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This article examines some problems of significance testing for one-sided hypotheses of the form Ho: 0 6 0?6 versus H1: 0 > 
0o, where 0 is the parameter of interest. In the usual setting, let x be the observed data and let T(X) be a test statistic such 
that the family of distributions of T(X) is stochastically increasing in 0. Define C, as {X: T(X) - T(x) 2 O}. The p value is 
p(x) = suposo0 Pr(X E Cx I 0). In the presence of a nuisance parameter o, there may not exist a nontrivial Cx with a p value 
independent of q7. We consider tests based on generalized extreme regions of the form C(0, q) = {X: T(X; x, 0, q) 2 T(x; 
x, 0, Cf)}, and conditions on T(X; x, 0, q) are given such that the p value p(x) = sup0,,, Pr(X E Cj(0, C)) is free of the 
nuisance parameter q, where T is stochastically increasing in 0. We provide a solution to the problem of testing hypotheses 
about the differences in means of two independent exponential distributions, a problem for which the fixed-level testing approach 
has not produced a nontrivial solution except in a special case. We also provide an exact solution to the Behrens-Fisher problem. 
The p value for the Behrens-Fisher problem turns out to be numerically (but not logically) the same as Jeffreys's Bayesian 
solution and the Behrens-Fisher fiducial solution. Our approach of testing on the basis of p values is especially useful in 
multiparameter problems where nontrivial tests with a fixed level of significance are difficult or impossible to obtain. 
KEY WORDS: Behrens-Fisher problem; Exponential distribution; Invariance; Unbiasedness. 

1. INTRODUCTION 

This article examines some problems of significance test- 
ing for one-sided hypotheses of the form Ho: 0 ' 00 versus 
HI: 0 > 00, where 0 is the parameter of interest. Our 
study is motivated by the usual lack of a nontrivial con- 
tinuous family of similar tests [and hence uniformly most 
powerful (UMP) tests] based on minimal sufficient statis- 
tics when nuisance parameters are present. 

In the usual setting for significance testing of the one- 
sided hypotheses just given, a data-based extreme region 
C, is typically of the form 

Cx = {X: T(X) - T(x) ' O}, (1.1) 

where x denotes the observed data, X denotes possible 
sample points, and T() is a function, known as a test 
statistic, such that large values of T(-) indicate evidence 
against Ho. The p value, or the observed level of signifi- 
cance, is 

p = sup Pr(X E Cx 0). (1.2) 
OEH0 

A small value of p suggests that the observed x does not 
support Ho. 

When a nuisance parameter i1 is present, the p value 
based on a nontrivial and well-behaved test statistic may 
depend on ? and hence cannot be used to judge against 
Ho. We consider a generalization of the data-based ex- 
treme region of a test, which not only depends on the 
observed data x but also may involve the parameter 4 = 
(0, q), provided that the p value is independent of q. We 
call the resulting extreme region, Cx(4), a generalized ex- 
treme region. We show in this article, through several ex- 
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amples, that with this generalization the p value in (1.2), 
with C, replaced by CQ(4), is independent of q and hence 
can be used as a measure of evidence against Ho. Other 
approaches to significance testing in the presence of a 
nuisance parameter were described by Kempthorne and 
Folks (1971, chap. 12), among others. Substantial discus- 
sions on significance tests and their applications can be 
found, for example, in Cox (1977), Kempthorne and Folks 
(1971), Cox and Hinkley (1974), Gibbons and Pratt 
(1975), and Thompson (1985). 

To illustrate the potential usefulness of our approach, 
consider the Behrens-Fisher problem, which can be for- 
mulated as follows. Suppose Xl, X2, . . . , X,, and Yl, 
Y2, . . . , Y, are two sets of independent observations from 
normal populations N(,uj, U2) and N(Cu2, a2), respectively. 
Assume that X = (XI, . . . , Xm) and Y = (Y1, . , Yn) 
are independent. It is desired to test the null hypothesis 
Ho0: u - ,U2 ' 0 against the alternative H1: ul - P2 > 
0 on the basis of the independent sufficient statistics X, 
Y, S2, and S2, which are also the maximum likelihood 
estimators of the means ,ul and 1U2 and the variances I2 
and ?2, respectively. With this notation, the distributions 
of the underlying random variables are given by 

X - N (/i,m) Y-N P12,n 

S X-1, 1 S2 Xn-1, (1.3) 2 2 

and the random variables X, Y, S1, and S2 are all inde- 
pendent. 
_Let (x, y, s2, s2), x, and y be the observed values of 
(X, Y, S2, Si), X, and Y, respectively. In this problem, 
let the parameter of interest be 0 = (, - Ju2)/(0.2Im + 
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aim)"2 (Or, equivalently, 4u1 - /12). The nuisance param- 
eter is i = (a 2, as2). 

