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Abstract

This thesis discusses diffusive motion of particles experiencing random forc-
ing in a viscous medium. It generalizes the standard Ornstein-Uhlenbeck
process in one spatial dimension (which is also discussed) for the case when
the dependence of the force on the position of the particle cannot be ne-
glected. Expectation values and correlation functions of physical observables
(momentum and displacement) are calculated. This is achieved by finding
the spectrum of the so-called Fokker-Planck operator describing the time
evolution of the probability distribution of momentum. Numerical experi-
ments are performed confirming the analytical results obtained. The case
of two spatial dimensions is briefly discussed and numerical results for this
case are presented.
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Chapter 1

Introduction

This thesis addresses the problem of describing the dynamics of particles
moving in a viscous medium. This problems has recently been intensively
investigated. Examples are passive tracers in turbulent flows [1] and inertial
particles in turbulent flows [2, 3, 4, 5]. Early works go back to Einstein
[6] and Smoluchowski [7] in the theory of Brownian motion showing among
other results diffusive motion of particles. Subsequently Ornstein and Uh-
lenbeck [8] considered the equation of motion of a particle of mass m,

m
du

dt
= −ku + f(t). (1.1)

Here, f(t) represents a randomly fluctuating force, u is the velocity of the
particle and k is the friction coefficient. Ornstein and Uhlenbeck obtained
results for the mean square values of the displacement of the particle, 〈x2(t)〉,
and the velocity 〈u2(t)〉, as well as the probability distribution of the velocity.

In this thesis this problem is generalized by considering the equation of
motion,

m
du

dt
= −ku + f(x, t), (1.2)

where the force f(x, t) depends not only on time, but also on the position
of a particle (as is generally the case).

Properties of particles moving according to (1.2) have been studied in-
tensively in the past. In particular, the evolution of distribution of many
particles moving in a turbulent flow that can be approximated by (1.2) is
of major interest. Surprisingly, for non-interacting particles, it appeared
that (1.2) exhibits a phase transition between two regimes: in the first one
particles seem to move completely independently as one might expect for
diffusive motion; in the second one particles tend to cluster together and, in
the end, explore the same trajectory. Deutsch [9] described this phenomenon
and gave theoretical statements and numerical simulations showing an ex-
istence of a phase transition. In [10, 11] the Lyapunov exponent - the rate

5



of exponential convergence (divergence) of nearby trajectories - was explic-
itly calculated as a function of a dimensionless parameter characterizing the
model (1.2) both for one-dimensional and two-dimensional cases. The Lya-
punov exponent for the three-dimensional case was calculated in [5] and [12],
which is most important for physical applications. Sigurgeirsson and Stuart
[16] investigated model (1.2) incorporating collisions between particles.

The aim of this thesis is to calculate the mean square values of the
momentum and the displacement, 〈p2(t)〉, 〈x2(t)〉 respectively, as well as
the correlation function of the momentum 〈p(t)p(t+∆t)〉 in equilibrium for
particles moving according to (1.2). This is achieved by finding a spectrum
of the corresponding operator of the Fokker-Planck equation that describes
the evolution of the probability distribution of momentum. The spectrum is
used to write the propagator that defines correlation functions. This is done
assuming motion in the limit of small damping and large forcing. This makes
it possible to simplify the Fokker-Planck equation. This problem has been
investigated in [15], and the results obtained there are generalized. There
are also asymptotic scaling results available in [13] and [14] for the case of
undamped motion (k = 0), for an arbitrary dimension both for classical and
quantum particles.

This report is organized in the following way. The second chapter de-
scribes the model and introduces all parameters. It also describes the
method used for the numerical simulation of random force field f(x, t).
Chapter 3 is dedicated to the standard Ornstein-Uhlenbeck process. Chap-
ter 4 introduces the Fokker-Planck equation for model (1.2) and the cor-
responding operator, its spectral decomposition, and correlation functions
that can be determined using eigenvalues and eigenfunctions. Chapter 5
presents the results for momentum and spatial diffusion for the generalized
Ornstein-Uhlenbeck process compared with numerical results. Chapter 6
gives a brief discussion for the case of two spatial dimensions. Conclusions
are summarized in chapter 7.
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Chapter 2

The model

Consider a particle with mass m, position x and momentum p moving in an
one-dimensional random force field f(x, t) characterized by damping rate γ.
The equation of motion is

dx

dt
=

p

m
, (2.1)

dp

dt
= −γp + f(x, t).

Note that the original Ornstein-Uhlenbeck equation (1.1) is written in terms
of a friction coefficient k. It is related to γ as follows: k = γm.

The following assumptions concerning f(x, t) are made. First, the mean
value of the force f(x, t) over an ensemble of realizations for any x and t is
assumed to vanish, that is,

〈f(x, t)〉 = 0. (2.2)

Angular brackets denote the mean value throughout the report.
Furthermore, it is assumed that correlations between values of f(x, t) for

different x1, t1 and x2, t2 decay fast with increasing |x2 − x1| and |t2 − t1|
with scaling factors, ξ and τ respectively. The correlation function of the
force can be written as follows,

〈f(x1, t1)f(x2, t2)〉 = c(x1 − x2, t1 − t2). (2.3)

In the numerical simulations, the following form of the correlation function
is used,

c(x, t) = 〈f(x1, t1)f(x1 + x, t1 + t)〉 (2.4)

= σ2exp
(
− x2

2ξ2

)
exp

(
−|t|

τ

)
,
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where σ is the typical strength of the force. A random field having such
properties is referred as a generic random field and, accordingly, this case is
called the generic case. Another possibility is to generate a force field as

f(x, t) =
∂ψ(x, t)

∂x
, (2.5)

where ψ(x, t) is a generic random field as described above. This case is
referred as the gradient case. Note that for this case the typical strength
of the force is σ/ξ. Later it will be shown how the form of the correlation
function for the gradient case can be calculated.

2.1 Random-field generation

Numerical methods for creating random fields are usually based on spec-
tral or Fourier decomposition of a random function similar to the case of a
non-random function. In order to verify the analytical results discussed in
chapter 5, it is important to have a method for simulating the random force
in (1.2) that is fast and memory efficient.

2.1.1 Spectral decomposition of a random function

Here, spectral decomposition of a random function of one variable is briefly
described. It is assumed that

〈f(x)〉 = 0, (2.6)
〈f(x1)f(x1 + x)〉 = c(x).

