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Linköping University, Sweden
meham@ida.liu.se

Jörgen Hansson
Software Engineering Institute

Carnegie Mellon University, USA
hansson@sei.cmu.edu.

Sang H. Son
Dept. of Computer Science

University of Virginia, Charlottesville, USA
son@cs.virginia.edu

Svante Gunnarsson
Dept. of Electrical Engineering
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Abstract

The intricacy of real-time data service management in-
creases mainly due to the emergence of applications oper-
ating in open and unpredictable environments, increases in
software complexity, and need for performance guarantees.
In this paper we propose an approach for managing the
quality of service of real-time databases that provide impre-
cise and differentiated services, and that operate in unpre-
dictable environments. Transactions are classified into ser-
vice classes according to their level of importance. Trans-
actions within each service class are further classified into
subclasses based on their quality of service requirements.
This way transactions are explicitly differentiated according
to their importance and quality of service requests. The per-
formance evaluation shows that during overloads the most
important transactions are guaranteed to meet their dead-
lines and that reliable quality of service is provided even in
the face of varying load and execution time estimation er-
rors.

1 Introduction

The demand for real-time data services increases due to
the emergence of data intensive applications, e.g., engine
control, web servers, and e-commerce. Further, these ap-
plications are becoming increasingly sophisticated in their

∗This work was funded, in part by CUGS (the National Graduate
School in Computer Science, Sweden), CENIIT (Center for Industrial In-
formation Technology) under contract 01.07, NSF grants IIS-0208578 and
CCR-0329609, and ISIS (Information Systems for Industrial Control and
Supervision).

real-time data needs, making ad hoc data management very
difficult. Real-time databases (RTDBs) [22] have been in-
troduced to address the problems arising in data manage-
ment for real-time systems. In open systems, where exact
execution time estimates, arrival rates, and data access pat-
terns are not available, the workload of RTDBs cannot be
precisely predicted and, hence, the databases can become
overloaded. This results in uncontrolled deadline misses
and freshness violations during transient overloads.

Several approaches, e.g., [15, 3] have been proposed for
providing performance or quality of service (QoS) guaran-
tees for real-time data services, despite the presence of in-
accurate workload characteristics. QoS is defined in terms
of deadline miss ratio, utilization, and the precision of data
and transaction results. The approach called Robust Qual-
ity Management of Differentiated Imprecise Data Services
(RDS) [3], was presented for managing the performance of
differentiated and imprecise real-time data services. Data
imprecision, i.e., allowing data objects in an RTDB to devi-
ate from their corresponding real world values, and impre-
cise computation [18] have been used to trade off quality
of transaction results versus the load applied on the system.
In the approach taken by RDS, transactions are first classi-
fied according to their importance. The QoS requirement of
each class is then chosen independently of the importance
of the class. However, a serious restriction of RDS is that
transactions with the same importance must use data of sim-
ilar precision although the transactions may have different
precision requirements on the data. Further, transactions
in the same service class are required to deliver results of
equal quality or precision. This is not general enough as ap-
plications submitting transactions may have the same level
of importance, but different QoS requirements.
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Let us take the example of embedded RTDBs for engine
control in automobiles [11].1 Some of the control appli-
cations in automobiles are more important than others and,
consequently, they must meet their deadlines. However, two
equally important control applications may not require sen-
sor data that are equally precise. In fact, one of the control
applications may tolerate less accurate sensor data than the
other one. As a consequence, the two applications submit
transactions, which are equally important but have different
QoS requirements. Previous approaches (e.g., [6, 15, 12])
and RDS do not allow equally important transactions to
have different QoS requirements. Clearly, these transaction
requirements imposed by applications must be met by RT-
DBs that provide real-time data services to the applications.

