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I. INTRODUCTION

The conservation of energy for electromagnetic or acous-
tic waves, or conservation of probability in quantum me-
chanics, leads to a remarkable identity known as the optical
theorem. The optical theorem relates the power extinguished
from a plane wave incident on an object to the scattering
amplitude in the direction of the incident field. Explicitly, the
optical theorem may be expressed by the formula[1–5]

se =
4p

k0
Im Ask,kd, s1d

wherese is the extinction cross section,k0 is the wave num-
ber of the field,k is the wave vector of the incident plane
wave, andAsk ,kd is the amplitude of the field scattered in
the forward direction, i.e., in the direction of the incident
field. The extinction cross section is the total extinguished
power(i.e., the power lost to scattering and absorption of the
incident field) normalized by the power per unit area incident
on the scatterer. This theorem implies that the total power
extinguished from the incident field is removed from the
incident field by means of interference between the incident
field and the forward scattered field.

The optical theorem, expressed by Eq.(1), may be seen to
be a special case of a more general theorem that applies to
the scattering of an arbitrary incident field and relates the
extinguished power to a weighted integral of the scattering
amplitude[6,7]. This result accounts for the contribution not
only of the homogeneous components but also of the evanes-
cent components of the incident field which have to be taken
into account when the source of illumination is in the near
zone of the scatterer.

The generalized optical theorem also applies to the scat-
tering of partially coherent fields and scattering from random
objects. It has been shown that the generalized optical theo-
rem may be used to relate extinguished power to the struc-

ture of the scattering object and even to reconstruct the spa-
tial structure of the scatterer from the data obtained from
power extinction experiments[8,9].

In Sec. II, we derive an expression for extinguished power
that is the progenitor of the generalized optical theorem. An
expression is obtained that relates the extinguished power to
a volume integral over the domain of the scatterer. Unlike
other forms of the optical theorem, this result is obtained
without invoking the asymptotic behavior of the scattered
field. Furthermore, this formulation allows for the case that
the scattering object is embedded in an arbitrary background
with inhomogeneous optical properties. In Sec. III, scattering
from an object in free space is reconsidered and the equiva-
lence of our result and the generalized optical theorem[6,7]
is established. In Sec. IV, the problem of scattering from an
object in a half space is addressed. It is found that the extin-
guished power is related to the field that is scattered in the
directions of the components of the incident field in both half
spaces. The half-space problem is of practical importance in
imaging and tomography when the sample is supported on a
slide or other flat platform.

II. GENERAL RESULTS

Consider the reduced wave equation for a monochro-
matic, scalar fieldcsr de−ivt, v=ck0, in the presence of a
scattering object described by a susceptibilityhsrd, embed-
ded in a non-absorbing background medium, characterized
by the spatially dependent wave numberksr d,

¹2csr d + k2sr dcsr d = − 4pk2sr dhsr dcsr d. s2d

Equation(2) is ubiquitous in physics. It is encountered, for
example, as the linear, single particle, time independent, non-
relativistic Schrödinger equation[[10], Sec. 15]. It is also the
governing equation for the propagation of sound waves[[11],
Sec. 6.2].

PHYSICAL REVIEW E 70, 036611(2004)

1539-3755/2004/70(3)/036611(7)/$22.50 ©2004 The American Physical Society70 036611-1



Assuming that the background is nonabsorbing[ksr d is
real], the reduced wave equation(2) then implies that

c*sr d¹2csr d − csr d¹2c*sr d

= − 4pksr d2hhsr d − h*sr djucsr du2. s3d

By integrating both sides of Eq.(3) over any volumeV
which is bounded by a closed surfaceS with unit outward
normaln, and applying Green’s theorem[[12], Sec. 1.8], it is
readily found that

E
S

d2r hc*sr d = csr d − csr d = c*sr dj ·ndS

= −E
V

d3r4pksr d2hhsr d − h*sr djucsr du2. s4d

In the classical wave theory, the expression in the curly
brackets{ } on the left hand side of Eq.(4) is usually iden-
tified with the energy flux density of the field[[11], p. 199];
in quantum mechanics such an expression is identified with
the probability current density[[10], Sec. 17]. The flux den-
sity vector [[5], Appendix 11], with normalization taken so
that a unit amplitude plane wave has a unit magnitude flux
density vector, is thus defined as

Fsr d =
1

2ik0
hc*sr d = csr d − csr d = c*sr dj. s5d

The absorbed power is given by the net flux passing through
any surface enclosing the scatterer(but not enclosing the
sources of the incident field):

Pa = −E
S

d2r Fsr d ·n, s6d

wherePa is the power absorbed by the scattering medium. It
can be seen from Eq.(4) that Pa is also given by the expres-
sion

Pa =
4p

k0
Im E

V

d3r k2sr ducsr du2hsr d, s7d

where Im denotes the imaginary part. Whenh is real, the
scatterer is nonabsorbing andPa is identically zero.