An extension to the case of more than one variable is straightforward.
The spectral decomposition of a periodic random function f(x) with a

period L looks as follows,

f(x) =
∑

k∈K
fk exp(ikx), (2.7)

where K is the set of the form 2π
L n and n = 0,±1,±2, . . . The coefficients

fk are complex numbers, but in order for f(x) to be real one has to choose
f0 to be a real number and f−k = f∗k , where the asterisk denotes complex-
conjugation. The fk’s are chosen to be independent random numbers with
particular properties, and from the first condition of (2.6) it clearly follows
that 〈fk〉 = 0. The second condition implies that the variance of any fk must
be equal to the value of a required spectral density s(k), which is, simply,
the Fourier transform of a correlation function,

s(k) =
1
L

∫ ∞

−∞
c(x)exp (ikx) dx, (2.8)

c(x) =
L

2π

∫ ∞

−∞
s(k)exp (ikx) dk.
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This implies that the variance of f(x) is equal to the sum of variances of all
fk’s, that is,

〈f2(x)〉 = c(0) =
∑

k∈K
〈|fk|2〉. (2.9)

These statements might be enough to start generating a random func-
tion. However, computational problems arises. The time necessary for com-
puting the sum (2.7) grows quickly with a number of terms N and the
dimension d, namely as Nd, that is exponentially with the dimension. Note
also that upon increasing the period L, one has to increase the number of
terms to reliably approximate the indefinite sum (2.7). If a random field
depends on discrete variables it is possible to apply fast Fourier transforms
(FFT) to compute (2.7). This might be useful for the present problem. FFT
is a very powerful technique that makes it possible to reduce the growth of
the computing time from Nd to Nd−n log Nn, where n is the number of dis-
crete variables, but it can be crucially exacting for memory resources, if the
number of discrete steps is very large (and this is the case).

Sigurgeirsson and Stuart [16] described a method for generating a spatial
random field evolving in time that is also based on spectral decomposition.
They showed that it is possible to use a differential equation to generate
fk(t) to simulate the desired time correlation function while at a given time
t the coefficients fk(t) determine the desired spatial correlation function.
Sigurgeirsson et al. [17] referred to this approach as synthetic turbulence.

2.1.2 Synthetic turbulence

This section describes how a random field of two variables (one in space and
one in time) can be generated. The algorithm presented in [16] is adopted
with some modifications. The idea is to use spectral decomposition of the
form (2.7),

f(x, t) =
∑

k∈K
fk(t)exp(ikx). (2.10)

The distribution of fk must remain stationary and satisfy the constraint
〈|fk(t)|2〉 = s(k), where s(k) is the Fourier transform of the spatial correla-
tion function. Using the correlation function of the form (2.4) the required
spectral density is

s(k) =
√

2πσ2ξ

L
exp

(
−ξ2k2

2

)
. (2.11)

In order to reproduce the desired time correlation function, fk(t) can be
generated dynamically using a differential equation. It can be easily verified
that in order to get the time correlation function of the form (2.4) fk(t)
must be solutions of the following differential equation,

dfk

dt
= −τ−1fk +

√
2s(k)

τ

dβk

dt
, (2.12)
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where βk is a sequence of standard complex-valued Brownian motions, i.e.
〈dβk(t)〉 = 0, and 〈dβk(t1)dβ∗k(t2)〉 = δt1t2dt. In order for f(x, t) to be real
one has to choose βk = β∗−k, fk = f∗−k and f0 to be a real number. At t = 0,
the fk’s must be chosen from a normal distribution N [0, s(k)], which is a
stationary distribution of (2.12).

Unfortunately, there are not many types of correlation functions that
can be simulated by this method, and it is not obvious how to construct
a differential equation for a given correlation function, whereas for FFT it
is necessary to know only a spectral density. The method based on (2.10)
and (2.12) is much faster than the one described in section 2.1.1, and it is
therefore used to simulate the random force in (2.1).

2.1.3 Time correlation function

It is now possible to calculate the correlation function of the force for the
gradient case by writing a spatial derivative of (2.10) as follows,

g(x, t) =
∂f(x, t)

∂x
= i

∑

k∈K
kfk(t)exp(ikx). (2.13)

The unique solution of (2.12) (assuming t > 0) is

fk(t) = fk(0)exp
(
− t

τ

)
+

√
2s(k)

τ

∫ t

0
exp

(
z − t

τ

)
dβk(z). (2.14)

The time correlation function can be calculated by averaging g(0, 0)g(0, t)
over an ensemble of realizations,

c(t) = 〈g(0, 0)g(0, t)〉 =
∑

k∈K
〈k2fk(0)fk(t)〉. (2.15)

Using (2.14) this can be rewritten as follows,

c(t) =
∑

k∈K
k2〈f2

k (0)〉exp
(
− t

τ

)
(2.16)

+
∑

k∈K

√
2s(k)

τ

〈∫ t

0
exp

(
z − t

τ

)
dβk(z)

〉
. (2.17)

The average value of the term with the integral is 0, since dβk are indepen-
dent increments in time. Therefore,

c(t) =
∑

k∈K
k2〈fk(0)2〉exp

(
− t

τ

)
(2.18)

=
∑

k∈K
k2s(k)exp

(
− t

τ

)
=

σ2

ξ2
exp

(
− t

τ

)
.
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The spatial correlation function c(x) is determined as follows,

c(x) = 〈g(0, 0)g(x, 0)〉. (2.19)

Using (2.13) this yields,

c(x) =
∑

k∈K
k2s(k)exp(ikx) =

σ2(ξ2 − x2)
ξ4

exp
(
− x2

2ξ2

)
. (2.20)

Summarizing, the correlation function for the gradient case is

c(x, t) =
σ2

ξ4
(ξ2 − x2)exp

(
− x2

2ξ2

)
exp

(
−|t|

τ

)
. (2.21)

Henceforth c(x, t) is referred as the correlation function and c(x) and c(t)
are referred as its spatial and time part respectively.
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Chapter 3

The standard
Ornstein-Uhlenbeck process

This chapter describes the standard Ornstein-Uhlenbeck process. The ma-
terial in this chapter is taken from [8] (see also [19]).

The equation of motion considered by Ornstein and Uhlenbeck (in terms
of damping rate γ) is

dp

dt
= −γp + f(t). (3.1)

Let f(t) have the following properties:

〈f(t)〉 = 0, (3.2)
〈f(t1)f(t1 + t)〉 = c(t),

where c(t) is a function with a sharp maximum at t = 0 with correlation
length τ [e.g. the time part of the correlation function of the form (2.4)]. The
solution of (3.1), that is, the dynamics of the momentum can be calculated
by integrating the differential equation (assuming initial condition p(0) = 0),

p(t) = e−γt

∫ t

0
eγsf(s)ds. (3.3)

The variance of the momentum is thus

〈p2(t)〉 = e−2γt

∫ t

0
ds1

∫ t

0
ds2eγ(s1+s2)〈f(s1)f(s2)〉. (3.4)

By changing the variables s1 + s2 = u, s1 − s2 = v, (3.4) becomes

〈p2(t)〉 =
1
2
e−2γt

∫ 2t

0
eγudu

∫ t

−t
c(v)dv. (3.5)

Since c(v) has a sharp maximum at v = 0, it is possible to change the limits
of integration of the second integral in (3.5) to (−∞;∞) for t À τ to obtain

〈p2(t)〉 =
D0

γ
(1− e−2γt) (3.6)
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with the diffusion constant

D0 =
1
2

∫ ∞

−∞
c(t)dt. (3.7)

The variance of the displacement is obtained by integrating (3.3) (assuming
for the sake of simplicity x(0) = 0),

x(t) =
1
m

∫ t

0
e−γudu

∫ u

0
eγvf(v)dv, (3.8)

or integrating by parts,

x(t) =
1

γm

(∫ t

0
f(u)du− e−γt

∫ t

0
eγuf(u)du

)
. (3.9)

By squaring and averaging the variance of the displacement becomes,

〈x2(t)〉 =
1

γ2m2

∫ t

0
du

∫ t

0
dv 〈f(u)f(v)〉 (3.10)

− 2e−γt

γ2m2

∫ t

0
du

∫ t

0
dv eγu〈f(u)f(v)〉

+
e−2γt

γ2m2

∫ t

0
du

∫ t

0
dv eγ(u+v)〈f(u)f(v)〉.