In this paper we present a generalized performance man-
agement scheme for multiclass real-time data services that
captures the above mentioned requirements of applications,
namely, equally important transactions may have different
QoS requirements, which are expressed as data precision
and transaction precision. The first contribution of this pa-
per is a performance specification model that enables the
applications to be classified according to their importance
and QoS requirements. The specification model allows the
transactions to be classified into service classes represent-
ing importance levels, and within each service class, trans-
actions are divided into subclasses giving the QoS require-
ments of the transactions. The expressive power of the per-
formance specification model allows a database operator2

or database designer to specify the desired nominal sys-
tem performance, and the worst-case system performance
and system adaptability in the face of unexpected failures
or load variation. The second contribution is an architec-
ture and an algorithm, based on feedback control schedul-
ing [21, 19, 2], for managing the QoS. Performance studies
show that the suggested approach fulfills the performance
requirements. Transaction and data precision are managed,
even for transient overloads and with inaccurate execution
time estimates of the transactions. We show that during
overloads transactions are rejected in a strictly hierarchical
fashion based on their service class, representing the impor-
tance of the transactions. Within a service class, the rejec-
tion rate is fairly distributed among the subclasses.

The rest of this paper is organized as follows. A problem
formulation is given in section 2. In section 3, the assumed
database model is given. In section 4, we present an ap-
proach for QoS management and in section 5, the results
of performance evaluations are presented. In section 6, we
give an overview on related work, followed by section 7,
where conclusions and future work are discussed.

1The development of RTDBs for automobiles has been carried out to-
gether with our collaborators Fiat-GM.

2By a database operator we mean an agent, human or computer, that
supervises and operates the database, including setting the QoS.

2 Problem Formulation

In our database model, data objects in an RTDB are up-
dated by update transactions, e.g., sensor values, while user
transactions represent user requests, e.g., complex read-
write operations. We apply the notion of imprecision at
user transaction level and data object level. We introduce
the notion of transaction error (denoted tei), inherited from
the imprecise computation model [18], to measure the pre-
cision of the result of a user transaction. A transaction Ti

returns more precise results, i.e., lower tei, as it receives
more processing time. We say that the quality of user trans-
action (QoT) increases as the transaction error of the user
transactions decreases. Further, for a data object stored in
the RTDB and representing a real-world variable, we can
allow a certain degree of deviation compared to the real-
world value. If such a deviation can be tolerated, arriving
updates may be discarded during transient overloads, de-
creasing quality of data (QoD) as the imprecision of the
data objects increases. To measure QoD we introduce the
notion of data error (denoted dei), which gives how much
the value of a data object di stored in the RTDB deviates
from the corresponding real-world value, which is given by
the latest arrived transaction updating di. Note that the lat-
est arrived transaction updating di may have been discarded
and, hence, di may hold the value of an earlier update trans-
action. We define QoS in terms of QoT and QoD, i.e., the
precision of the transaction results and the precision of the
data stored in the RTDB.

Assume that there are V service classes, where
SV C = {svc1, . . . , svcv, . . . , svcV } (1 ≤ v ≤
V ) denotes the set of service classes. Each ser-
vice class svcv holds Bv subclasses, namely svcv =
{sbcv,1, sbcv,2, . . . , sbcv,bv , . . . , sbcv,Bv}, where 1 ≤ bv ≤
Bv. Let B denote the total number of subclasses, i.e.,
B =

∑V
v=1 Bv. User transactions are classified into ser-

vice classes based on their importance. In a service class
where transactions are equally important, transactions are
further divided into subclasses. Each subclass represents
the unique QoS requirement of the transactions in that sub-
class. Transactions in sbc1,1, . . . , sbc1,B1 are the most im-
portant transactions, and transactions in sbc2,1, . . . , sbc2,B2

are less important and so on. In general transactions in
sbcv,bv are more important than transactions in sbcv′,bv′ if
and only if v < v′, for any bv and bv′ . Transactions in
sbcv,bv and sbcv′,bv′ are equally important if and only if
v = v′. For a given service class svcv , transactions are
divided into the subclasses sbcv,1, . . . , sbcv,bv , . . . , sbcv,Bv

according to their QoS requirements. For a subclass sbcv,bv ,
the desired QoS is expressed in terms of tei that the trans-
actions in sbcv,bv produce and the data error of the data ob-
jects that transactions in sbcv,bv read. Subclasses of a ser-
vice class hold transactions that are equally important but

2
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that have different QoS requirements. In particular, for any
b′v where 1 ≤ b′v ≤ Bv and b′v �= bv, transactions in sbcv,b′v

and sbcv,bv are equally important, however, they have dif-
ferent QoS requirements.