A distinction between the background medium and the
scattering object is made on physical grounds, although the
effect of the scatterer itself might also be included in the
functionksr d. The distinction is physically important because
the field is taken to be composed of two parts, a scattered
field cs and an incident fieldci with ci +cs=c. The incident
field may be identified as the field which is present in the
absence of the scattering object. The incident field evidently
obeys the Helmoltz equation

¹2cisr d + k2sr dcisr d = 0, s8d

except in the region occupied by the source, and it is as-
sumed that the source is located outside the domain occupied
by the scatterer. From Eqs.(2) and (8) it is seen that the
scattered fieldcs obeys the equation

¹2cssr d + k2sr dcssr d = − 4pksr d2hsr dcsr d. s9d

By analogy with Eq.(5), the flux density vector of the
scattered fieldFs is defined as

Fssr d =
1

2ik0
hcs

*sr d = cssr d − cssr d = cs
*sr dj. s10d

The power carried by the scattered field is then given by the
expression

Ps =E
S

d2r Fssr d ·n, s11d

whereS is any closed surface which completely encloses the
scattering volume. It may be seen that

cs
*sr d¹2cssr d − cssr d¹2cs

*sr d

= − 8pik2sr dImhhsr dcs
*sr dcsr dj. s12d

Making use of Eqs.(9) and (12), the power carried by the
scattered field, Eq.(11), may also be expressed in terms of
the volume integral as

Ps = −
4p

k0
Im E

V

d3r k2sr dcs
*sr dcsr dhsr d. s13d

The absorbed power and the scattered power are supplied
by the incident field. The sum of the absorbed and the scat-
tered power, referred to as the extinguished power

Pe = Pa + Ps, s14d

represents the power depleted from the incident field because
of the presence of the scattering body. From Eqs.(7), (13),
and (14) it can be seen that the extinguished power is given
in terms of the incident and the scattered fields by the ex-
pression

Pe =
4p

k0
Im E

V

d3r k2sr dci
*sr dcsr dhsr d. s15d

Formula(15) is our main result. It gives the power depleted
from the incident beam as a consequence of interference be-
tween the incident and the scattered fields in the domain of
the object.

III. FREE SPACE

We will now show that, when the scatterer is located in
free space, the general result expressed in Eq.(15) reduces to
results derived previously in Refs.[6,7]. Moreover, the dis-
cussion will provide a template for the calculations of the
subsequent section where the more difficult problem of scat-
tering in a half space will be considered.

Let us choose a coordinate system such that the scattering
object is located in the half spacezù0 and the sources of the
incident field are located in the half spacez,0. The most
general case, where sources may be located anywhere out-
side of the object, may be treated by an obvious extension
the analysis presented here.

The incident field may be expressed in the form of an
angular spectrum of plane waves[[13], Sec. 3.2],
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cisr d =E d2ki askdeik·r , s16d

where k i is a vector parallel to the planez=0 and k =k i

+ ẑkz, with ẑ being the unit vector in the increasingz direc-
tion and

kz = Îk0
2 − ki

2. s17d

When the modulusuk iu exceeds the free-space wave number,
kz becomes purely imaginary. Such values ofkz correspond
to modes of the incident field that decay exponentially on
propagation and are known as evanescent waves. Since the
system under consideration is linear in the fields, the total
field is given by the expression

csr d =E d2ki askdfsr ;kd, s18d

wherefsr ,kd is the total field produced at a pointr due to
scattering of a plane wave of unit amplitudefaskd=1g with
wave vectork. The total fieldf may be separated into inci-
dent and scattered fields,

fsr ;kd = eik·r + fssr ;kd, s19d

fssr ;kd being the scattered field produced at a pointr on
scattering of a plane wave of unit amplitude with wave vec-
tor k, satisfying the integral equation

fssr ;kd = k0
2E d3r8Gsr ,r 8dhsr 8dfsr 8;kd. s20d

In Eq. (20) G is the retarded(outgoing) Green’s function,
which satisfies the equation