It is convenient to change variables in the first and the third terms as a =
u + v and b = u− v, whereas for the second term the change of variables is
a = u and b = u− v. This gives the following result,

〈x2(t)〉 =
1

2γ2m2

∫ 2t

0
da

∫ t

−t
db c(b) (3.11)

− 2e−γt

γ2m2

∫ t

0
da eγa

∫ t

−t
db c(b)

+
e−2γt

2γ2m2

∫ 2t

0
da eγa

∫ t

−t
db c(b).

As before, it is possible to approximate the second integral in all 3 terms as
2D0 for t À τ obtaining

〈x(t)2〉 =
2D0

γ2m2

[
t +

1− e−2γt

2γ
− 2(1− e−γt)

γ

]
. (3.12)

The last expression implies anomalous diffusion at short times,

〈x(t)2〉 ∼ 2D0

3m2
t3 (3.13)
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Figure 3.1: Numerical simulations of 〈p2(t)〉 and 〈x2(t)〉 (circles) for the
standard Ornstein-Uhlenbeck process (3.1) compared with the theoretical
results (3.6) and (3.12) (red solid lines). For 〈x2(t)〉 the limiting behaviours
(3.13) and (3.14.) (dashed lines) are shown. The parameters were σ = 1.0,
ξ = 0.1, m = 1.0, γ = 0.01, τ = 0.1

and diffusion at long times,

〈x(t)2〉 ∼ 2D0

γ2m2
t. (3.14)

Numerical simulations for the standard Ornstein-Uhlenbeck process are shown
in Fig. 3.1. It should be noticed that the agreement with the theory is rea-
sonable when t À τ , as one should expect.

If γτ ¿ 1, the probability distribution P (p, t) of momentum p at time t
is determined by a Fokker-Planck equation. Ornstein and Uhlenbeck arrived
at the following expression,

∂P (p, t)
∂t

=
∂

∂p

(
γpP (p, t) + D0

∂P (p, t)
∂p

)
, (3.15)

where D0 is the diffusion constant defined above. The solution of this equa-
tion can be guessed in the case of particles at rest at t = 0, and the distri-
bution of the momentum is

P (p, t) =
γ1/2

[2πD0(1− e−2γt)]1/2
exp

[
− γp2

2D0(1− e−2γt)

]
, (3.16)

which becomes Gaussian for t À γ−1. One can easily calculate 〈p2(t)〉 =∫∞
−∞ p2P (p, t)dp and, indeed, obtain the result (3.6).
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Chapter 4

Spectral decomposition of
the Fokker-Planck operator
of the generalized
Ornstein-Uhlenbeck process

This chapter discusses the spectral decomposition of the Fokker-Planck oper-
ator corresponding to (2.1) in the limit of small damping. The Fokker-Planck
equation in this case looks as follows [13, 14, 15, 18],

∂P (p, t)
∂t

=
∂

∂p

(
γpP (p, t) + D(p)

∂P (p, t)
∂p

)
, (4.1)

with a diffusion constant that now depends on p,

D(p) =
1
2

∫ ∞

−∞
c(pt/m, t) dt. (4.2)

The limits of validity of (4.1) are discussed in [22]. If damping rate γ is small
and the force is large particles travel very fast compared with the typical
momentum of the model p0 = mξ/τ and the diffusion constant D(p) can be
approximated in the limit of p À p0.

First, D(p) is calculated for the generic case using the correlation func-
tion of the form (2.4),

D(p) =
mσ2ξexp

(
m2ξ2

2p2τ2

)
erfc

(
mξ

|p|τ√2

)√
π

|p|√2
, (4.3)

where erfc(x) is the complementary error function [20]. By denoting D1 =
σ2τ one has,

D(p) = D1
p0

|p|exp
(

p2
0

2p2

)
erfc

(
p0

|p|√2

)
. (4.4)
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Assuming p À p0 it is possible to keep only the terms p0/p of first order
and obtain,

D(p) ∼ D1
p0

|p| . (4.5)

Now, D(p) for the gradient case can be calculated using the correlation
function of the form (2.21),

D(p) =
m2σ2

[
2|p|τ −mξexp

(
m2ξ2

2p2τ2

)
erfc

(
mξ

pτ
√

2

)√
2π

]

2|p|3τ2
(4.6)

and denoting D2 = σ2τ/ξ2 one obtains,

D(p) = D2
p2
0

p2
−D2

p3
0

|p|3 exp
(

p2
0

2p2

)
erfc

(
p0

|p|√2

)√
π

2
. (4.7)

Assuming p À p0 it is possible to keep only the terms p0/p of second order
and obtain,

D(p) ∼ D2

(
p0

p

)2

. (4.8)

It is argued [15] that for any differentiable force (e.g. time correlation func-
tion of the Gaussian form) one obtains either D(p) ∼ p−1 (the generic case)
or D(p) ∼ p−3 (the gradient case). Indeed, the correlation function (2.4) is
not differentiable at t = 0. This gives rise to D(p) ∼ p−2 for the gradient
case. To generalize, one may assume that the diffusion constant behaves as

D(p) = Dζ

∣∣∣∣
p0

p

∣∣∣∣
ζ

. (4.9)

Values of ζ different from 1,2 or 3 arise for correlation functions of algebraic
form.

