑ) = x(t0)(ϑ) +
∫ ϑ

t0

DG(x(τ), t)(ϑ).

Hence,

x(v)(ϑ) − x(ϑ)(ϑ) =
∫ v

ϑ
DG(x(τ), t)(ϑ).

If now (τi, [si−1, si]) is an arbitrary tagged division of [ϑ, v], it is again
straightforward to check by (3.3) and (3.9) that for every i we have

G(x(τi), si)(ϑ) − G(x(τi), si−1)(ϑ) = 0.

But this means that
∫ v
ϑ DG(x(τ), t)(ϑ) = 0 and that x(v)(ϑ) = x(ϑ)(ϑ)

holds. Hence, (3.20) is proved. �

For a similar lemma, see [7], Lemma 2.1.
Let us now study the relation between the impulsive retarded differen-

tial equation (3.1) and the generalized ordinary differential equation (3.18),
provided the conditions (A), (B), (A’) and (B’) are fulfilled.

Theorem 3.4. Consider equation (3.1), where

f : PC ([−r, 0], Rn) × [t0, t0 + σ] → R
n, t �→ f (yt, t)

is Lebesgue integrable over [t0, t0 + σ] and (A), (B), (A’), (B’) are fulfilled.
Let y (t) be a solution of the problem (3.1) in the interval [t0, t0 + σ]. Given
t ∈ [t0 − r, t0 + σ], let

x (t) (ϑ) =
{

y (ϑ) , ϑ ∈ [t0 − r, t]
y (t) , ϑ ∈ [t, t0 + σ] .

(3.21)

Then x(t) ∈ PC ([t0 − r, t0 + σ], Rn) is a solution of (3.18) in [t0 − r, t0 + σ].

Proof. We will show that for every v∈ [t0, t0+σ], the integral
∫ v
t0

DG(x(τ), t)
exists and

x (v) − x (t0) =
∫ v

t0

DG (x (τ) , t) .

Let an arbitrary ε > 0 be given. Since y is a solution of (3.1), the relations
(3.2) concerning the equivalent “integral” form are satisfied and it is easy
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to see that the function y : [t0, t0 + σ] → R
n is the sum of an absolutely

continuous function and a simple left continuous step function.
Therefore, for every τ ∈ [t0, t0 + σ] there is a δ(τ) > 0 such that

|y(ρ) − y(τ)| < ε for every ρ ∈ [τ − δ(τ), τ ] (3.22)

and
|y(ρ) − y(τ+)| < ε for every ρ ∈ (τ, τ + δ(τ)]. (3.23)

We write y(τ+) = limρ→τ+ y(ρ). In this way, a gauge δ on [t0, t0 + σ] is
given. Further, let the gauge δ be such that if τ ∈ [t0, t0 + σ], then∣∣∣ ∫ v

u
L(s)ds

∣∣∣ <
ε

(m + 1)(K1 + 1)
, for every [u, v] ⊂ (τ − δ(τ), τ + δ(τ)),

(3.24)
where m is the number of impulse points and K1 is the constant from (A’).
Such a choice is possible because the function L : [t0, t0 + σ] → R from (B)
is assumed to be Lebesgue integrable.

Moreover, assume that the gauge δ satisfies

0 < δ(τ) < min
{ tk − tk−1

2
; k = 1, . . . , m

}
(3.25)

and

0 < δ(τ) < min {d(τ, tk), d(τ, tk−1); τ ∈ (tk−1, tk), k = 1, . . . , m} , (3.26)

where d(τ, tk) denotes the distance of τ to tk and similarly for d(τ, tk−1).
The condition (3.25) assures that if a point-interval pair (T, [s1, s2]) is

δ-fine, then the interval [s1, s2] contains at most one of the points tk, k =
1, . . . , m, while (3.26) implies T = tk whenever tk ∈ [s1, s2].

Assume now that (τi, [si−1, si]) is a δ-fine division of the interval [t0, v].
Using the definition (3.21) of x and (3.2) it can be easily shown that

[x (si) − x (si−1)] (ϑ) = (3.27)

=

⎧⎪⎨⎪⎩
0, ϑ ∈ [t0 − r, si−1]∫ ϑ
si−1

f (ys, s) ds +
∑m

k=1 Ik(y(tk))[Htk(ϑ) − Htk(si−1)], ϑ ∈ [si−1, si]∫ si

si−1
f(ys, s)ds +

∑m
k=1 Ik(y(tk))[Htk(si) − Htk(si−1)], ϑ ∈ [si, t0 + σ].