To find a random quantity that can be used in place of 
Tin (1.1), consider 

W(x, Y; X, y, i) = (X Y) 

F 2 2 2 2- 1/2 

X[ Ois1 + 2IS2 (1.4) 

Then, w = W(x, y; x, y, r~) = - y. Moreover, for given 
x and y, the distribution of W(X, Y; x, y, q) is free of i 
and has the same distribution of Z[s2/ U + s21 V]'2, where 
Z - N(O, 1), U - X2-1, V - X2-l, and the random vari- 
ables Z, U, and V are independent. Furthermore, the 
family of cumulative distributions of W(X, Y; x, y, q) for 
given x and y is stochastically increasing in 0 (see Lehmann 
1986, p. 84). 

We call W( ) a generalized test variable. It depends not 
only on the random variables X and Y, but also on the 
observed x and y and the parameters. This general form 
of W( ) enables us to extend the notion of usual data- 
based extreme regions of (1.1) to generalized extreme re- 
gions, such as 

Cxy(0, Ci) = {(X, Y): W(X, Y; x, y, C7) 

- W(x, y; x, y, i/) : O}, (1.5) 

a set of possible sample points (X, Y) that are viewed as 
more extreme than or as extreme as (x, y). The flexibility 
of allowing for the observed data and the parameters in 
constructing generalized extreme regions enables us to 
produce a p value that does not depend on the nuisance 
parameter of the testing problem. In the Behrens-Fisher 
problem, the p value is 

p = Pr(W - w I 0 = 0) 

Pr[T(m + n - 2)-/2 (Sif +S2 1 ) /2 

- EB{P L(Y -2X) ( + 12 ~ ) -2 

x (m + n - 2)112]}, (1.6) 

where T = Z[(U + V)/(m + n - 2)1-'12 has a Student- 
t distribution with (m + n - 2) degrees of freedom and 
is independent of B = U/(U + V) beta((m - 1)/2, 
(n - 1)12), P(.) is the cdf of Student's t distribution with 
(m + n - 2) degrees of freedom and EB denotes expec- 
tation with respect to B. 

Salaevskii (1963) showed that in fixed-level testing there 
are no nontrivial continuous families of nonrandomized 
similar tests for the Behrens-Fisher problem (see also Lin- 
nik 1968); our extended p value approach, however, pro- 
duces a nontrivial solution. This is in contrast to problems 
not involving nuisance parameters, where fixed-level test- 
ing and the usual p value approach provide essentially the 
same result in most cases. 

The remainder of the article is organized as follows. In 
Section 2, we discuss some general theory on constructing 
generalized extreme regions and examine invariant testing 
problems. A key result on data-based power functions of 
invariant tests is derived. The usefulness of this result is 
illustrated in Section 3 by providing a solution to the prob- 
lem of testing hypotheses about the differences in means 
of two exponential distributions and by providing a solu- 
tion to the problem of testing the mean of a truncated 
exponential distribution. Section 4 provides a discussion 
on solutions of the Behrens-Fisher problem. In particular, 
we provide a justification for considering tests based on 
the generalized test variable W in (1.5) alone and give 
conditions under which the p value in (1.6) is unique. 
Section 5 contains concluding remarks. 