The Fokker-Planck equation for the generic case with the diffusion con-
stant approximated for large p looks as follows,

∂P

∂t
=

∂

∂p

(
γpP + D1

p0

|p|
∂P

∂p

)
. (4.10)

Assuming that at t = 0 all particles are at rest initial condition is P (p, 0) =
δ(p). The solution of (4.10) can be guessed then,

P (p, t) =
1

2Γ(4/3)
γ1/3

[3p0D1(1− e−3γt)]1/3
exp

[
− γ|p|3

3p0D1(1− e−3γt)

]
. (4.11)

Using this probability distribution it is possible to calculate the variance of
the momentum,

〈p2(t)〉 =
∫ ∞

−∞
p2P (p, t)dp =

(
p0D1

γ

)2/3 1
31/3Γ(4/3)

(1− e−3γt)2/3. (4.12)
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This reproduces the result obtained in [15].
Similarly for the gradient case one obtains the Fokker-Planck equation

with the approximated diffusion constant,

∂P

∂t
=

∂

∂p

(
γpP + D2

(
p0

p

)2 ∂P

∂p

)
. (4.13)

The probability distribution function for the gradient case is,

P (p, t) =
1

2Γ(5/4)
γ1/4

[4p2
0D2(1− e−4γt)]1/4

exp
[
− γp4

4p2
0D2(1− e−4γt)

]
(4.14)

and the variance of the momentum,

〈p2(t)〉 =
(

p2
0D2

γ

)1/2 2Γ(3/4)
Γ(1/4)

(1− e−4γt)1/2. (4.15)

4.1 Eigenvalues and eigenfunctions

It has been shown above how the probability distribution of momentum
can be obtained using the Fokker-Planck equation. However, the general
solution for arbitrary initial condition is not found in closed form. Therefore,
the following approach is adopted.

It is assumed that the diffusion constant is of the form (4.9) for large p.
First, it is convenient to introduce dimensionless variables,

t′ = γt, z = p
γ

1
2+ζ

p
ζ

2+ζ

0 D
1

2+ζ

ζ

. (4.16)

Then the Fokker-Planck equation (4.1) becomes

∂P (z, t′)
∂t′

=
∂

∂z

(
zP (z, t′) +

1
|z|ζ

∂P (z, t′)
∂z

)
≡ F̂P, (4.17)

which defines the Fokker-Planck operator F̂ . The stationary distribution of
this equation is P0(z) ∝ exp[−|z|ζ+2/(ζ + 2)]. Therefore, one can write the
Hermitian form of the operator F̂ ,

Ĥ = P
−1/2
0 F̂P

1/2
0 =

1
2
− |z|2+ζ

4
+

∂

∂z

1
|z|ζ

∂

∂z
, (4.18)

which is sometimes referred as the Hamiltonian operator. To begin with,
an eigenvalue of Ĥ os λ+

0 = 0, and the corresponding eigenfunction is

ψ+
0 = C+

0 exp
(
− |z|2+ζ

4+2ζ

)
. It turns out that λ+

0 is the lowest eigenvalue. The
next eigenvalue can be determined by inspection as well (e.g. by putting ζ
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to any particular value and generalizing). It is λ−0 = −1− ζ and the corre-

sponding eigenfunction is ψ−0 = C−0 z|z|ζexp
(
− |z|2+ζ

4+2ζ

)
. The eigenfunctions

and eigenvalues are labeled by superscripts ’+’ and ’-’ to emphasize that
eigenfunctions ψ+

n are even functions and ψ−n are odd functions.
Now, the following operators are introduced,

â± =
∂

∂z
± z|z|−ζ

2
, (4.19)

Â = â+|z|−ζ â+, Â+ = â−|z|−ζ â−,

Ĝ = â+|z|−ζ â−.

In terms of â+ and â− it can be derived that Ĥ = â−|z|−ζ â+. The following
relations hold,

[Ĥ, Â] = (2 + ζ)Â, [Ĥ, Â+] = −(2 + ζ)Â+, (4.20)

where [X̂, Ŷ ] = X̂Ŷ − Ŷ X̂ is the commutator. Consider, now

ĤÂ+|ψ±n 〉 − Â+Ĥ|ψ±n 〉 = −(2 + ζ)Â+|ψ±n 〉. (4.21)

Here eigenfunctions are written using bra-ket or Dirac notation [23]. The
definition of the eigenfunction, namely H|ψ±n 〉 = λn|ψ±n 〉, makes it possible
to write,

Â+|ψ±n 〉(λn − 2− ζ) = ĤÂ+|ψ±n 〉 (4.22)

This means that Â+|ψ±n 〉 is also the eigenfunction of Ĥ with the eigenvalue
λn − 2− ζ. Together with λ+

0 = 0 and λ−0 = −1− ζ this gives the spectrum
of (4.18),

λ+
n = −(2 + ζ)n, λ−n = −(2 + ζ)n− 1− ζ. (4.23)

The operators Â+ and Â thus act as rasing and lowering operators respec-
tively:

Â+|ψ±n 〉 = C±
n+1|ψ±n+1〉, Â|ψ±n 〉 = C±

n |ψ±n−1〉. (4.24)

To determine the factors C±
n one can use the normalization constraint for

the eigenfunctions,

〈ψ±n+1|ψ±n+1〉 = (C±
n+1)

−2〈ψ±n |ÂÂ+|ψ±n 〉 = 1. (4.25)

and using the definition of the commutator,

1 = (C±
n+1)

−2〈ψ±n |[ÂÂ+] + Â+Â|ψ±n 〉, (4.26)

that is,
(C±

n+1)
2 = (2 + ζ)(−2λ±n + 1) + (C±

n )2. (4.27)

Recursion gives,

(C±
n+1)

2 = (2 + ζ)
n∑

k=0

(−2λ±k + 1). (4.28)

Evaluation of the sum yields,

C±
n =

√
(ζ + 2)n[(ζ + 2)n∓ (ζ + 1)]. (4.29)
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4.2 Correlation functions

In this correlation functions of the momentum are obtained using the eigen-
values and eigenfunction of (4.18. The propagator of the Fokker-Planck
equation (4.1) can be written in terms of eigenfunctions as follows [15, 19],

K(y, z; t′) =
∞∑

n=0

∑
σ=±

P
−1/2
0 (y)ψσ

n(y)P 1/2
0 (z)ψσ

n(z)exp(λσ
nt′). (4.30)

The propagator K(y, z, t′) satisfies the Fokker-Planck equation (4.1) and
can be used to compute correlation functions. In order to find 〈p2(t)〉 and
〈x2(t)〉 one has to calculate the correlation functions of z2(t′) and z(t′1)z(t′2).
For z2(t′) one obtains,

〈z2(t′)〉 =
∫ ∞

−∞
dz z2K(0, z; t′) =

∞∑

n=0

ψ+
n (0)

ψ+
0 (0)

〈ψ+
0 |z2|ψ+

n 〉exp(λ+
n t′). (4.31)

The required correlation function for z(t′1)z(t′2) is

〈z(t′2)z(t′1)〉 =
∫ ∞

−∞
dz1

∫ ∞

−∞
dz2z1z2K(z1, z2; t′2 − t′1)K(0, z1; t1) (4.32)

=
∑
n,m

ψ+
m(0)

ψ+
0 (0)

〈ψ+
0 |z|ψ−n 〉〈ψ−n |z|ψ+

m〉exp[λ−n (t′2 − t′1) + λ+
mt′1].

The terms of the sums (4.31) and (4.32) are calculated in the next three
sections, namely matrix elements Y0n = 〈ψ+

0 |z2|ψ+
n 〉 and Zmn = 〈ψ+

m|z|ψ−n 〉,
as well as the ratio of the eigenfunctions ψ+

m(0)/ψ+
0 (0).