Using the definition of G from (3.15), (3.3) and (3.9) we obtain

[G(x(τi), si) − G(x(τi), si−1)](ϑ) = [F (x(τi), si) − F (x(τi), si−1)](ϑ)

+
m∑

k=1

[Htk(si) − Htk(si−1)]Htk(ϑ)Ik(x(τi)(tk)) (3.28)
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=

⎧⎪⎨⎪⎩
0, ϑ ∈ [t0 − r, si−1]∫ ϑ
si−1

f (x (τi)s , s) ds, ϑ ∈ [si−1, si]∫ si

si−1
f (x (τi)s , s) ds, ϑ ∈ [si, t0 + σ]

⎫⎪⎬⎪⎭
+

m∑
k=1

[Htk(si) − Htk(si−1)]Htk(ϑ)Ik(x(τi)(tk)).

Using the properties (3.25) and (3.26) of the gauge δ and the corresponding
properties of the division (τi, [si−1, si]), there are two possibilities for a given
point-interval pair (τi, [si−1, si]):

(i) there is exactly one tl ∈ [si−1, si),
(ii) [si−1, si) does not contain any point of impulse; i.e., [si−1, si) ∩

{t1, . . . , tm} = ∅.
In case (i), we have

m∑
k=1

Ik(y(tk))[Htk(ϑ) − Htk(si−1)] = Il(y(tl))Htl(ϑ)

and, since τi = tl, we get by the definition of x
m∑

k=1

[Htk(si) − Htk(si−1)]Htk(ϑ)Ik(x(τi)(tk)) = Il(x(τi)(tl))Htl(ϑ)

= Il(y(tl))Htl(ϑ).

By (3.27) and (3.28), we have

[x (si) − x (si−1)] (ϑ) − [G(x(τi), si) − G(x(τi), si−1)](ϑ)

=

⎧⎪⎨⎪⎩
0, ϑ ∈ [t0 − r, si−1]∫ ϑ
si−1

f (ys, s) ds −
∫ ϑ
si−1

f (x (τi)s , s) ds, ϑ ∈ [si−1, si]∫ si

si−1
f (ys, s) ds −

∫ si

si−1
f (x (τi)s , s) ds, ϑ ∈ [si, t0 + σ]

=

⎧⎪⎨⎪⎩
0, ϑ ∈ [t0 − r, si−1]∫ ϑ
si−1

[f (ys, s) − f (x (τi)s , s)]ds, ϑ ∈ [si−1, si]∫ si

si−1
[f (ys, s) − f (x (τi)s , s)]ds, ϑ ∈ [si, t0 + σ] .

(3.29)

In case (ii), we have
m∑

k=1

Ik(y(tk))[Htk(ϑ) − Htk(si−1)] = 0
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and also
m∑

k=1

[Htk(si) − Htk(si−1)]Htk(ϑ)Ik(x(τi)(tk)) = 0.

By (3.27) and (3.28) we again obtain the relation (3.29).
Using (3.29), consider now

‖x (si) − x (si−1) − [G(x(τi), si) − G(x(τi), si−1)]‖
= sup

ϑ∈[t0−r,t0+σ]
| [x (si) − x (si−1)] (ϑ) − [G(x(τi), si) − G(x(τi), si−1)](ϑ)|

= sup
ϑ∈[t0−r,t0+σ]

{
|
∫ ϑ
si−1

[f (ys, s) − f (x (τi)s , s)]ds|, ϑ ∈ [si−1, si]

|
∫ si

si−1
[f (ys, s) − f (x (τi)s , s)]ds|, ϑ ∈ [si, t0 + σ]

= sup
ϑ∈[si−1,si]

|
∫ ϑ

si−1

[f (ys, s) − f (x (τi)s , s)]ds|.

By the definition of x from (3.21), we have for the case (i)∫ ϑ

si−1

[f (ys, s) − f (x (τi)s , s)]ds =
∫ ϑ

tl

[f (ys, s) − f (x (tl)s , s)]ds

for ϑ ∈ [tl, si], and ∫ ϑ

si−1

[f (ys, s) − f (x (τi)s , s)]ds = 0

for ϑ ∈ [si−1, tl]. By condition (B) we have∣∣∣∣∫ ϑ

tl

[f (ys, s) − f (x (tl)s , s)]ds

∣∣∣∣ ≤ ∫ ϑ

tl

L(s)‖ys − x (tl)s ‖ds.