The problem that we pose in this work is to find a per-
formance specification model for expressing the importance
and the QoS requirements, in terms of data error and trans-
action error, of the subclasses. The performance specifica-
tion model must capture the independence between impor-
tance and QoS requirements, and allow several QoS require-
ments to be specified for a set of equally important transac-
tions. Further, an architecture and a set of algorithms that
respect the importance of the transactions and that manage
data error and transaction error such that given QoS specifi-
cations for each subclass are satisfied, must be developed.

3 Data and Transaction Model

We consider a main memory database model, where
there is one CPU as the main processing element. We con-
sider the following data and transaction models. In our data
model, data objects can be classified into two classes, tem-
poral and non-temporal [22]. For temporal data we only
consider base data, i.e., data objects that hold the view of the
real-world and are updated by sensors. A base data object
di is considered temporally inconsistent or stale if the cur-
rent time is later than the timestamp of di followed by the
absolute validity interval avii of di, i.e., currenttime >
timestampi + avii. For a data object di, let data error
dei = Φ(cvi, vj) be a non-negative function of the current
value cvi of di and the value vj of the latest arrived trans-
action that updated di or that was to update di but was dis-
carded. The function Φ may for example be defined as the
absolute deviation between cvi and vj , i.e., dei = |cvi−vj |,
or the relative deviation as given by dei = |cvi−vj |

|cvi| . To
capture the QoD demands of the different service classes
we model the data error as perceived by the transactions
in sbcv,bv with dei × defv,bv where defv,bv denotes the
data error factor of the transactions in sbcv,bv . The greater
defv,bv is, the greater does the transactions in sbcv,bv per-
ceive the data error. We define the weighted data error as
wdei = dei × defd,i, where defd,i is the maximum data
error factor of the transactions accessing di.

Update transactions arrive periodically and may only
write to base data objects. User transactions arrive aperiod-
ically and may read temporal and read/write non-temporal
data. User and update transactions (Ti) are composed of
one mandatory subtransaction mi and |Oi| ≥ 0 optional
subtransactions oi,j , where oi,j is the jth optional subtrans-
action of Ti. For the remainder of the paper, we let ti,j de-
note the jth subtransaction of Ti. Since updates do not use
complex logical or numerical operations, we assume that
each update transaction consists only of a single manda-

tory subtransaction, i.e., |Oi| = 0. We use the milestone
approach [18] to transaction imprecision. Thus, we divide
transactions into subtransactions according to milestones.
A mandatory subtransaction is completed when it is com-
pleted in a traditional sense. The mandatory subtransaction
gives an acceptable result and must be computed to com-
pletion before the transaction deadline. The optional sub-
transactions may be processed if there is enough time or
resources available. While it is assumed that all subtransac-
tions of a transaction Ti arrive at the same time, the first op-
tional subtransaction (if any) oi,1 becomes ready for execu-
tion when the mandatory subtransaction, mi, is completed.
In general, an optional subtransaction, oi,j , becomes ready
for execution when oi,j−1 (where 2 ≤ j ≤ |Oi|) completes.
We set the deadline of every subtransaction ti,j to the dead-
line of the transaction Ti. A subtransaction is terminated if
it has completed or has missed its deadline. A transaction
Ti is terminated when oi,|Oi| completes or one of its sub-
transactions misses its deadline. In the latter case, all sub-
transactions that are not completed are terminated as well.

For a user transaction Ti, we use an error function [7] to
approximate its transaction error given by,

tei(|COSi|) =
(

1 − |COSi|
|Oi|

)ni

(1)

where ni is the order of the error function and |COSi| de-
notes the number of completed optional subtransactions. By
choosing ni we can model and support multiple types of
transactions showing different error characteristics.

4 Approach

Below we describe an approach for managing the perfor-
mance of an RTDB in terms of transaction and data quality.
First, we start by defining QoS and how it can be specified.
An overview of the feedback control scheduling architec-
ture is given, followed by issues related to modeling of the
architecture and design of controllers. We refer to the pre-
sented approach as Management of Multi Class Real-Time
Imprecise Data Services (MCIDS).

4.1 Performance Metrics and QoS specification

We apply the following steady state and transient state
performance metrics [19] to each service class. The
set Terminatedv,bv(k) denotes the transactions in sub-
class sbcv,bv that are terminated during the interval [(k −
1)T, kT ], where T is the sampling period. For the rest of
this paper, we sometimes drop k where the notion of time is
not important.