¹2Gsr ,r 8d + k0
2Gsr ,r 8d = − 4pd s3dsr − r 8d, s21d

d s3d denoting the three-dimensional Dirac delta function. The
Green’s function may be represented as a superposition of
plane wave modes,

Gsr ,r 8d =
i

2p
E d2ki

kz
expfik i · sr − r 8d + ikzuz− z8ug.

s22d

The scatterer lies entirely in the regionz,z0 as shown in
Fig. 1. The fieldfs, in the regionz.z0, may be represented
in the form of an angular spectrum of plane waves

fssr ;k1d =
i

2p
E d2k2i

k2z
Ask1,k2deik2·r , s23d

whereA is the usual scattering amplitude between states of
real momenta, as it may be seen that in the far zone of the
scatterer, forz.0, the scattered fieldfs takes the asymptotic
form

fssr ;k1d ,
eik0r

r
Ask1,k0r̂ d, r̂ = r /r . s24d

It should be noted that, whileA gives the asymptotic behav-
ior of the field, it is not defined only by the asymptotic be-
havior of the field. It is also well defined for complex wave

vectors which are relevant in the near field for evanescent
plane wave modes. An explicit form forA may be found by
considering the field in any planez=z0 (see Fig. 1) such that
the scatterer lies entirely in the regionz,z0,

Ask1,k2d =
k2z

2pi
E

z=z0

d2r e−ik2·rfssr ;k1d. s25d

Substitution of the expression forfs given in Eq.(20) in the
right hand side of Eq.(25) and use of Eq.(22) yields the
relation

Ask1,k2d = k0
2E

V

d3r e−ik2·rhsr dfsr ;k1d. s26d

We now return to the extinguished power. Substituting
Eqs.(16) and (18) in Eq. (15) we find that

Pe = 4pk Im E d2k1id2k2i ask1da*sk2d

3E
V

d3r e−ik2
* ·rhsr dfsk1,r d. s27d

Thus, making use of Eq.(26), the results originally presented
in Refs.[6,7] are recovered:

Pe =
4p

k0
Im E d2k1id2k2i ask1da*sk2dAsk1,k2

*d. s28d

The case of illumination by a single plane wave of amplitude
a may be recovered by takingaskd=ads2dsk i−k0id. One finds
that

Pe =
4puau2

k0
Im Ask0,k0

*d. s29d

This expression was originally derived for realk by Feen-
berg [1] in the context of quantum mechanics, with the re-
strictions thatPa=0 and with implied cylindrical symmetry.
An heuristic argument was given by van de Hulst[2] for the
theorem in the context of electromagnetic scattering. A rig-
orous derivation for the electromagnetic case was given by
Jones[3]. When the incident field is a plane wave of ampli-
tudea, it is common practice to normalize the power by the

FIG. 1. Illustrating the notation for scattering in free space. The
incident field, here taken to be a single plane wave, is represented
by a solid line in the direction of the wave vector of the plane wave.
A plane wave component of the scattered field is represented by a
dashed line and is labeled with the appropriate amplitude.
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intensity of the incident field. This normalized quantity, de-
fined by the expressionse=Pe/ uau2, and Eq.(1), is referred
to as the extinction cross section[[4] Sec. 1.3]. For realk,
Eq. (1) is theoptical (cross section) theorem.

IV. HALF SPACE

We now consider the problem of scattering from an object
in the presence of a planar interface separating two homoge-
neous half spaces. It is assumed that the scatterer is of finite
extent and is located entirely in the regionz1ùzùz2 as
shown in Fig. 2. The half spacez.0 is assumed to be
vacuum. The other half spacez,0 is taken to consist of a
material whose index of refraction isn.1. The fields satisfy
Eqs.(2) and (9), with