Using (3.22) and (B’) we have

‖ys − x (tl)s ‖ = sup
ρ∈[−r,0]

|y(s + ρ) − x(tl)(s + ρ)|

= sup
ρ∈[tl,s]

|y(ρ) − y(tl)| = sup
ρ∈[tl,s]

|y(ρ) − y(tl+) + y(tl+) − y(tl)|

= sup
ρ∈[tl,s]

|y(ρ) − y(tl+) + Ily(tl)| ≤ ε + K1.

Therefore by the property (3.24) of the gauge δ we get

‖x (si) − x (si−1) − [G(x(τi), si) − G(x(τi), si−1)]‖ ≤ (ε + K1)
∫ si

tl

L(s)ds
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≤ ε

∫ si

tl

L(s)ds + K1
ε

(m + 1)(K1 + 1)
< ε

∫ si

tl

L(s)ds +
ε

(m + 1)
.

Similarly, for the case (ii) we have∫ ϑ

si−1

[f (ys, s) − f (x (τi)s , s)]ds =
∫ ϑ

τi

[f (ys, s) − f (x (τi)s , s)]ds

for ϑ ∈ [τi, si] and ∫ ϑ

si−1

[f (ys, s) − f (x (τi)s , s)]ds = 0

for ϑ ∈ [si−1, τi].
Condition (B) also implies∣∣∣∣∫ ϑ

τi

[f (ys, s) − f (x (τi)s , s)]ds

∣∣∣∣ ≤ ∫ ϑ

τi

L(s)‖ys − x (τi)s ‖ds,

where
‖ys − x (τi)s ‖ = sup

ρ∈[τi,s]
|y(ρ) − y(τi)| ≤ ε

by the property (3.23) of the gauge δ. Hence,

‖x (si) − x (si−1) − [G(x(τi), si) − G(x(τi), si−1)]‖ ≤ ε

∫ si

τi

L(s)ds.

Using the results obtained above and the fact that the case (i) occurs in at
most m intervals, we get∥∥∥∥∥x (v) − x (t0) −

∑
i

[G(x(τi), si) − G(x(τi), si−1)]

∥∥∥∥∥
=

∥∥∥∥∥∑
i

{x (si) − x (si−1) − [G(x(τi), si) − G(x(τi), si−1)]}
∥∥∥∥∥

≤
∑

i

‖x (si) − x (si−1) − [G(x(τi), si) − G(x(τi), si−1)]‖

≤
∑

i;tl∈[si−1,si)

ε

∫ si

tl

L(s)ds +
ε

(m + 1)
+

∑
i

ε

∫ si

τi

L(s)ds

< 2ε

∫ t0+σ

t0

L(s)ds + m
ε

(m + 1)
< 2ε

∫ t0+σ

t0

L(s)ds + ε.
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Hence, for every v ∈ [t0, t0 + σ] the integral
∫ v
t0

DG (x (τ) , t) exists and

x (v) − x (t0) =
∫ v

t0

DG (x (τ) , t) .

This proves the result. �

Theorem 3.4 improves Theorem 2.1 presented in [2] with a different proof.

Theorem 3.5. Let x (t) be a solution of (3.18), with G given by (3.15), in
the interval [t0 − r, t0 + σ] satisfying the initial condition

x(t0)(ϑ) =
{

φ(ϑ − t0), t0 − r ≤ ϑ ≤ t0,

x(t0)(t0), t0 ≤ ϑ ≤ t0 + σ.

For every ϑ ∈ [t0 − r, t0 + σ], let

y (ϑ) =
{

x (t0) (ϑ) , t0 − r ≤ ϑ ≤ t0

x (ϑ) (ϑ) , t0 ≤ ϑ ≤ t0 + σ.
(3.30)

Then y (ϑ) is a solution of the problem (3.1) in [t0 − r, t0 + σ] and y (ϑ) =
x (t0 + σ) (ϑ), ϑ ∈ [t0 − r, t0 + σ].