• The average transaction error of admitted user transac-
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Figure 1. Definition of settling time (Ts) and
overshoot (Mp)

tions,

atev,bv (k) = 100 ×
∑

i∈Terminatedv,bv (k) tei

|Terminatedv,bv(k)| (%)

gives the precision of the results produced by user
transactions.

• The data precision requirement of user transactions is
given using defv,bv .

• Data precision is manipulated by managing the data
error of the data objects, which is done by considering
an upper bound for the weighted data error given by
the maximum weighted data error mwde. An update
transaction Tj is discarded if the weighted data error of
the data object di to be updated by Tj is less or equal to
mwde (i.e., wdei ≤ mwde). If mwde increases, more
update transactions are discarded, degrading the qual-
ity of data. Setting mwde to zero results in the highest
data precision, while setting mwde to one results in
lowest data precision allowed.

• Overshoot Mv,bv
p is the worst-case system perfor-

mance in the transient system state (see Figure 1) and
it is given in percentage. Overshoot is specified for
atev,bv .

• Settling time T v,bv
s is the time for the transient over-

shoot to decay and reach the steady state performance
(see Figure 1), hence, it is a measure of system adapt-
ability, i.e., how fast the system converges toward the
desired performance. Settling time is specified for
atev,bv .

• Admission Percentage, apv,bv (k) = 100 ×
|Admittedv,bv (k)|
|Submittedv,bv (k)| (%), where |Admittedv,bv (k)|
is the number of admitted transactions and
|Submittedv,bv(k)| is the number of submitted
transactions in sbcv,bv .

We define QoD in terms of mwde and an increase in
QoD refers to a decrease in mwde, while a decrease in QoD
refers to an increase in mwde. Similarly, we define QoT for
a subclass sbcv,bv in terms of atev,bv . QoT for a subclass

sbcv,bv increases as atev,bv decreases, while QoT decreases
as atev,bv increases. The QoS specification is given in terms
of defv,bv and a set of target levels in the steady state or
references atev,bv

r for atev,bv .
Turning to the QoD requirement specification, assume

we want that dei ≤ ξv,bv for a subclass sbcv,bv , where
ξv,bv is an arbitrary data error. We observe that a data
object may be accessed by several transactions in differ-
ent subclasses and, hence, there may be different precision
requirements put upon the data item. It is clear that we
need to ensure that the data error of the data object com-
plies with the needs of all transactions and, consequently,
any data error conflicts must be resolved by satisfying the
needs of the transaction with the stronger requirement. As-
sume that several transactions with different precision re-
quirements access di. Then for all v and bv it must hold
that defv,bv ≤ defd,i, since defd,i is the maximum data er-
ror factor of the transactions accessing di. The data object
di is least precise when mwde is equal to one and, hence,
dei × defv,bv ≤ dei × defd,i = wdei ≤ 1. From this
we conclude that dei ≤ 1

defv,bv
. So by setting defv,bv to

1
ξv,bv

we satisfy the QoD requirement of the transactions in

sbcv,bv .
The following example shows a specification of QoS

requirements: {ate1,1
r = 30%, def1,1 = 1, T 1,1

s ≤
60s, M1,1

p ≤ 35%}, {ate1,2
r = 40%, def1,2 = 0.3, T 1,2

s ≤
60s, M1,2

p ≤ 35%}, {ate2,1
r = 20%, def2,1 = 3, T 2,1

s ≤
60s, M2,1

p ≤ 35%}, {ate2,2
r = 50%, def2,2 = 0.1, T 2,2

s ≤
60s, M2,2

p ≤ 35%}, {ate3,1
r = 10%, def3,1 = 1, T 3,1

s ≤
60s, M3,1

p ≤ 35%} . Note that transactions in sbc1,1 and
sbc1,2 are equally important, but they have different QoS re-
quirements. Also, transactions in sbc1,1 are more important
than transactions in sbc2,1, however, the QoS requirement
for sbc1,1 is weaker than the QoS requirement for sbc2,1,
i.e., ate1,1

r > ate2,1
r and def1,1 < def2,1. This shows that

several QoS levels may be associated with a certain impor-
tance level and that the specification of importance and QoS
requirements are orthogonal.