2. GENERAL THEORY 
Let X be a random quantity having a density function 

f(x I 4), where 4 = (0, i) is an unknown vector of pa- 
rameters assuming values in a parameter space H, 0 is the 
parameter of interest, and q is the vector of nuisance pa- 
rameters. Let X be the sample space and x be the observed 
value of X. The problem of interest is to test the null 
hypothesis Ho: 0 ' 00 versus the alternative hypothesis 
H1: 0 > 00. A fixed-level test rejects the null hypothesis 
if the observed x falls in a critical region C, which typically 
is of the form C = {X: T(X) - c} for some statistic T(X) 
and some constant c, such that supoEnH( Pr(X E C I 0) is 
equal to a prefixed significance level a. In testing problems 
involving nuisance parameters ,, nontrivial tests with a 
fixed level of significance are often difficult or impossible 
to obtain. 

An alternative approach is to consider a data-based crit- 
ical region, a set Cx, consisting of sample points X con- 
sidered at least as extreme as x according to the ordering 
of a certain test statistic whose family of distributions is 
stochastically increasing in 0. A small p value, computed 
according to (1.2), indicates that the observed x does not 
support Ho. Although this p value approach appears to be 
more flexible than fixed-level testing in the sense that C, 
is allowed to involve x, the discussion in Section 1 shows 
that it may encounter difficulty in multiparameter prob- 
lems; thep value can depend on i, the nuisance parameter, 
and hence may not be computable. 
To overcome this difficulty, we consider generalized test 

variables of the form T(X; x, 4), which is not a function 
of X only, but also involves the observed x and the pa- 
rameter 4. We impose three requirements on T(X; x, 4): 

Requirement 1. T(x; x, 4) is free of 4. 
Requirement 2. For fixed x and 4 = (00, r), the 

distribution of T(X; x, 4) is free of the nuisance param- 
eter t. 

Requirement 3. For fixed x and i, Pr(T(X; x, c)? 
t I 0) is nondecreasing in 0. 

Without loss of generality, one may consider Require- 
ment 1 to be redundant, because if it is not satisfied, then 
we can define a generalized test variable T'(X; x, d) as 
T'(X; x,4,) = T(X; x, 4) - T(x; x,4) and impose Re- 
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quirements 2 and 3 on T'. As in the usual significance 
testing approach, Requirement 3 requires the generalized 
test variable to be stochastically increasing in 0. 

For a generalized statistic T(X; x, 4) satisfying these 
requirements, consider the test based on the generalized 
extreme region 

Cx(,) = {X: T(X; x, 4) - T(x; x, 0)-O}. (2.1) 

The p value of this test is defined in (1.2) with C, replaced 
by Cx(4) and is equal to 

Pr(X E Cx(;) 1 0 = Oo). (2.2) 

This p value is computable, since it is free of the nuisance 
parameter q. In this article we confine our attention mainly 
to T(X; x, () satisfying Requirements 1-3. 

The problem of finding a generalized test variable can 
be approached in the usual way. One can first reduce a 
testing problem by sufficiency. The principle of invariance 
and possibly the notion of unbiasedness can then be used. 
The usual definitions and basic material on invariance, 
maximal invariants, unbiasedness, and other useful con- 
cepts in fixed-level testing can be found in Lehmann 
(1986). When analogous concepts used in the p value ap- 
proach here differ from those in fixed-level testing, we use 
p-invariant, for example, instead of invariant to avoid con- 
fusion. Requirement 2 is the counterpart of the notion of 
"similarity" on the boundary of the hypotheses. 

Let T(X; x, () be a generalized test variable, and let 
Cx(4) be the generalized extreme region as defined in 
(2.1). Given the observed x, the data-based power func- 
tion of a test based on Cx(4) is defined as 

o(x) = Pr(X E Cx(4) I 0). (2.3) 

Suppose that the testing problem is invariant under a 
group G of transformations on the sample space X, in the 
usual sense. Let G be the group of transformations induced 
on the parameter space H. It is natural to require that the 
p value, p(x), as a function of x, be invariant under G. 
The invariance of the data-based power function, as de- 
fined next, satisfies this requirement. 

Definition 2.1. A test based on a generalized extreme 
region Cx(c) is p-invariant under G if 7r(g(x)) = 7ro(x) 
for all x E X and g E G. 

Lehmann (1986, pp. 285, theorem 1, and 289) showed 
that in fixed-level testing, given a maximal invariant M(x) 
with respect to G, the class of all invariant tests is the class 
of tests depending on M. The result in the following theo- 
rem provides conditions on a generalized test variable 
T(X; x, 4) so that in the p value approach, the data-based 
power function of any p-invariant test can be obtained 
through T and a maximal invariant M(x) with respect 
to G. 