Proof. According to (3.2), it suffices to prove that for every η > 0 and any
v ∈ [t0, t0 + σ], we have∣∣∣∣∣y (v) − y (t0) −

∫ v

t0

f (ys, s) ds −
m∑

k=1

Ik(y(tk))Htk(v)

∣∣∣∣∣ < η (3.31)

and yt0 = φ. The last equality is clear by (3.30).
Assume that a gauge δ : [t0, t0 + σ] → (0,+∞) satisfies for τ ∈ [t0, t0 + σ]

the following:

0 < δ(τ) < min
{

tk − tk−1

2
; k = 1, . . . , m

}
(3.32)

and

0 < δ(τ) < min {d(τ, tk), d(τ, tk−1) for τ ∈ (tk−1, tk), k = 1, . . . , m} ,
(3.33)

where d(τ, tk) is the distance of τ to tk and similarly for d(τ, tk−1).
As in the proof of Theorem 3.4, the requirement (3.32) assures that if a

point-interval pair (T, [s1, s2]) is δ-fine, then the interval [s1, s2] contains at
most one of the points tk, k = 1, . . . , m, while (3.33) implies T = tk for
tk ∈ [s1, s2].
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If (τi, [si−1, si]) is an arbitrary δ-fine division of [t0, v], then by (3.10),
when tl ∈ [si−1, si), we have

J(x(τi), si)(ϑ)−J(x(τi), si−1)(ϑ) =
m∑

k=1

[Htk(s2)−Htk(s1)]Htk(ϑ)Ik(x(τi)(tk))

= Htl(ϑ)Ik(x(tl)(tl)) = Htl(ϑ)Ik(y(tl))

for ϑ ∈ [t0 − r, t0 + σ], and if [si−1, si) does not contain any of the points
t1, . . . , tm, then

J(x(τi), si)(ϑ) − J(x(τi), si−1)(ϑ)

=
m∑

k=1

[Htk(s2) − Htk(s1)]Htk(ϑ)Ik(x(τi)(tk)) = 0.

This implies that the integral
∫ v
t0

DJ(x(τ), t) exists and(∫ v

t0

DJ(x(τ), t)
)

(v) =
m∑

k=1

Htk(v)Ik(y(tk)). (3.34)

By (3.30), (3.19) and the fact that x is a solution of (3.18) we get

y(v) − y(t0) = x(v)(v) − x(t0)(t0) = x(v)(v) − x(t0)(v) (3.35)

=
(∫ v

t0

DG(x(τ), t)
)

(v) =
(∫ v

t0

DF (x(τ), t)
)

(v) +
(∫ v

t0

DJ(x(τ), t)
)

(v),

for v ∈ [t0, t0 + σ]. Using this and (3.34), we have

y (v) − y (t0) −
∫ v

t0

f (ys, s) ds −
m∑

k=1

Ik(y(tk))Htk(v) (3.36)

=
(∫ v

t0

DF (x(τ), t)
)

(v) +
(∫ v

t0

DJ(x(τ), t)
)

(v) −
∫ v

t0

f (ys, s) ds

−
m∑

k=1

Ik(y(tk))Htk(v) =
(∫ v

t0

DF (x(τ), t)
)

(v) −
∫ v

t0

f (ys, s) ds.

The existence of the integrals
∫ v
t0

DG(x(τ), t) and
∫ v
t0

DJ(x(τ), t) implies the
existence of

∫ v
t0

DF (x(τ), t).
Let ε > 0 be given. Assume the gauge δ(τ) > 0 satisfies (3.32), (3.33) and

also
|h(ρ) − h(τ)| < ε for every ρ ∈ [τ − δ(τ), τ ], (3.37)
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and
|h(ρ) − h(τ+)| < ε for every ρ ∈ (τ, τ + δ(τ)], (3.38)

where h(t) = h1(t) + h2(t) is the nondecreasing, left continuous function
described as in (3.16) and (3.17).

Further, let the gauge δ be such that if τ ∈ [t0, t0 + σ], then∣∣∣ ∫ v

u
L(s)ds

∣∣∣ <
ε

(m + 1)(K1 + 1)
for every [u, v] ⊂ [τ − δ(τ), τ + δ(τ)],

(3.39)
where m is the number of impulse points and K1 is the constant from (A’).
Such a choice is possible because the function L : [t0, t0 +σ] → R from (B) is
assumed to be Lebesgue integrable. Moreover, for the gauge δ we have (by
the existence of the integral

∫ v
t0

DF (x(τ), t)) the inequality∥∥∥∫ v

t0

DF (x(τ), t) −
∑

i

[F (x(τi), si) − F (x(τi), si−1)]
∥∥∥ < ε (3.40)

for every δ-fine division (τi, [si−1, si]) of the interval [t0, v]. Hence∣∣∣ ∫ v

t0

DF (x(τ), t)(v) −
∑

i

[F (x(τi), si) − F (x(τi), si−1)] (v)
∣∣∣ < ε (3.41)

for every δ-fine division (τi, [si−1, si]) of the interval [t0, v].
By (3.36) and (3.41), we have∣∣∣y (v) − y (t0) −