4.2.1 Matrix elements Y0n

Consider Y0n = 〈ψ+
0 |z2|ψ+

n 〉. Using (4.24) one can obtain Y0n+1 as follows,

Y0n+1 = 〈ψ+
0 |z2Â+|ψ+

n 〉/C+
n+1. (4.33)

It is possible to write zÂ+ as zĜ + z(Â+ − G) = z(Ĥ − Î) + z(Â+ − Ĝ),
where Î is the identity operator. Using this (4.33) becomes

Y0n+1C
+
n+1 = 〈ψ+

0 |z2(Ĥ − Î)|ψ+
n 〉+ 〈ψ+

0 |z2(Â+ − Ĝ)|ψ+
n 〉 (4.34)

= (λ+
n − 1)Y0n + 〈ψ+

0 |z2(Â+ − Ĝ)|ψ+
n 〉,

and using Â+ − Ĝ = −zâ−

Y0n+1C
+
n+1 = (λ+

n + 2)Y0n. (4.35)

Recursion gives the following,

Y0n = Y00

n∏

k=1

λ+
k−1 + 2

C+
k

. (4.36)
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Taking into account that Y00 = (2 + ζ)
2

2+ζ Γ( 3
2+ζ )/Γ( 1

2+ζ ) evaluation of the
product yields the result,

Y0n = (−1)n
(2 + ζ)

2
2+ζ Γ( 3

2+ζ )Γ(n− 2
2+ζ )

Γ(− 2
2+ζ )

√
Γ(n + 1)Γ(n + 1

2+a)Γ( 1
2+a)

. (4.37)

4.2.2 Matrix elements Zmn

Now, consider the matrix elements Zmn = 〈ψ+
m|ẑ|ψ−n 〉. It is convenient to

consider first the following element,

Jmn = 〈ψ+
0 |Âmz(Â+)n|ψ−0 〉. (4.38)

The relation between Jmn and Zmn is

Zmn =
Jmn

m∏
k=1

C+
k

n∏
k=1

C−
k

. (4.39)

For m ≤ n one has,

Jmn = 〈ψ+
0 |Âm[z, Â+](Â+)n−1|ψ−0 〉+ 〈ψ+

0 |ÂmÂ+z(Â+)n−1|ψ−0 〉. (4.40)

The following property

[z, Â+] = −(|z|−ζ â− + â−|z|−ζ) (4.41)

makes it possible to write

Jmn = −〈ψ+
0 |Âm|z|−ζ â−(Â+)n−1|ψ−0 〉 − 〈ψ+

0 |Âmâ−|z|−ζ(Â+)n−1|ψ−0 〉
(4.42)

+ 〈ψ+
0 |ÂmÂ+z(Â+)n−1|ψ−0 〉 = J (1)

mn + J (2)
mn + J (3)

mn.

The third terms evaluates to

J (3)
mn = 〈ψ+

0 |ÂmÂ+z(Â+)n−1|ψ−0 〉 = (C+
m)2〈ψ+

0 |Âm−1z(Â+)n−1|ψ−0 〉 (4.43)

= (C+
m)2Jm−1n−1.

Using

Âm|z|−ζ â−(Â+)n−1 = Âm−1â+|z|−ζ â+|z|−ζ â−(Â+)n−1 (4.44)

= Âm−1â+|z|−ζĜ(Â+)n−1.

it follows that

〈ψ+
0 |Âm|z|−ζ â−(Â+)n−1|ψ−0 〉 = (λ−n−1 − 1) (4.45)

× 〈ψ+
0 |Âm−1â+|z|−ζ(Â+)n−1|ψ−0 〉.
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Using

Âm−1â+|z|−ζ(Â+)n−1 = Âm−1â+|z|−ζ â−|z|−ζ â−(Â+)n−2 (4.46)

= Âm−1Ĝ|z|−ζ â−(Â+)n−2

one obtains the recursion,

J (1)
mn = (λ−n−1 − 1)(λ+

m−1 − 1)J (1)
m−1n−1 (4.47)

= (ζ + 2)n[(ζ + 2)m− ζ − 1]J (1)
m−1n−1.

Now, consider the second term. Using

â−|z|−ζ(Â+)n−1 = Â+|z|−ζ â−(Â+)n−2 (4.48)

it follows,

J (2)
mn =

(C+
m)2

(λ−n−1 − 1)(λ+
m−1 − 1)

J (1)
mn =

m

n
J (1)

mn. (4.49)

Note that J
(3)
0n = 0, J

(2)
0n = 0, thus J

(3)
0n = J0n. This gives,

J (1)
mn =

m∏

k=1

(ζ + 2)(n−m + k)[(ζ + 2)k − ζ − 1]J0n−m (4.50)

and the result is,

J (1)
mn = (−1)n−m (2 + ζ)−

1+ζ
2+ζ

+m+n

Γ( 1
2+ζ )Γ( ζ

2+ζ )
(4.51)

×
Γ( 1

2+ζ + m)Γ(1 + n)Γ( ζ
2+ζ + n−m)

√
Γ( 1

2+ζ + n−m)

Γ(1 + n−m)
√

Γ(3+2ζ
2+ζ + n−m)

.

Now, it is possible to determine Jmn using (4.42), (4.43) and (4.49) with
recursion,

Jmn = (ζ + 2)m[(ζ + 2)m− ζ − 1]Jm−1n−1 + J (1)
mn

(
1 +

m

n

)
. (4.52)

Iterating the recursion one obtains,

Jmn =
m∑

k=0

(
m∏

l=k+1

(ζ + 2)l[(ζ + 2)l − ζ − 1]

)
(4.53)

×
(

1 +
k

n−m + k
J

(1)
k n−m+k

)
.
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Evaluation of the sum gives the following result,

Jmn = (−1)m−n
(2 + ζ)−

ζ
2(2+ζ)

+m+n
√

sin( π
2+ζ )

Γ( ζ
2+ζ )

√
π(1 + ζ)

(4.54)

× (m + n + 1)
Γ( 1

2+ζ + m)Γ(1 + n)Γ( ζ
2+ζ −m + n)

Γ(2−m + n)
.

Now, consider Jmn for n < m,

Jmn = 〈ψ+
0 |Âm−1[z, Â+](Â+)n|ψ−0 〉+ 〈ψ+

0 |Âm−1Â+z(Â+)n|ψ−0 〉. (4.55)

Comparing with (4.40) one can proceed in the same way. It turns out that
for n < m− 1, Jmn = 0, and for Jnn+1 one can use (4.54). Finally, one can
obtain Zmn using (4.39). For n ≥ m− 1 the result is,

Zmn = (−1)n−m (2 + ζ)−
1+ζ
2+ζ

Γ( ζ
2+ζ )

(m + n + 1) (4.56)

×
Γ( ζ

2+ζ −m + n)
√

Γ(n + 1)Γ( 1
2+ζ + m)

Γ(2−m + n)
√

Γ(3+2ζ
2+ζ + n)Γ(m + 1)

and zero otherwise.