Theorem 2.1. Suppose that the testing problem is in- 
variant under a group G of transformations on the sample 
space X. Let M(x) be a maximal invariant with respect to 
G. Suppose T = T(X; x, 4) is an absolutely continuous 
random variable (for fixed x and 4). If the observed value 

t(x) = T(x; x; () and the distribution of T depends on x 
only through m = M(x), then the data-based power func- 
tion iro(x) of any p-invariant test can be obtained using 
only T and m (but not x). 

Proof. Since 7ze(x) is invariant, it can be expressed as 
7ro(x) = yi(M(x)); that is, 7r0(x) depends on the data only 
through M(x) (see Lehmann 1986, p. 285). Now we need 
to show that yi(m) is attainable using T, where m = M(x). 
To do this, let F(t; (, m) be the cdf of T. Since T is an 
absolutely continuous random variable, W = F(T; (, m) 
has a uniform distribution on [0, 1]. Let wj(m) = F(t(m); 
(, m) be the observed value of W, where t(m) = T(x; x; 
(). Then consider the particular extreme region defined 
as 

Cm = Wg W CW,: + NfO, V o C 5, wx C .5 

= w - V/ W c w ,, V0 c.5, wX > .5 

= O W Vo WSo W .5 , wX c< .5 

= 1 -V0 W < 1, 1 .5, w, > .5. 

Since W is a uniform random variable, Pr(W E Cm) = 
yV0(m). Moreover, by this construction, wg E Cm. Hence 
the generalized extreme region {T: F(T; 4, m) E Cm} 
contains t(m) and yields the data-based power function 
7r6(X)= =V(M) 

The next section illustrates the usefulness of Theorem 2.1 
in two applications. 

3. EXAMPLES OF p-INVARIANT TESTS 

3.1 Comparison of Means of 
Exponential Distributions 

Let G(a, fi) denote the gamma distribution with shape 
parameter a and scale parameter fi. Let Xl, X2, . . . , Xm 
be a random sample from the exponential distribution 
G(1, ,ul) with mean ,up, and let Y1, Y2, . . . , Y, be a ran- 
dom sample from G(1, U2) with mean u2. The Xi's and 
Yj's are assumed independent. Suppose the null hypothesis 
Ho: p1 - PU2 

_ 6o is tested against the alternative H1: 41 
- P2 > 6o (60 ? 0). By sufficiency, we can confine our 
attention to tests based on X = Xi - G(m, pl) and Y 
=E Yi G(n, U2)- 
Here the underlying distribution is invariant under the 

group of common scale changes (X, Y) -* (kX, kY), (pi, 
12) -> (k 1, k#2), k > 0. This testing problem is considered 
invariant in the usual sense only when 60 = 0. This is not 
an inherent problem of the exponential distribution, but 
it is a drawback in the usual formulation of the testing of 
hypotheses. In practice, one should not be restricted to 
specifying the hypotheses with a certain scale. For ex- 
ample, suppose ,ui is the mean lifetime of an electronic 
component of brand i. We may write Ho p, - ,U2 C 2 if 
the units are in years and Ho: 0 1 - ,U2 C 24 if the units 
are in months. With the normal distribution one can trans- 
form the original problem so that the transformed problem 
has 5sO = 0. In this study it is shown that, in testing with 
the p value, one can more generally make a testing prob- 
lem invariant in a different manner, as follows. 
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Suppose x and y are observed values of X and Y, re- 
spectively. Let Ai = uilx (i = 1, 2), 00 = 50Ix, and 0 = 
Al - A2. Then the problem is equivalent to testing 

Ho: 0 ' 00 versus H1: 0 > 0. (3.1) 

With this reparameterization the testing problem is in- 
variant, regardless of the value of the unit-free quantity 
00 under the common scale transformation (X, Y) -* (kX, 
kY) and the induced transformation on the new param- 
eters (0, A2) -> (0, A2). Here 0 is the parameter of interest 
and A2 iS the nuisance parameter. [Other choices such as 
piiy or pi/(x + y) in place of aix would perform equally 
well.] 