∫ v

t0

f (ys, s) ds −
m∑

k=1

Ik(y(tk))Htk(v)
∣∣∣ (3.42)

=
∣∣∣∣(∫ v

t0

DF (x(τ), t)
)

(v) −
∫ v

t0

f (ys, s) ds

∣∣∣∣
< ε +

∣∣∣ ∑
i

[F (x(τi), si) − F (x(τi), si−1)]] (v) −
∫ v

t0

f (ys, s) ds
∣∣∣

= ε +
∣∣∣ ∑

i

{
[F (x(τi), si) − F (x(τi), si−1)] (v) −

∫ si

si−1

f (ys, s) ds
}∣∣∣.

The definition of F given in (3.3) yields

[F (x(τi), si) − F (x(τi), si−1)] (v) =
∫ si

si−1

f (x(τi)s, s) ds.
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By (3.20), we have x(τi)(ϑ) = x(ϑ)(ϑ) = y(ϑ) provided ϑ ≤ τi. Therefore,∫ si

si−1

f (x(τi)s, s) ds −
∫ si

si−1

f (ys, s) ds =
∫ si

si−1

[f (x(τi)s, s) − f (ys, s)]ds

=
∫ si

τi

[f (x(τi)s, s) − f (ys, s)]ds.

For ϑ ∈ [τi, si] we have again by (3.20) the equality y(ϑ) = x(ϑ)(ϑ) =
x(si)(ϑ) and therefore∫ si

τi

[f (x(τi)s, s) − f (ys, s)]ds =
∫ si

τi

[f (x(τi)s, s) − f (x(si)s, s)]ds.

Using the relations above and the assumption (B), we obtain∣∣∣ [F (x(τi), si) − F (x(τi), si−1)] (v) −
∫ si

si−1

f (ys, s) ds
∣∣∣ (3.43)

=
∣∣∣ ∫ si

τi

[f (x(τi)s, s) − f (x(si)s, s)]ds
∣∣∣ ≤ ∫ si

τi

L(s)‖x(τi)s − x(si)s‖ds.

Let us look now to ‖x(τi)s − x(si)s‖. By definition and by the fact that
x(si)(τi) = x(τi)(τi) (see (3.20)), we have for every i the following:

‖x(τi)s − x(si)s‖ = sup
ϑ∈[−r,0]

|x(si)(s + ϑ) − x(τi)(s + ϑ)|

= sup
ρ∈[τi,si]

|x(si)(ρ) − x(τi)(ρ)| = sup
ρ∈(τi,si]

|x(si)(ρ) − x(τi)(ρ)|

= sup
ρ∈(τi,si]

|x(si)(ρ) − x(τi+)(ρ) + x(τi+)(ρ) − x(τi)(ρ)|

≤ sup
ρ∈(τi,si]

{|x(si)(ρ) − x(τi+)(ρ)| + |x(τi+)(ρ) − x(τi)(ρ)|}

≤ ‖x(si) − x(τi+)‖ + ‖G(x(τi), τi+) − G(x(τi), τi)‖
≤ h(si) − h(τi+) + K1 < ε + K1,

where the last inequalities come from Lemma 2.12 and from the definition
of G in (3.15).

Hence, by (3.43) we get for every i the inequality∣∣∣ [F (x(τi), si) − F (x(τi), si−1)] (v) −
∫ si

si−1

f (ys, s) ds
∣∣∣ (3.44)

≤
∫ si

τi

L(s)‖x(τi)s − x(si)s‖ds < (ε + K1)
∫ si

τi

L(s)ds.
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Now by (3.42) and (3.44) we obtain∣∣∣y (v) − y (t0) −
∫ v

t0

f (ys, s) ds −
m∑

k=1

Ik(y(tk))Htk(v)
∣∣∣ (3.45)

< ε +
∑

i

∣∣∣ [F (x(τi), si) − F (x(τi), si−1)] (v) −
∫ si

si−1

f (ys, s) ds
∣∣∣

< ε + (ε + K1)
∑

i

∫ si

τi

L(s)ds

≤ ε + ε

∫ v

t0

L(s)ds + K1

∑
i;[si−1,si)∩{t1,...,tm}�=∅

∫ si

τi

L(s)ds

≤ ε(1 +
∫ v

t0

L(s)ds) + m · K1
ε

(m + 1)(K1 + 1)
≤ ε(1 +

∫ v

t0

L(s)ds) + ε

by the property (3.39) of the gauge δ. Taking ε > 0 such that

ε(2 +
∫ v

t0

L(s)ds) < η

we obtain (3.31) and the theorem is proved. �

4. Continuous dependence

Consider the following sequence of initial-value problems for impulsive
RFDEs : ⎧⎪⎨⎪⎩