4.2.3 Ratio of the eigenfunctions

In this section, the ratio ψ+
n (0)/ψ+

0 (0) is calculated (see also [21]). The
eigenfunction ψ+

n (0) is of the form,

ψ+
n = N+

n gn(z)exp
(
− |z|

2+ζ

4 + 2ζ

)
, (4.57)

where gn is a polynomial,

gn(z) = g0
n + g1

n|z|2+ζ + . . . , (4.58)

and N+
n is a constant,

N+
n = N+

0

n∏

k=0

C+
k . (4.59)

For z = 0 it means that ψ+
n (0) = N+

n g0
n, implying that

ψn+1(0) =
N+

n+1

N+
n

g0
n+1

g0
n

ψ+
n (0). (4.60)

The following relation holds [21],

g0
n+1 = −(1 + (2 + ζ)n)g0

n. (4.61)
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Thus,

ψn+1(0) =
−(1 + (2 + ζ)n)

C+
n+1

ψ+
n (0) (4.62)

or, in other words,

ψn+1(0)
ψn(0)

= −
√

1 + (2 + ζ)n
(ζ + 2)(n + 1)

. (4.63)

Evaluation of the recursion gives the result,

ψ+
n (0)

ψ+
0 (0)

= (−1)n

√√√√ Γ(n + 1
2+ζ )

Γ(n + 1)Γ( 1
2+ζ )

. (4.64)
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Chapter 5

Results

In this chapter the results obtained in the section 4.2 are used to analytically
characterize momentum and spatial diffusion and the momentum correlation
function in equilibrium (t À γ−1). The results are compared with results
obtained by numerical integration of (2.1) using a force field generated as
described in chapter 1.

5.1 Momentum equilibrium correlation function

Using the propagator K(y, z; t′) of the form (4.30) one has,

〈z(0)z(t′)〉 =
∫ ∞

−∞
dz

∫ ∞

−∞
dy zyK(y, z; t′)P0(y) (5.1)

=
∞∑

n=0

[〈ψ+
0 |z|ψ+

n 〉]2exp(λ−n t′) =
∞∑

n=0

Z2
0nexp(λ−n t′).

This gives for the generic case (ζ = 1),

〈p(t)p(t + ∆t)〉eq =
(

p0D1

γ

)2/3 Γ(4/3)exp(−2γ∆t)
31/3Γ(5/3)

(5.2)

× F21(1/3, 1/3, 5/3, exp(−3γ∆t)),

where F21 is a hypergeometric function [20]. For the gradient case (ζ = 2)
the sum (5.1) evaluates to the following,

〈p(t)p(t + ∆t)〉eq =
(

p2
0D2

γ

)1/2 Γ(1/4)exp(−3γ∆t)
8Γ(7/4)

(5.3)

× F21(1/2, 1/2, 7/4, exp(−4γ∆t)).

Numerical simulations for the equilibrium correlation function are shown
in Fig. 5.1. Note that it decays as exp(−2γ∆t) for the generic case and
exp(−3γ∆t) for the gradient case at long times, whereas for the standard
Ornstein-Uhlenbeck it decays as exp(−γ∆t).
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Figure 5.1: Numerical simulations (circles) of (2.1) for the momentum corre-
lation function in equilibrium for the generic (a) and the gradient (b) cases
compared with the theoretical results (5.2) and (5.3) (solid lines). The pa-
rameters were ξ = 0.1, m = 1.0, γ = 0.01, τ = 0.1. For the generic case
σ = 35.0, for the gradient case σ = 20.0.

5.2 Momentum diffusion

Evaluating the sum in (4.31) one obtains the variance of momentum,

〈p2(t)〉 =

(
pζ
0Dζ

γ

) 2
2+ζ (2 + ζ)

2
2+ζ Γ( 3

2+ζ )

Γ( 1
2+ζ )

(1− e−(2+ζ)γt)
2

2+ζ . (5.4)

This reproduces (3.6) for ζ = 0, (4.12) for ζ = 1 and (4.15) for ζ = 2. Nu-
merical simulations for the variance of momentum are presented in Figs. 5.2
and 5.3 for the generic case and in Figs. 5.4 and 5.5 for the gradient case.
Note that Figs. 5.3 and 5.5 show simulations for larger damping rate γ,
therefore for smaller p, but still fit the theory quite well. At short times,
anomalous diffusion of the momentum arises: 〈p2(t)〉 ∼ t2/3 for the generic
case and 〈p2(t)〉 ∼ t1/2 for the gradient case. It should be emphasized that
results for momentum diffusion in [13], [14] and [15] were obtained assuming
the time correlation function of Gaussian form, that is,

c(t) = exp
(
− t2

2τ2

)
. (5.5)

This gives ζ = 1 for the generic case, thus the result is the same as in [15].
However, for the gradient case the diffusion constant D(p) behaves as p−3,
i.e. the case of ζ = 3 arises implying that (5.4) yields anomalous diffusion of
the momentum 〈p2(t)〉 ∼ t2/5. This is consistent with a short-time scaling
behaviour obtained in [13], [14] and with the analytical expression obtained
in [15].
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Figure 5.2: Numerical simulations of 〈p2(t)〉 and 〈x2(t)〉 (circles) of (2.1) for
the generic case (ζ = 1) compared with the theoretical results (4.12) and
(5.7) (red solid lines). For 〈x2(t)〉 the limiting behaviours (5.12) and (5.25)
(dashed lines) are shown. The parameters were σ = 20.0, ξ = 0.1, m = 1.0,
γ = 0.001, τ = 0.1

5.3 Spatial diffusion

Using the correlation function of momentum of the form (4.32) one can
calculate the mean square value of displacement by writing 〈x2(t)〉 using
the dimensionless variables z and t′,

〈x2(t′)〉 =
1

m2γ2

(
pζ
0Dζ

γ

) 2
2+ζ ∫ t′

0
dt′1

∫ t′

0
dt′2〈z(t′1)z(t′2)〉. (5.6)

Using the fact that Zkl = 0 for l < k − 1 one can write the correlation
function of the form (4.32) as follows,

〈x2(t′)〉 =
1

m2

(
pζ
0Dζ

γ3+ζ

) 2
2+ζ ∞∑

k=0

∞∑

l=k−1

ψ+
k (0)

ψ+
0 (0)

Z0lZklTkl(t′), (5.7)

with

Tkl(t′) = 2
λ+

k (1− eλ−l t′)− λ−l (1− eλ+
k t′)

λ−l λ+
k (λ+

k − λ−l )
. (5.8)