4.2 Data Precision Classes

We need to make sure to meet the data precision require-
ment of the transactions in all subclasses. We take the ap-
proach presented in [3], i.e., data objects are classified ac-
cording to the precision requirement of the transactions ac-
cessing them, where each class of data objects represents a
data precision requirement. When a user transaction with
a very high data precision requirement accesses a data ob-
ject, we classify the data object to a higher data precision
class representing greater precision. In particular, once a
transaction Ti accesses a data object di where the data er-
ror factor defv,bv of Ti is greater than the current data error
factor defd,i of di, then we set defd,i to defv,bv . If after
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Figure 2. QoS management architecture us-
ing feedback control

a while, no transaction with equal or greater precision re-
quirement accesses that data object, then we move the data
object to a lower data precision class, representing a lower
precision requirement. This corresponds to the data error
factor defd,i decreasing linearly over time, moving to lower
data precision classes until a transaction with a higher data
error factor accesses di. This way the system is adaptive to
changes in access patterns.

4.3 Feedback Control Scheduling Architecture

The architecture of our QoS management scheme is
given in Figure 2. Update transactions have higher prior-
ity than user transactions and are upon arrival ordered in
an update ready queue according to the earliest deadline
first (EDF) scheduling policy (for an elaborate discussion
on EDF see e.g., [6]). To provide individual QoS guaran-
tees for each user transaction subclass we have to enforce
isolation among the subclasses by bounding the total ex-
ecution time of the transactions in each subclass. This is
achieved by using servers [6], which enable us to limit the
resource consumption of transactions, while lower average
response time is enforced for the transactions in higher ser-
vice classes. Let serverv,bv denote the server for sbcv,bv

and cv,bv denote the capacity (in terms of transaction execu-
tion time) of serverv,bv . We assign priorities to the servers
according to their importance, i.e., serverv,bv has higher
priority than serverv+1,bv . Servers within a service class
have the same priority, i.e., serverv,1, . . . , serverv,Bv have
the same priority.

At the beginning of the sampling interval, server1,1

serves any pending user transactions in its ready queue
within the limit of c1,1 or until no more user transactions
are waiting, at which point server1,1 becomes suspended
and the following server in the same service class, i.e.,
server1,2 becomes active (if it exists). This procedure is

continued until server1,B1 becomes suspended, at which
point the server of sbc2,1, i.e., server2,1 becomes active.
At any point in time server2,b2 may be interrupted and
suspended, and server1,b1 is then reactivated if new user
transactions in sbc1,b1 arrive and server1,b1 has any ca-
pacity left. In general, serverv,bv serves any pending user
transactions in its ready queue within the limit of cv,bv or
until no more user transactions are waiting, at which point
serverv,bv becomes suspended and the next server in svcv ,
i.e., serverv,bv+1 becomes active. If serverv,bv is the last
server of svcv (i.e., bv = Bv), then serverv+1,1 becomes
active. The server serverv′,bv′ is suspended and serverv,bv

is reactivated if and only if v < v′, new user transactions in
sbcv,bv arrive, and cv,bv is greater than zero. The capacity
is replenished periodically with the sampling period T .

The transaction handler manages the execution of the
transactions. It consists of a freshness manager (FM), a
unit managing the concurrency control (CC), and a basic
scheduler (BS). The FM checks the freshness before ac-
cessing a data object, using the timestamp and the absolute
validity interval of the data. We employ two-phase lock-
ing with highest priority (2PL-HP) [1] for concurrency con-
trol. 2PL-HP is chosen since it is free from priority inver-
sion and has well-known behavior. EDF, where transac-
tions are processed in the order determined by their absolute
deadlines, is used as a basic scheduler. To ensure that the
mandatory subtransactions meet their deadlines, the manda-
tory subtransactions have higher priority than the optional
subtransactions.