ksr d = H k0 for zù 0,

nk0 for z, 0.
J s30d

The Green’s functionGsr ,r 8d for this situation satisfies
the equation

¹2Gsr ,r 8d + n2szdk0
2Gsr ,r 8d = − 4pds3dsr − r 8d s31d

and obeys the boundary conditions

uGsr ,r 8duz=0+ = uGsr ,r 8duz=0−, s32d

uẑ · = Gsr ,r 8duz=0+ = uẑ · = Gsr ,r 8duz=0−. s33d

Gsr ,r 8d admits the plane wave decomposition

Gsr ,r 8d =
i

2p
E d2ki

kz
expfik i · sr − r 8dgSQszdQsz8d

3hexpsikzuz− z8ud + Rsk,k8dexpfikzsz8 + zdgj

+ Qs− zdQsz8dTsk,k8dexpfikzz8 − ikz8zg

+ QszdQs− z8d
kz

kz8
T8sk,k8dexpfikzz− ikz8z8g

+ Qs− zdQs− z8d
kz

kz8
hexpsikz8uz− z8ud

+ R8sk,k8dexpf− ikz8sz8 + zdgjD , s34d

where Q is the Heaviside step function, i.e.,Qsxd=1 for
x.0 and Qsxd=0 for xø0. The factorsR and T are the
reflection and transmission coefficients, respectively,

Rsk,k8d =
kz − kz8

kz + kz8
, Tsk,k8d =

2kz

kz + kz8
, s35d

R8sk,k8d = − Rsk,k8d, andT8sk,k8d =
kz8

kz
Tsk,k8d, s36d

with the wave vectors, in the upper and lower half spaces,
respectively, given by Eq.(17), and

k8 = k i + ẑkz8, andkz8 = În2k0
2 − ki

2. s37d

The validity of Eq.(34) may be verified by direct substitu-
tion. It might be noted that the chosen notation for the re-

flection and transmission coefficients is somewhat redundant
and not as compact as it might be. However, this expanded
notation will prove useful shortly.

The source of the field is assumed to be entirely outside
the region of the scatterer, that is, outside the regionz1ùz
ùz2. In the region of the scatterer the incident field obeys
Eq. (8) and may be represented as a superposition of modes
of this equation analogous to the angular spectrum represen-
tation for the free-space problem. We will exclude from our
consideration the case that sources are located in the region
z1.z.z2. Writing r =rr̂+zẑ, the reflection of the pointr
through thez=0 plane is given byr̃ =rr̂−zẑ. The modes

FIG. 2. Illustrating the notation for the half-space problem. In
(a), an incident modefi

+sr ,k1,k18d associated with sources in the
lower half space is represented by a solid line indicating the wave
vector of the three planewave components of the mode. A mode of
the scattered field is represented by a dashed line. The two plane
wave components of the scattered field in the upper half space
combine to produce an outgoing plane wave with wave vectork2

and amplitude proportional toA+
+sk1,k18 ,k2,k28d. The plane wave

component of the scattered mode in the lower half space is propor-
tional to A−

+sk1,k18 ,k2,k28d. In (b), the notation is similarly illus-
trated, here with a different mode of the incident field,fi

−sr ,k1,k18d,
generated by sources in the upper half space.
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incident from the lower half space may be expressed as

fi
+sr ;k,k8d = hQs− zdfeik8·r + R8sk,k8deik8·r̃g

+ QszdT8sk,k8deik·rj s38d

and the modes incident from the upper half space are

fi
−sr ;k,k8d = hQszdfeik·r̃ + Rsk,k8deik·rg

+ Qs− zdTsk,k8deik8·r̃j. s39d

It may be verified that these modes are orthogonal and that
they satisfy the reduced wave equation Eq.(2) and the
boundary conditions(32) and (33). Moreover, the Green’s
function for the case that the pointsr 8 andr lie, respectively,
inside and outside the domainz1.z.z2, may be represented
as a superposition of these incident modes. This set of modes
is thus complete on the space of allowed incident fields. The
incident field may then be expressed as

cisr d =E d2kifa+skdfi
+sr ;k,k8d + a−skdfi

−sr ;k,k8dg,

s40d

or, more compactly,

cisr d = o
n=±

E d2ki anskdfi
nsr ;k,k8d. s41d

For convenience,f±sr ;k ,k8d will denote the total field gen-
erated at a pointr by scattering of an incident mode
fi

±sr ;k ,k8d. As before, the total field modes are given in
terms of their incident and scattered parts asf±=fi

±+fs
±.