5.3.1 Long-time diffusion

First, the limit of Tkl for k → 0 has to be calculated,

T0l = − 2t′

λ−l
+

2

λ−
2

l

(eλ−l t′ − 1). (5.9)
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Figure 5.3: Numerical simulations of 〈p2(t)〉 and 〈x2(t)〉 (circles) of (2.1) for
the generic case (ζ = 1) compared with the theoretical results (4.12) and
(5.7) (red solid lines). For 〈x2(t)〉 the limiting behaviours are shown(5.12)
and (5.25) (dashed lines). The parameters were σ = 20.0, ξ = 0.1, m = 1.0,
γ = 0.01, τ = 0.1

It is convenient to write the sum (5.7) processing separately the terms with
k = 0. This gives,

〈x2(t)〉 = 2Dxt (5.10)

+
1

m2

(
pζ
0Dζ

γ3+ζ

) 2
2+ζ ∞∑

l=0

Z2
0l

2

λ−
2

l

(eλ−l γt)

+
1

m2

(
pζ
0Dζ

γ3+ζ

) 2
2+ζ ∞∑

k=1

∞∑

l=k−1

ψ+
k (0)

ψ+
0 (0)

Z0lZklTkl(γt),

with

Dx = − 1
m2

(
p2ζ
0 D2

ζ

γ4+ζ

) 1
2+ζ ∞∑

l=0

Z2
0l

λ−l
(5.11)

=
1

m2

(
p2ζ
0 D2

ζ

γ4+ζ

) 1
2+ζ (2 + ζ)−

4+3ζ
2+ζ πF32( ζ

2+ζ , ζ
2+ζ , 1+ζ

2+ζ ; 3+2ζ
2+ζ , 3+2ζ

2+ζ ; 1)

sin( π
2+ζ )Γ(3+2ζ

2+ζ )2
,

where F32 is a generalized hypergeometric function [20]. At long times, the
last two terms in (5.10) approach a constant, and, therefore, diffusion is
recovered,

〈x2(t)〉 ∼ 2Dxt (5.12)

in this limit. Fig. 5.6 shows how Dx decays with ζ. Note that for ζ = 0 the
result (3.14) for the standard Ornstein-Uhlenbeck process is recovered, and
for ζ = 1 and ζ = 3 this reproduces the results obtained in [15].
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Figure 5.4: Numerical simulations of 〈p2(t)〉 and 〈x2(t)〉 (circles) of (2.1) for
the gradient case (ζ = 2) compared with the theoretical results (4.15) and
(5.7) (red solid lines). For 〈x2(t)〉 the limiting behaviours (5.12) and (5.26)
(dashed lines) are shown. The parameters were σ = 20.0, ξ = 0.1, m = 1.0,
γ = 0.001, τ = 0.1

5.3.2 Short-time anomalous diffusion

Consider the limit of short times. Let for l ≥ k − 1

Akl =
ψ+

k (0)
ψ+

0 (0)
Z0lZkl (5.13)

and zero otherwise. Apart from the dimensional pre-factor one needs to
calculate

S(t′) =
∑

kl

AklTkl(t′) =
∫ ∞

0
dl

∫ l

0
dk T (k, l; t′)A(k, l). (5.14)

At short times, the behavior of the sum (5.7) is determined by large values
of k and l. In this limit, Akl looks as follows,

Akl ∼ (2 + ζ)−
2+2ζ
2+ζ k

− 1+ζ
2+ζ l

− 3+ζ
2+ζ (l − k)−

4+ζ
2+ζ (l + k)

Γ( ζ
2+ζ )2

. (5.15)

Note that Akl, as it is given in (5.15), diverges in a non-integrable way as
k → l. Using the sum rule

l+1∑

k=0

Akl = 0. (5.16)

one can write,

S(t′) =
∫ ∞

0
dl

∫ l

0
dk

[
T (k, l; t′)− lim

k→l
T (k, l; t′)

]
A(k, l). (5.17)
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Figure 5.5: Numerical simulations of 〈p2(t)〉 and 〈x2(t)〉 (circles) of (2.1) for
the gradient case (ζ = 2) compared with the theoretical results (4.15) and
(5.7) (red solid lines). For 〈x2(t)〉 the limiting behaviours (5.12) and (5.26)
(dashed lines) are shown. The parameters were σ = 20.0, ξ = 0.1, m = 1.0,
γ = 0.01, τ = 0.1

and thus reduce the divergence to the one that can be integrated.
T (k, l; t′) in the limit of large k and l looks as follows,

T (k, l; t′) = 2
l[1− exp(−(ζ + 2)kt′)]− k[1− exp(−(2 + ζ)lt′)]

(2 + ζ)2kl(l − k)
. (5.18)

It is convenient to change the variables as x = (2 + ζ)lt′, xy = (2 + ζ)kt′.
Then the inverse transformation is k = xy/[(2 + ζ)t′] and l = x/[(2 + ζ)t′]
implying that the Jacobian of the transformation is J = x/[(2 + ζ)2t′2].
Using the new variables T (k, l, t′) becomes

T (x, y; t′) = 2
t′2

x

[
a(xy)− a(x)

1− y

]
, (5.19)

where a(x) = [1−exp(−x)]/x. It is now possible to find the limit of T (k, l; t),

lim
k→l

T (k, l; t) = lim
y→1

T (x, y; t) = 2
t2

x
lim
y→1

[
a(xy)− a(x)

1− y

]
(5.20)

and using l’Hospital’s rule,

lim
y→1

T (x, y; t) = −2
t2

x

[
∂

∂y
a(xy)

] ∣∣∣∣∣
y=1

= −2
t2

x
xa′(x). (5.21)

One obtains

T (k, l; t′)− lim
k→l

T (k, l; t′) = 2
t′2

x

[
a(xy)− a(x)

1− y
+ xa′(x)

]
. (5.22)
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Figure 5.6: Diffusion constant as a function of ζ

Using (5.15), (5.17) and (5.22) to simplify S(t) one can write,

〈x2(t)〉 =
1

m2

(
pζ
0Dζ

γ3+ζ

) 2
2+ζ

S(t) (5.23)

=
2(2 + ζ)−

2ζ
2+ζ

Γ( ζ
2+ζ )2

(pζ
0Dζ)

2
2+ζ m−2t

6+2ζ
2+ζ

∫ ∞

0
dx x

− 2ζ+6
2+ζ

×
∫ 1

0
dy

[
a(xy)− a(x)

1− y
+ xa′(x)

]
y
− 1+ζ

2+ζ (1− y)−
4+ζ
2+ζ (1 + y).

This implies for the generic case 〈x2(t)〉 ∼ t8/3 and for the gradient case
〈x2(t)〉 ∼ t5/2, thus anomalous spatial diffusion at short times is discovered.
For the case of ζ = 3, (5.23) reproduces results obtained in [13], [14] and
[15], that is 〈x2(t)〉 ∼ t12/5.