At each sampling instant k, the controlled variables
atev,bv are monitored and fed into the ATE controllers,
which compare the performance references atev,bv

r with
atev,bv to get the current performance errors. Based on this
each ATE controller computes a requested change δcv,bv

ATE

to cv,bv . If atev,bv is higher than atev,bv
r , then a positive

δcv,bv

ATE is returned, requesting an increase in the capacity
so that atev,bv is lowered to its reference. The requested
changes in capacities are given to the capacity allocator,
which distributes the capacities according to the service
class level. During overloads it may not be possible to ac-
commodate all requested capacities. Instead, the QoD is
lowered, resulting in more discarded update transactions,
hence, more resources can be allocated for user transac-
tions. If the lowest data quality is reached and no more up-
date transactions can be discarded, the amount of capacity
rv,bv that is not accommodated is returned to the admission
controller, which rejects transactions with a total execution
time of rv,bv .

For the purpose of the controller design we have modeled
the controlled system using Z-transform theory [8]. Start-
ing with the manipulated variable, the capacity in the next
period is,

cv,bv(k + 1) = cv,bv(k) + δcv,bv

ATE(k), (2)
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Figure 3. The relation between capacity and
average transaction error

i.e., the capacity is the integration over the manipulated
variable. Now, there exists a nonlinear relation between
cv,bv and atev,bv , as shown in Figure 3. For capacities less
than the lower threshold cv,bv

lt none of the optional subtrans-
actions are completed and according to (1) the transaction
error of the user transactions is one, hence, atev,bv = 100%.
The average transaction error atev,bv decreases as cv,bv in-
creases, since more CPU time is allocated to user trans-
actions in sbcv,bv . There exists an upper threshold cv,bv

ut

at which atev,bv becomes zero as all optional subtransac-
tions are completed. We linearize the relationship between
atev,bv and cv,bv at the vicinity of atev,bv

r , i.e.,

atev,bv(k+1) = atev,bv (k)+Gv,bv
c (cv,bv (k+1)−cv,bv(k))

(3)
where Gv,bv

c is the ate gain, giving the derivative of the
function relating atev,bv and cv,bv (see Figure 3). Inserting
(2) into (3) gives,

atev,bv(k + 1) = atev,bv(k) + Gv,bv
c × δcv,bv

ATE(k). (4)

For simplicity we use the same ate gain for all subclasses,
hence, we denote the ate gain of the subclasses with Gc.
By taking the Z-transform of (4), we obtain the transfer
function,

P v,bv (z) =
atev,bv (z)

δcv,bv

ATE(z)
=

Gc

z − 1
,

describing atev,bv in terms of δcv,bv

ATE . We have tuned Gc by
measuring ate for different capacities and taking the slope
at ater. The ATE controller is implemented using a P-
controller, i.e., δcv,bv

ATE(k) = KP (atev,bv
r (k) − atev,bv (k)),

where the controller parameter KP is tuned with root locus
[8].

4.4 Data and Transaction Error Management

In the following sections we present an algorithm used
for computing the capacity of the servers and a method for
controlling the precision of the data.

4.4.1 Capacity Allocation

Figure 4 shows how cv,bv , rv,bv , and mwde are computed.
We start by describing ComputeCapacity, which imple-
ments the capacity allocator in Figure 2. Although there
is no server for update transactions, we simplify the pre-
sentation of the algorithm by letting the capacity of the up-
date transactions denote the execution time of update trans-
actions. Let cUpdate(k) denote the measured capacity, or
equivalently the execution time, of the update transactions.
As the arrival patterns of update transactions are varying,
we take the moving average cUpdate

MA (k) of the update trans-
action capacity to smoothen out great variations (line 1).

We start allocating capacities with respect to the service
classes, starting with subclasses in svc1. The requested ca-
pacity cv,bv

req (k+1) of subclass sbcv,bv is the sum of the pre-
viously assigned capacity cv,bv (k) and the requested change
in capacity δcv,bv

ATE(k+1) that is computed by the ATE con-
troller (lines 5-7). Then we compute the sum cv

req(k +1) of
the requested capacities of all subclasses of service class
svcv (line 8). If the total available capacity, given by
T − c(k+1), is less than the requested capacity cv

req(k+1)
then we degrade QoD by calling ChangeUpdateC along
with how much update capacity to free (lines 9-11). See
Section 4.4.2 for an elaborate description on ChangeUp-
dateC. Then we compute a ratio ratiov giving how much
of the requested capacity can be allocated (lines 12-16). The
assigned capacities are computed by taking the product of
the ratio and the requested capacities (lines 17-20).