ẏ (t) = fp (yt, t) , t 
= tk

Δy (tk) = Ip
k (y (tk)) , k = 1, . . . , m

yt0 = φp,

(4.1)

where p = 0, 1, 2, . . . .
As in the introduction to Section 3, for every p = 0, 1, . . . the system (4.1)

is equivalent to⎧⎪⎨⎪⎩ y (t) = y(t0) +
∫ t

t0

fp (ys, s) ds +
m∑

k=1

Ip
k(y(tk))Htk(t), t ∈ [t0, t0 + σ],

yt0 = φp.
(4.2)

Let us assume that for p = 0, 1, . . . we have φp ∈ PC([−r, 0], Rn) and the
entries fp, IP

k satisfy conditions (A), (B), (A’) and (B’) from Section 3 with
the same M, L, K1, K2 for all p = 0, 1, . . . .
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Defining for p = 0, 1, . . . and y ∈ PC1 the functions

Fp (y, t) (ϑ) =

⎧⎪⎨⎪⎩
0, t0 − r ≤ ϑ ≤ t0 or t0 − r ≤ t ≤ t0∫ ϑ
t0

fp (ys, s) ds, t0 ≤ ϑ ≤ t ≤ t0 + σ;∫ t
t0

fp (ys, s) ds, t0 ≤ t ≤ ϑ ≤ t0 + σ

(4.3)

and

Jp(y, t)(ϑ) =
m∑

k=1

Htk(t)Htk(ϑ)Ip
k(y(tk)) (4.4)

for ϑ ∈ [t0 − r, t0 + σ] and t ∈ [t0, t0 + σ], we obtain by Proposition 3.2 that
the functions

Gp(y, t) = Fp(y, t) + Jp(y, t) (4.5)
belong to the same class F(Ω, h) with

h(t) =
∫ t

t0

[M(s) + L(s)]ds + max(K1, K2)
m∑

k=1

Htk(t), t ∈ [t0, t0 + σ],

where Ω = PC1 × [t0, t0 + σ].
According to the results given in Theorems 3.4 and 3.5 for every p =

0, 1, . . . , there is a one-to-one correspondence between the solutions of the
problem (4.1) and the solutions of the initial-value problem for the general-
ized differential equation

dx

dτ
= DGp (x, t) (4.6)

in the sense presented in Section 3 after equation (3.18).

Theorem 4.1. Assume that for p = 0, 1, . . . we have φp ∈ PC([−r, 0], Rn)
and fp, Ip

k satisfy conditions (A), (B), (A’) and (B’) from Section 3 with the
same M, L, K1, K2 for all p = 0, 1, . . . . Let the relations

lim
p→∞

sup
ϑ∈[t0,t0+σ]

∣∣∣ ∫ ϑ

t0

[fp (xs, s) − f0 (xs, s)]ds
∣∣∣ = 0 (4.7)

for every x ∈ PC1 and
lim

p→∞
Ip
k(x) = I0

k(x) (4.8)

for every x ∈ R
n, k = 1, . . . , m be satisfied. Assume that yp : [t0, t0+σ] → R

n

for p = 1, 2, . . . is a solution of problem (4.1) on [t0, t0 + σ] such that

lim
p→∞

yp(s) = y(s) uniformly on [t0, t0 + σ]. (4.9)

Then y : [t0, t0 + σ] → R
n is a solution of the problem
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⎧⎪⎨⎪⎩
ẏ (t) = f0 (yt, t) , t 
= tk

Δy (tk) = I0
k (y (tk)) , k = 1, . . . , m

yt0 = φ0.

(4.10)

Proof. Given t ∈ [t0 − r, t0 + σ], let

xp (t) (τ) =
{

yp (ϑ) , ϑ ∈ [t0 − r, t]
yp (t) , ϑ ∈ [t, t0 + σ]

(4.11)

for p = 1, 2, . . . and

x (t) (τ) =
{

y (ϑ) , ϑ ∈ [t0 − r, t]
y (t) , ϑ ∈ [t, t0 + σ] .