Consider the following function,

I(ζ) =
2(2 + ζ)−

2ζ
2+ζ

Γ( ζ
2+ζ )2

∫ ∞

0
dx x

− 2ζ+6
2+ζ (5.24)

×
∫ 1

0
dy

[
a(xy)− a(x)

1− y
+ xa′(x)

]
y
− 1+ζ

2+ζ (1− y)−
4+ζ
2+ζ (1 + y).

Numerical evaluation of (5.24) as a function of ζ is shown in Fig. 5.7. It can
be seen that for small values ζ it approaches 0 whereas for ζ = 0 it should
reproduce the result for the standard Ornstein-Uhlenbeck process, that is
2/3. Reliable results for small values of ζ are not recovered, however other

30



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.3

0.4

0.5

0.6

0.7
 

 

I (
 

 )

Figure 5.7: Numerical evaluation of the integral (5.24) as a function of ζ
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values are quite precise. Using the numerical values for I(ζ) one can rewrite
(5.23) for the generic case,

〈x2(t)〉 = 0.5705× (p0D1)2/3m−2t8/3 (5.25)

and for the gradient case,

〈x2(t)〉 = 0.4580× (p2
0D2)1/2m−2t5/2. (5.26)

These results agree with the numerical simulations quite well (Figs. 5.2-5.5).
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Chapter 6

Motion in two spatial
dimensions

This chapter gives a brief discussion for the case of motion in two spatial
dimensions. In this case the equation of motion replacing (1.2) is,

dp

dt
= −γp + f(x, t), (6.1)

where p = (px, py)T , x = (x, y)T and f = (fx, fy)T are two-dimensional
vectors (superscript T denotes transposition). One can consider several
possibilities of how the random force field f can be generated (see e.g. [11]).
One possibility is a potential field,

f(x, t) =
(

∂xφ(x, t)
∂yφ(x, t)

)
(6.2)

where φ is a generic random field described in chapter 2. Another possibility
is a solenoidal (or rotational) field that looks as follows,

f(x, t) =
(

∂yφ(x, t)
−∂xφ(x, t)

)
(6.3)

To generalize, one can also consider a combination of a potential and a
solenoidal field,

f(x, t) = α

(
∂xψ(x, t)
∂yψ(x, t)

)
+ β

(
∂yφ(x, t)

−∂xφ(x, t)

)
, (6.4)

where ψ and φ are independent generic random field having identical statis-
tical properties, and α and β are real numbers.

The Fokker-Planck equation for the two-dimensional case is derived anal-
ogously to the one-dimensional case. One obtains,

∂P (p, t)
∂t

= ∇T
p (γpP + D(p)∇pP ) , (6.5)
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Figure 6.1: Numerical simulations (circles) for two-dimensional generalized
Ornstein-Uhlenbeck process for the case of potential force field. Red lines
show slope 1/2 for the momentum and 5/2 for the displacement

where∇p denotes a gradient with respect to p and D(p) is a diffusion matrix.
It is defined as follows [19],

D(p) =
(

D11 D12

D21 D22

)
, (6.6)

with

D11 =
1
2

∫ ∞

−∞
cxx(pt/m, t) dt, (6.7)

D12 = D21 =
1
2

∫ ∞

−∞
cxy(pt/m, t) dt,

D22 =
1
2

∫ ∞

−∞
cyy(pt/m, t) dt,

where cxx, cxy and cyy are correlation functions of components of f, that is

cxx(x, y, t) = 〈fx(x1, y1, t1)fx(x1 + x, y1 + y, t1 + t)〉, (6.8)
cxy(x, y, t) = 〈fx(x1, y1, t1)fy(x1 + x, y1 + y, t1 + t)〉,
cyy(x, y, t) = 〈fy(x1, y1, t1)fy(x1 + x, y1 + y, t1 + t)〉.

It is convenient to transform p to polar coordinates as follows,

px = p cos θ, (6.9)
py = p sin θ.

As before, the case of large forcing and small damping is considered, that
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Figure 6.2: Numerical simulations (circles) for two-dimensional generalized
Ornstein-Uhlenbeck process for the case of solenoidal force field. Red lines
show slope 2/3 for the momentum and 8/3 for the displacement

is |p| À p0. In this limit the diffusion matrix in polar coordinates is

D(p) =
D2p0

p

(
sin2 θ − cos θ sin θ
− cos θ sin θ cos2 θ

)
(6.10)

for the potential force field, and

D(p) =
D2p0

p

(
cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

)
(6.11)

for the solenoidal one. Here, D2 is the same as it was defined in chapter 4.
It is, however, not obvious that an approximation of the diffusion matrix

should be carried out before it is used in the Fokker-Planck equation. In fact,
the diffusion matrices in the case of the Gaussian time correlation function
are equal to those obtained above. This would imply the same result for
both types of correlation function. Numerical results performed for the
correlation function of the form (2.4) are consistent with short-time scaling
behaviours obtained in [13] (〈|p|2〉 ∼ t1/2) for the Gaussian time correlation
function and potential force field (Fig. 6.1). Yet, it is believed that the
results obtained in [13] for multi-dimensional cases are not correct and one
should refer to [14] where the result is 〈|p|2〉 ∼ t2/5. For the solenoidal force
field numerical simulations give 〈|p|2〉 ∼ t2/3 (Fig. 6.2)
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Chapter 7

Conclusions and future work

The most important property of the generalized Ornstein-Uhlenbeck pro-
cess may be the fact that the spectrum of the corresponding Fokker-Planck
operator consists of two rows of eigenvalues λ+

n and λ−n that are evenly
spaced in each row, and the rows are staggered with respect to each other.
Such a spectrum was called as staggered ladder spectrum in [15]. Using
the spectral decomposition of the Fokker-Planck operator, correlations and
fluctuations of observables in generalized Ornstein-Uhlenbeck process could
be calculated analytically. It is found that the momentum variance exhibits
anomalous diffusion at short times and grows until particles accelerate to
a certain level, but then saturates in equilibrium. The mean square value
of the displacement also exhibits anomalous spatial diffusion at short times,
however, at long times an expected result, that is, ordinary diffusion, is con-
firmed. The spectral decomposition approach makes it possible to determine
in a very clear way many other quantities that are related to momentum of a
particle. Among such quantities, the correlation function of the momentum
in equilibrium has been calculated; it decays exponentially for long time
but faster than exp(−γt) as in the standard Ornstein-Uhlenbeck process.
The Fokker-Planck equation also gives the probability distribution of the
momentum as a function of time, which turns out to be non-Maxwellian in
equilibrium for the generalized Ornstein-Uhlenbeck process, unlike Gaussian
distribution for the standard one. The theory has been successfully verified
by numerical experiments.

In chapter 6, it has been shown that numerical results for the case of
motion in two spatial dimensions are not consistent with the analytical ones
obtained in [14]. The reason for this inconsistence could be the difference
in time correlation functions, however the diffusion matrices approximated
for the case of large p turn out to be the same for both types of correlation
function. Thus a careful investigation of motion in two spatial dimensions
is the next question to address.
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