If the entire requested capacity cannot be accommo-
dated, i.e., ratiov < 1, we enforce the capacity adjustment
by rejecting more transactions (lines 21-24). One key con-
cept in the capacity allocation algorithm is that we employ
an optimistic admission policy. We start by admitting all
transactions and in the face of an overload we reject trans-
actions until the overload is resolved. This contrasts against
pessimistic admission policy where the admission percent-
age is increased as long as the system is not overloaded. We
believe that the pessimistic admission policy is not suitable
as some critical transactions, i.e., the transactions in higher
service classes, are initially rejected. Continuing with the
algorithm description, if the requested capacity is accom-
modated then we try to reduce the number of rejected trans-
actions (lines 25-33). This is done by first trying to degrade
QoD as much as possible in order to accommodate as many
user transactions as possible (lines 26-28). Then the number
of rejected transactions is lowered and additional capacity
is allocated to compensate for the decrease in number of re-
jected transactions (lines 29-33). If the requested capacity is
accommodated and no transactions were rejected during the
previous sampling interval then we do not reject any trans-
actions during the next sampling interval (lines 35-37). Fi-
nally, after the capacity allocation we check to see whether
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there is any spare capacity cs(k + 1), and if so we upgrade
QoD within the limits of cs(k + 1) (line 42). If QoD can-
not be further upgraded, i.e., mwde = 0, then we distribute
cs(k + 1) among the servers (lines 43-47).

The ComputeCapacity algorithm in Figure 4 runs
in the worst case in O(V Bmax), where Bmax is the
maximum number of subclasses in a service class, i.e.,
Bmax = max1≤v≤V Bv . As is noted, the time complexity
O(V Bmax) is pseudo-polynomial [9]. Since the maximum
number of subclasses Bmax is bounded, the capacity allo-
cation algorithm is linear in V . Similarly, as the number
of service classes V is bounded, the algorithm is linear in
Bmax. This shows that the algorithm scales well with the
number of service classes and number of subclasses.

4.4.2 QoD Management

We now study the algorithm ChangeUpdateC. The preci-
sion of the data is controlled by the QoD Manager by set-
ting mwde(k) depending on the requested change in update
capacity δcUpdate(k), see Figure 2. Rejecting an update re-
sults in a decrease in update capacity. Let Discarded(k)
be the set of discarded update transactions during interval
[(k − 1)T, kT ] and eeti be the estimated execution time
of update transaction Ti. We define the gained capacity,
gc(k) =

∑
Ti∈Discarded(k) eeti, as the capacity gained due

to the result of rejecting one or more updates during inter-
val [(k − 1)T, kT ]. In our approach, we profile the system
and measure gc for different mwdes and linearize the rela-
tionship between these two, i.e., mwde(k) = μ(k)×gc(k).
Further, since RTDBs are dynamic systems such that the
behavior of the system and environment is changing, the
relation between gc(k) and mwde(k) is adjusted on-line.
This is done by measuring gc(k) for a given mwde(k) dur-
ing each sampling period and updating μ(k). Having the
relationship between gc(k) and mwde(k), we introduce the
function h(δcUpdate(k)) = μ(k) × (gc(k) − δcUpdate(k)),
which returns an mwde given δcUpdate(k). Since mwde(k)
cannot be greater than one and less than zero we use the
function,

f(δcUpdate(k)) =⎧⎨
⎩

1, h(δcUpdate(k)) > 1
h(δcUpdate(k)), 0 ≤ h(δcUpdate(k)) ≤ 1
0, h(δcUpdate(k)) < 0

(5)

to enforce this requirement. Now that we have arrived
at f it is straightforward to compute mwde, as shown in
Figure 4. The function ChangeUpdateC returns the esti-
mated change in update capacity given the requested change
δcUpdate(k).