Consider the generalized test variable 

T((X, Y); (x, y), (0, /2)) 

= A2Y1Y - (0 + A2)xIX + 0 

= (ylx)/V - 1/U + 0, (3.2) 

where U = Xl[(0 + 22)x] - G(m, 1), V = YI(A2x) - 
G(n, 1), and U and V are independent. The cdf of T, FT(t) 
= Pr((ylx)IV - 1/U + 0 c t), and the observed value 
T((x, y); (x, y), (0, A2)) = 0 depend on the data only 
through the maximal invariant M(x, y) = ylx. Hence, by 
Theorem 2.1 the power of function of any p-invariant test 
can be obtained using T. 

Recall that ,ul = (0 + A2)x and i2 = 22X- Consider the 
p-invariant test based on the generalized extreme region 

Cxy(0, A2) 

= {(X, Y) : (ylx)(P2Iy) - 81IX + 0 2 0}. (3.3) 

Observe that the cdf of T is decreasing in 0 and is inde- 
pendent of the nuisance parameter, so when 0 = 00 the 
probability of C,,y serves as a measure of how the data 
support Ho. The p value of this test is 

p = Pr(T ? 0 1 0 = 0o) 

= Pr((ylx)/V - 1/U - 00 ' 0) 

= Eu{JF[(y/x)U(l + 0OU)-']} 

= Eu{lF[yU(x + 0U)-1]}, (3.4) 

where Fn(z) is the incomplete gamma function with pa- 
rameter n and the expectation, Eu, is taken with respect 
to U - G(m, 1). Thep value is clearly free of the nuisance 
parameter. 

The usual testing procedures for comparing two expo- 
nential means apply only when 00 = 0. In this case, the 
usual F test coincides with ours. To see this, note that 
when 00 = 0 (or ,u - ,U2 = 0), the original problem is 
invariant in the usual sense under common scale changes. 
M(X, Y) = Y/X is a maximal invariant, and its density 
function has the form yf(yz), z > 0, where y = u1 /9u2 and 
f(-) is the density function of an F distribution with degrees 
of freedom 2n and 2m. The family {yf(yz)}1>0 has the 
monotone likelihood ratio property in z l. Hence, in 
fixed-level testing, UMP tests for testing Ho : ,1/p2 ' 1 
against H1 : ji1/42 > 1 have critical regions of the form 

{( YIX)-I > c}. Moreover, the distribution of XI Y is sto- 
chastically increasing in y = PU/4U2. Therefore, in conven- 
tional significance testing with a p value, the extreme 
region {XIY > xly} is used. In other words, the p value 
given in (3.4) when 00 = 0, p = Pr(y/x 2 V/U) = Pr(X/ 
Y?- x/y), is the same as the p value of a UMP-invariant 
test, the usual F test (see also Lawless 1982, p. 112). One 
can also show that the usual test is UMP-unbiased when 
00 = 0. 

3.2 Testing the Mean of the Truncated 
Exponential Distribution 

Let Xl, X2, . . . , X, be a random sample from the trun- 
cated exponential distribution with parameters a and 6-- 
namely, f(x; a, fi) = f -lexp(-(x - a)/fl) for x > a. 
The null hypothesis Ho: a + f - ,uo is to be tested against 
the alternative HI: a + fl > po, where ,u = a + # is the 
mean of the distribution. Sufficiency reduces the problem 
to tests based on the two independent statistics U = min 
X, and V = X - min X,, where U - a - G(1, f/In) and 
V - G(n - 1; f,ln). 