The total field may be represented in terms of the total field
modes by the expression

csr d = o
n=±

E d2ki anskdfnsr ;k,k8d s42d

and the scattered field by

cs = o
n=±

E d2ki anskdfs
nsr ;k,k8d. s43d

The extinguished power[Eq. (15)] may thus be expressed as

Pe = 4pk Im E d3r E d2k1id2k2i

3 o
m,n=±

am*sk2dansk1dfi
m*sr ;k2,k28df

nsr ;k1,k18dhsr d.

s44d

The scattered field modesfs
± may be expressed in the

form of angular spectra as in Eq.(23). The situation is some-
what more complicated now, and some explanation of the
notation is appropiate. The amplitudeA is now a function of
the wave vectors corresponding to the transverse wave vector
of the incident mode and the plane wave into which that
mode is scattered. That is,A+

±sk1,k18 ,k2,k28d is the amplitude
for the scattering of the incident modefi

±sr ;k1,k18d into the
outgoing (in the upper half space) plane wave expsik2·r d,

and A−
±sk1,k18 ,k2,k28d is the amplitude for the scattering of

the incident modefi
±sr ;k1,k18d into the outgoing(in the

lower half space) plane wave expsik28 ·r̃ d. Then in the upper
half space the scattered mode may be expressed as

fs
±sr ;k1,k18d =

i

2p
E d2k2i

k2z
A+

±sk1,k18,k2,k28de
ik2·r s45d

and in the lower half-space,

fs
±sr ;k1,k18d =

i

2p
E d2k2i

k2z8
A−

±sk1,k18,k2,k28de
ik28·r̃ s46d

The normalization has been chosen so that in the upper half
space

fs
±sr ;k1,k18d ,

eik0r

r
A+

±sk1,k18,k2,k28d, k0r → `, s47d

wherek2 is parallel tor . In the lower half space,

fs
±sr ;k1,k18d ,

eink0r

r
A−

±sk1,k18,k2, k28d, k0r → `, s48d

wherek28 i r̃ .
The scattering amplitudes may be determined by consid-

ering, for the upper half space, the scattered field in some
planez=z1 wherez1 is chosen so that the susceptibility of the
scatterer is zero forz.z1. Then

A+
±sk1,k18,k2,k28d =

− ik2ze
−ik2zz1

2p
E

z=z1

d2r e−ik2i·rfs
±sr ;k1,k18d.

s49d

The scattering amplitude in the lower half space may be
determined by considering the scattered field in some plane
z=z2ø0,

A−
±sk1,k18,k2,k28d =

− ik2z8 eik2z8 z2

2p
E

z=z2

d2r e−ik2i·rfs
±sr ;k1,k18d.

s50d

The scattered field satisfies the integral equation

fs
±sr ;k,k8d = k0

2E d3r8Gsr ,r 8dhsr 8df±sr 8;k,k8d. s51d

Making use of Eqs.(49)–(51), one finds that

A+
±sk1,k18,k2,k28d = k0

2E d3r fe−ik2·r + Rsk2,k28de
−ik2·r̃g

3hsr df±sr ;k1,k18d, s52d

and

A−
±sk1,k18,k2,k28d = k0

2k2z8

k2z
E d3r Tsk2,k28de

−ik2·r̃

3hsr df±sr ;k1,k18d. s53d

The integrals in Eq.(44) may be identified with the scat-
tering amplitude in certain directions. It is useful to note that
in the region of the scatterer, i.e.,z8.0,
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fi
+*sr ;k,k8d = T8*sk,k8dfe−ik* ·r + Rsk* ,k8*de−ik*·r̃g

+ R8*sk,k8dT8sk* ,k8*de−ik* ·r̃ s54d

and

fi
−*sr ;k,k8d = R*sk,k8dfe−ik*·r + Rsk* ,k8*de−ik* ·r̃g

+ T8*sk,k8dTsk* ,k8*de−ik* ·r̃ , s55d

where we have made use of the identity thatT* sk ,k8d
=Tsk * , k8*d, and similar expressions forR andR8. By sub-
stituting these expressions into Eqs.(52) and (53) and com-
paring to Eq.(15), the power extinguished from an incident
field fi