(4.12)

Then xp (t) ∈ PC ([t0 − r, t0 + σ], Rn) is a solution of (4.6) in [t0, t0 + σ] for
p = 1, 2, . . . by Theorem 3.4.

By (4.9), it is easy to check that for s ∈ [t0, t0 + σ] we have

lim
p→∞

xp (s) = x (s) (4.13)

in PC ([t0 − r, t0 + σ], Rn) and x(s) ∈ PC1 for s ∈ [t0, t0 + σ].
By (4.7) and (4.8), it can be shown that

lim
p→∞

Gp(x, t) = G(x, t) (4.14)

for (x, t) ∈ PC1 × [t0 − r, t0 + σ].
Theorem 2.17 shows now that x : [t0, t0 + σ] → PC1 is a solution of

dx

dτ
= DG0 (x, t) (4.15)

and Theorem 3.5 yields that the function y : [t0, t0 + σ] → R
n is a solution

of problem (4.10). �

5. Towards a global theory

Assume that [a,∞) ⊂ R is given and consider functions f(φ, t) mapping
PC([−r, 0], Rn) × [a,∞) to R

n.
Assume further that a sequence (tl) is given with a ≤ t1 < t2 < . . . < tl <

. . . and tl → ∞ as l → ∞.
We will consider functions y : [a − r,∞) → R

n which are continuous
from the left in their domain of definition, admit the right limits y(t+) at
every point and are such that y(t+) 
= y(t) only for t = tl, l = 1, 2, . . . and
y|[a−r,a] ∈ PC ([a − r, a], Rn). Denote this family of functions by PC([a −
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r,∞)) = PC([a − r,∞), Rn). It is clear that for a function y having these
properties, we have yt ∈ PC ([−r, 0], Rn) for t ∈ [a,∞). Therefore, f(yt, t) :
[a,∞) → R

n is well defined for t ∈ [a,∞) and y : [a − r,∞) → R
n belongs

to the class PC([a − r,∞)) of functions presented above.
In accordance with the properties required in Section 3, we will assume

the following: if y ∈ PC([a− r,∞)), then the function f(yt, t) : [a,∞) → R
n

is Lebesgue integrable and moreover
(A*) there is a locally Lebesgue integrable function M (t) : [a,∞) → R

such that for all x ∈ PC1 and all u1, u2 ∈ [a,+∞),∣∣∣ ∫ u2

u1

f (xs, s) ds
∣∣∣ ≤ ∫ u2

u1

M (s) ds;

(B*) there is a locally Lebesgue integrable function L : [a,∞) → R such
that for all x, y ∈ PC1 and all u1, u2 ∈ [a,+∞),∣∣∣ ∫ u2

u1

[f (xs, s) − f (ys, s)] ds
∣∣∣ ≤ ∫ u2

u1

L (s) ‖xs − ys‖ ds.

Concerning the impulse functions Il : R
n → R

n, l = 1, 2, . . . , we assume
the following conditions:
(A’*) there is a constant K1 > 0 such that for all l = 1, 2, . . . and all

x ∈ R
n,

|Il(x)| ≤ K1;

(B’*) there is a constant K2 > 0 such that for all l = 1, 2, . . . and all
x, y ∈ R

n,
|Il(x) − Il(y)| ≤ K2|x − y|.

Let PC1 ⊂ PC([a − r,∞)) be an open set (in the topology of locally
uniform convergence in PC([a − r,∞))) with the following property: if y is
an element of PC1 and t̄ ∈ [a,∞), then ȳ given by

ȳ (t) =
{

y (t) , a − r ≤ t ≤ t̄

y (t̄+) , t̄ < t ≤ ∞
is also an element of PC1.

Similarly as in Section 3, define for y ∈ PC([a − r,∞))

F (y, t) (ϑ) =

⎧⎪⎨⎪⎩
0, a − r ≤ ϑ ≤ a or a − r ≤ t ≤ a,∫ ϑ
a f (ys, s) ds, a ≤ ϑ ≤ t < ∞,∫ t
a f (ys, s) ds, a ≤ t ≤ ϑ < ∞

(5.1)
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and

J(y, t)(ϑ) =
∞∑
l=1

Htl(t)Htl(ϑ)Il(y(tl)) (5.2)

for ϑ ∈ [a − r,∞), t ∈ [a − r,∞) and an arbitrary y ∈ PC([a − r,∞)). (Htk
is the left continuous Heaviside function concentrated at tk.)