Let u and v be the observed values of U and V, re- 
spectively. Let ) = alv, ,u = flv, and 0 = A + ,u. Our 
problem is equivalent to testing Ho : 0 ' 00 versus HI: 
0 > 00. With this reparameterization, the problem is in- 
variant under the common scale transformation (V, U) -* 
(kV, kU), k > 0. The parameter of interest is 0, and A 
(or, equivalently, a = A)v) is the nuisance parameter. Con- 
sider the generalized test variable 

T((V, U); (v, u), (0, A)) 

= 0 + (U - Av)uV - (0 - A)V 

= 0 + Y1/Y2 - 2n/Y2, (3.5) 

where Y1 - x2 and Y2 - X2(n-1) are independent. Fur- 
thermore, the distribution of T is independent of the nuis- 
ance parameter A and the observed u and v, and the 
observed value of T, T((u, u); (v, u), (0, A)) = u/v, is a 
maximal invariant. From Theorem 2. 1, the power function 
of any p-invariant test can be obtained using T. The p 
value of the test with the generalized extreme region 

Cv,u(O, A)= {(V, U) : T((V, U); (v, u), (0, A)) ::u/u} 

is 

p = Pr(00 + (YI - 2n)/Y2 ? u/v) 

= Pr((YI - 2n)/Y2 - (u - ,u0)/v). (3.6) 

This p value depends on yo given in the original null hy- 
pothesis and is free of any unknown parameters. More- 
over, p has a uniform distribution on [0, 1]. This means 
that in this case, one can equivalently carry out the test 
with a fixed level of significance as well. 

4. MORE ON THE BEHRENS-FISHER PROBLEM 

In this section, we discuss the relationship of the p value 
solution (1.6) of the Behrens-Fisher problem described 
in Section 1 to solutions derived via other approaches. We 
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then provide some theoretical properties of the general- 
ized test statistic W(.) in (1.4). For the problem of testing 
Ho: Ill - P2 !o 6 versus H1: kl1 - 12> >0, it is easily 
deduced from (1.6) that the p value derived by means of 
W(.) in (1.4) is 

p = EB{P[(6O + M - x)(m + n - 2)1/2 

X (s1IB + s2I(1 - B))1'2]}. (4.1) 

We also provide conditions under which we can consider 
tests based on W alone. 

Johnson and Weerahandi (1988) provided a Bayesian 
solution to the multivariate Behrens-Fisher problem. In 
the univariate case with noninformative reference priors 
on the parameters Cut, /U2, cj1, 2a), the posterior probability 
that the null hypothesis is true (yu - Iu2 _ r50) was found 
to be the same as the p value given in (4.1). Moreover, 
this Bayesian solution is equivalent to Jeffreys's (1961) 
solution given in terms of the Behrens-Fisher distribution. 
This means that one can compute the p value in (1.6) using 
the tables constructed by Sukhatme (1938) for the Beh- 
rens-Fisher distribution. Although these different ap- 
proaches lead to the same numerical value, the inter- 
pretations of this value are very different. In the p value 
approach presented in this article, p in (1.6) is viewed as 
a frequency probability. For general one-sided tests when 
no nuisance parameter is involved, Casella and Berger 
(1987) provided some results on the relationship of p val- 
ues and posterior probabilities. 

Weerahandi (1987) provided a solution similar to (1.6) 
in a regression setting, but did not discuss theoretical prop- 
erties of the solution. Observe that the test based on the 
generalized extreme region C y(0, i) in (1.5) satisfies the 
property that the data-based power function at 0 always 
exceeds the p value given in (1.6) for all 0 in the alternative 
hypothesis. We call this property p-unbiased. We also use 
the term p-similar to describe a test based on a generalized 
extreme region satisfying the property that the data-based 
power function is free of the nuisance parameter 1 when 
the parameter of interest, 0, equals 00, the boundary of 
the hypotheses. For a p-similar test, the p value defined 
by (2.2) is computable and free of the nuisance parameter. 
Note that a p-unbiased test with a data-based power func- 
tion continuous in 0 is p-similar. 

To show that we can consider tests based only on W 
given in (1.4), we first show how to reduce the Behrens- 
Fisher problem by invariance. The notation from Section 
1 will be used here. By location invariance, the problem 
can be reduced to tests based on (X - Y), S2, and S2. 
Let h = rJj/cr2. Common scale invariance reduces the 
problem to tests based on the variables 

= (X - Y)/(mS2 + nS2hh)1/2 

T2= (mS2l + nS22h){s2l/mS2l + s22InS2h}/s2l. (4.2) 

By independence of the sum and the ratio of the x2 vari- 
ables given in (1.3), T1 and T2 are independent. Moreover, 
T1 and T2 can be expressed as 