+sk ,k8 ,r d is seen to be given by the expression

Pe =
4p

k0
ImfT8*sk,k8dA+

+sk,k8,k* ,k8*d

+ R8*sk,k8dA−
+sk,k8,k* ,k8*dg. s56d

This result has a clear physical interpretation: In the absence
of the scatterer, the incident field imparts a certain amount of
power to the far zone via the outgoing plane waves reflected
from and transmitted through the boundary of the half
spaces. The scatterer depletes, or extinguishes, some of the
power from the incident field. In order to properly account
for the total power, the field produced on scattering must
interfere coherently with the incident field in order to extin-
guish that field. Thus the incident modefi

+sr ;k1,k18d delivers

power to the far zone through the plane waveseik18·r̃ and
eik1·r , and the extinguished power is directly related to the
amplitude of the scattered plane waves in those same direc-
tions as may be seen in expression(56). The situation is
illustrated in Fig. 2. In the event that the incident mode con-
sists of a wave totally internally reflected in thez,0 half
space, the extinguished power is related to the amplitude of
the modes of the field coupled back into thez,0 half space,
propagating in the direction of the beam reflected from the
interface.

The power extinguished from the incident field
fi

−sr ;k ,k8d is given by the expression

Pe =
4p

k0
ImfT*sk,k8dA−

−sk,k8,k* ,k8*d

+ R*sk,k8dA+
−sk,k8,k* ,k8*dg. s57d

This expression may also be interpreted as relating the extin-
guished power to the amplitude of the scattered waves which
are coincident with the outgoing parts of the incident field. In
general, with an incident field given by Eq.(41),

Pe = o
n=±

4p

k0
ImHE d2k1id2k2i ansk1da+*sk2d

3fT8*sk2,k28dA+
nsk1,k18,k2

* ,k28
*d

+ R8*sk2,k28dA−
nsk1,k18,k2

* ,k28
*dg

+E d2k1id2k2i ansk1da−*sk2d

3 fT * sk2,k28dA−
nsk1,k18,k2

* ,k28
*d

+ R*sk2,k28dA+
nsk1,k1,k28

* ,k28
*dgJ . s58d

V. DISCUSSION

The results presented here provide insight into the inter-
ference mechanisms that ensure energy conservation in the
scattering of scalar waves. Equation(15) provides a frame-
work in which to obtain a relationship between the scattering
amplitude and the extinguished power in problems with an
arbitrary background medium. We have obtained such a re-
lationship for the case that the background medium consists
of a lossless half space of index different from the vacuum.
This problem is relevant to the scattering of a single evanes-
cent plane wave. Such a field can be generated only in the
half-space geometry. In free space, evanescent modes may be
present in superposition with other modes of the field if the
source is placed near the scatterer, but a single evanescent
mode is never present in isolation[7]. The results have a
clear physical meaning, namely, that the extinguished power
is simply related to the scattering amplitude of the scattered
field in the direction of the outgoing plane wave components
of the incident field.

To lowest order in the susceptibility, when the scatterer is
in vacuum, the extinguished power is the projection of the
incident intensity on the imaginary part of the susceptibility,

Pe = 4pk0E
V

d3r ucisr du2 Im hsr d + Osh2d. s59d

This formula suggests a manner in which object structure
may be investigated. If the intensity of the incident field
forms the kernel of a transformation that can be inverted,
then the object structure, as described by Imhsr d, may be
found from power extinction measurements. In Refs.[8,9]
the incident field was taken to consist of two plane waves
and consequently the extinguished power was related to a
Fourier transform[8] or to a Fourier-Laplace transform[9]
of the object. The present result shows that the extinguished
power is a meaningful measure of object structure for certain
forms of the incident field. Two tomographic modalities cur-
rently in practice may also be understood as variants of this
approach. Computed tomography with x rays[14] is accom-
plished with measurements of the field attenuation along rays
passing through the sample under investigation. That situa-
tion is described by Eq.(59) when the incident field is as-
sumed to be localized to the ray path. The technique of trans-
mission mode confocal imaging[15] may also be understood
in the context of Eq.(59). There the field intensity is much
higher at the focus than at any other point in the medium,
and, as is well known, the data represent a convolution of the
object structure with the intensity in the focus. Because the
transmitted field is collected in a confocal arrangement, the
signal is simply related to the extinguished power.

Results analogous to those presented here may be obtain
for the vector(electromagnetic) field and will be presented in
another paper. Layer structures and waveguide geometries
will also be studied in future work.
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