Taking F (y, t) from (5.1) and J(y, t) from (5.2), let

G(y, t)(ϑ) = F (y, t)(ϑ) + J(y, t)(ϑ) (5.3)

for y ∈ PC([a − r,∞)), t ∈ [a − r,∞) and ϑ ∈ [a − r,∞). The values of the
function G(y, t) belongs clearly to PC([a − r,∞)); that is,

G : PC1 × [a − r,∞) → PC([a − r,∞)).

Analogously as in Section 3, it can be checked out that for s1, s2 ∈ [a,∞)
and x, y ∈ PC1 we have

‖G(x, s2) − G(x, s1)‖loc ≤ h(s2) − h(s1) (5.4)

and

‖G(x, s2)−G(x, s1)−G(y, s2)+G(y, s1)‖loc ≤ ‖x−y‖(h(s2)−h(s1)), (5.5)

where

h(t) =
∫ t

a
[M(s) + L(s)]ds + max(K1, K2)

∞∑
k=1

Htk(t), t ∈ [a,∞)

is a nondecreasing real function which is continuous from the left at every
point, continuous for all t 
= tl and h(tl+) exists for every l and ‖ · ‖loc is any
local norm of elements in PC([a − r,∞)); i.e., if z ∈ PC([a − r,∞)) then
‖z‖loc = supϑ∈[α,β] |z(ϑ)| for an arbitrary compact interval [α, β] ⊂ [a−r,∞).

According to (5.4) and (5.5), it can be easily seen that the function G
defined by (5.3) belongs to the class F(Ω, h), where Ω = PC1 × [c, d] and
[c, d] is any compact subinterval of [a,∞).

Consider the generalized ordinary differential equation
dx

dτ
= DG (x, t) . (5.6)

Assume that t0 ∈ [a,∞) and φ ∈ PC ([−r, 0], Rn) are given. Define a
function x̃ ∈ PC([a − r,∞)) by

x̃(ϑ) =

⎧⎪⎨⎪⎩
φ(ϑ − t0) for ϑ ∈ [t0 − r, t0],
x̃(t0 − r) = φ(−r) for ϑ ∈ [a, t0 − r],
x̃(t0) = φ(0) for ϑ ∈ [t0,∞).

(5.7)
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Looking at the initial-value problem for (5.6), with x(t0) = x̃, the local
existence and uniqueness Theorem 2.15, together with the equivalence result
given in Theorem 3.5, can be used to obtain the following.

Theorem 5.1. If the conditions (A*), (B*), (A’*) and (B’*) are fulfilled
and if x̃ ∈ PC1 from (5.7) is such that

x̃(ϑ) + Htl(ϑ)Il(x̃(t0)) ∈ PC1 (5.8)

when t0 = tl for some l = 1, 2, . . . , then there is a Δ > 0 such that on the
interval [t0, t0 + Δ] there exists a unique solution y : [t0, t0 + Δ] → R

n of the
problem (3.1) for which yt0 = φ.

By Theorem 2.15, for x̃ ∈ PC1 the relation

x̃+ = x̃ + G(x̃, t0+) − G(x̃, t0) ∈ PC1

is needed. This condition assures that the solution of the initial-value prob-
lem for the generalized ordinary differential equation (5.6) does not jump off
the set PC1 immediately at the moment t0. Note that in our situation of
the function G given by (5.3), we have G(x̃, t0+) − G(x̃, t0) = 0 if t0 
= tl,
l = 1, 2, . . . and [G(x̃, t0+)−G(x̃, t0)](ϑ) = Htl(ϑ)Il(x̃(t0)) if t0 = tl for some
l = 1, 2, . . . . This gives then the condition (5.8) from Theorem 5.1.

By Theorem 3.4 we have also the opposite; i.e., we have a one-to-one
correspondence between the solutions of the problem (3.1) and the solutions
of the initial-value problem for (5.6) with x(t0) = x̃.

Having the result of Theorem 5.1, the concept of a maximal solution of
the problem (3.1) can be introduced by taking σ = sup Δ > 0, where Δ > 0
is such that there is a unique solution y : [t0, t0 + Δ] → R

n of the problem
(3.1) for which yt0 = φ. Hence we have a function y : [t0, t0 + σ) → R

n

which is the maximal solution of the problem (3.1) on every closed interval
[t0, t0 + Δ] with 0 < Δ < σ, but there is no solution of the problem (3.1) on
closed intervals [t0, t0 + Δ] with σ ≤ Δ.
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