T2 = T(m + n - 2)IS2(1lm + I(nh))1S2 

'2 = (s2I1B + s2 (1 - B))Is1, (4.3) 

where T = Z[(U + V)/(m + n - 2)11/2 has a noncentral 
t distribution tm+n 2(0), with m + n - 2 degrees of free- 
dom and noncentrality parameter 0, and B - beta((m - 
1)/2, (n - 1)/2). Since all tests based on (X - Y), S1, 
and S2 can also be obtained using Tl, S2, and S2, it is 
sufficient to show that given Tl, any common scale-in- 
variant data-based power function constructed from S2 and 
2 can also be obtained using T2. 
Observe that the distribution of T2 = 11B + (s2/s )1(1 

- B) depends on the data only through S2/S2, a maximal 
invariant, and that the observed value of T2 is a function 
of s2/Is. Theorem 2.1 implies that the data-based power 
function of any p-invariant test based on S2 and S2 can be 
obtained using T2Is2 or, equivalently, T2. Therefore, p- 
invariant tests (location and common scale) based on TI, 
S2, and S2 can be found using T1 and T2. 

From (4.2) and (4.3), the generalized test variable W 
given in (1.4) can be expressed as W = s1W, where 

W = (1/m + 11(nh)) "12TiT2/2 

= (m + n - 2)-1"2TT!'2. (4.4) 

Let ,B(h) = (ms2 + ns2h)(m + nh)lmnhs2. Note that any 
p-invariant test can be generated using T2 and W. The 
observed value of W is w = (x - y) Is,, and the observed 
value of T2 is ,B(h). Suppose we only consider p-unbiased 
tests based on generalized extreme regions of the form 

C(0, h) = {(T2, W): G(/3(h), T2, W, 0, h) ? 0}, 
(4.5) 

where G = Gw is a measurable and continuous function 
in all of its arguments. When the family of distributions 
of G is stochastically increasing in 0, we call these C con- 
tinuous generalized extreme regions. These p-unbiased 
tests are also p-similar. Hence, the power function of any 
of these tests is constant for 0 = 0 and for all h > 0. Let 
f,( T2, W) be the joint density of T2 and W. When 0 = 0, 
fo(T2, W) is free of unknown parameters and fo > 0 for 
all W and T2. By p-similarity, 

JI() I f0(T2, W) = I M f0(T2, W) (4.6) 
C(O,1) C(O,h) 

for all h > 0. Let A = {(T2, W): G(fl(h), T2, W, 0, h) 
# G(fl(1), T2, W, 0, 1)}. Then it follows from (4.6) that 
f fA fO = 0 and in turn that A is a set of measure 0, 
because fo > 0. Hence, the continuity of G implies that 
G (t(h), T2, W, 0, h) = G(,B(1), T2, W, 0, 1) for all h > 
0. In other words, p-unbiased tests based on C in (4.5) 
can be obtained using T2, W, and w only. From (4.3), 
however, the conditional distribution of T2 given W = w 
depends on the data through w. Consequently, any p- 
unbiased test based on a continuous generalized extreme 
region using W and T2 can be obtained using W alone. 
Hence the p value can be computed as p = Pr(W> w) 
= Pr(W-w) 

5. CONCLUDING REMARKS 
In this article, we show how in situations where nuisance 

parameters are present, significance testing based on p 
values using generalized extreme regions can produce non- 
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trivial exact solutions in testing problems where nontrivial 
solutions using fixed-level testing may be difficult or im- 
possible to obtain. In these situations, however, the p 
value as a function of the observed data does not neces- 
sarily have a uniform distribution (see Kempthorne and 
Folks 1971, p. 346). Thus our testing procedures often 
cannot be applied when fixed levels of significance are 
used. (The example in Sec. 3.2 is an exception.) For this 
reason, our testing procedure cannot be used to generate 
confidence sets either. Our focus is mainly on testing of 
hypotheses. Some results on the relationship of a family 
of tests using fixed levels of significance and confidence 
sets were given by Lehmann (1986, chap. 5). Finally, Cox 
(1977) provided a lengthy discussion on the difference be- 
tween significance testing using p values and fixed-level 
testing. 

[Received October 1987. Revised November 1988.] 
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