ComputeCapacity(δc1,1
ATE (k + 1), . . . , δc

V,BV
ATE (k + 1))

1: cUpdate
MA (k) ← α × cUpdate(k) + (1 − α) × cUpdate

MA (k − 1)

2: c(k + 1) ← cUpdate
MA (k)

3: for v = 1 to V do
4: rv(k) ← Bv

bv=1 rv,bv (k)
5: for bv = 1 to Bv do
6: cv,bv

req (k + 1) ← max(0, cv,bv (k) + δcv,bv
ATE(k + 1))

7: end for
8: cv

req(k + 1) ← Bv
bv=1 cv,bv

req (k + 1)

9: if T − c(k +1) < cv
req(k +1) then {if the total available capacity

if less than the requested capacity}
10: c(k + 1) ← c(k + 1) + ChangeUpdateC(T − c(k + 1) −

cv
req(k + 1))

11: end if
12: if cv

req(k + 1) > 0 then

13: ratiov =
min(T−c(k+1),cv

req(k+1))

cv
req(k+1)

14: else
15: ratiov = 0
16: end if
17: for bv = 1 to Bv do
18: cv,bv (k + 1) ← cv,bv

req (k + 1) × ratiov

19: c(k + 1) ← c(k + 1) + cv,bv (k + 1)
20: end for
21: if ratiov < 1 and cv

req(k + 1) > 0 then {if the assigned capacity
is less than the requested capacity}

22: for bv = 1 to Bv do
23: rv,bv (k + 1) ← rv,bv (k) + cv,bv

req (k + 1) − cv,bv (k + 1)
24: end for
25: else if rv(k) > 0 then {if the requested capacity was accommo-

dated and we rejected transactions during the previous period}
26: if T − c(k + 1) < rv(k) then {if the available capacity is less

than the rejected capacity in the previous period}
27: c(k + 1) ← c(k + 1) + ChangeUpdateC(T − c(k + 1) −

rv(k))
28: end if
29: for bv = 1 to Bv do

30: rv,bv (k + 1) ← max(0,rv(k)−T+c(k+1))×rv,bv (k)
rv(k)

31: cv,bv (k + 1) ← cv,bv (k + 1) + rv,bv (k) − rv,bv (k + 1)
32: c(k + 1) ← c(k + 1) + rv,bv (k) − rv,bv (k + 1)
33: end for
34: else
35: for bv = 1 to Bv do
36: rv,bv (k + 1) ← 0
37: end for
38: end if
39: end for
40: cs(k + 1) ← T − c(k + 1)
41: if cs(k + 1) > 0 then {if there is spare capacity}
42: cs(k +1) ← max(0, cs(k +1)−ChangeUpdateC(cs(k +1)))
43: for v = 1 to V do
44: for bv = 1 to Bv do
45: cv,bv (k + 1) ← cv,bv (k + 1) +

cs(k+1)
B

46: end for
47: end for
48: end if

ChangeUpdateC(δcUpdate(k))

1: mwde(k + 1) ← f(δcUpdate(k))
2: Return 1

μ
(mwde(k) − mwde(k + 1))

Figure 4. Data and Transaction Error Manage-
ment Algorithms.
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5 Performance Evaluation

5.1 Experimental Goals

The performance evaluation is undertaken by a set of
simulation experiments, where a set of parameters have
been varied. These are: (i) load (load), as computational
systems may show different behavior for different loads, es-
pecially when the system is overloaded, and (ii) execution
time estimation error (esterr), since often exact execution
time estimates of transactions are not known. Execution
time estimation errors induce additional unpredictability in
the controlled variable, i.e., ate, as the transaction schedul-
ing is based on inaccurate information.

5.2 Simulation Setup

The simulated workload consists of update and user
transactions, which access data and perform virtual arith-
metic/logical operations on the data. One simulation run
lasts for 10 minutes of simulated time. For all the perfor-
mance data, we have taken the average of 10 simulation
runs and derived 95% confidence intervals. The workload
models of the update and user transactions are described as
follows. We use the following notation where the attribute
xi refers to the transaction Ti, and xi[ti,j ] is associated with
the subtransaction ti,j of Ti.

Data and Update Transactions. The database holds
1000 temporal data objects (di) where each data object is
updated by a stream (streami, 1 ≤ i ≤ 1000). The pe-
riod (pi) is uniformly distributed in the range (100ms,50s),
i.e., U : (100ms, 50s), and the estimated execution time
(eeti) is given by U : (1ms, 5ms). The average update
value (avi) of each streami is given by U : (0, 100).
Upon a periodic generation of an update, streami gives
the update an actual execution time given by the normal
distribution N : (eeti,

√
eeti) and a value (vi) accord-

ing to N : (avi,
√

avi × varfactor), where varfactor
is uniformly distributed in (0, 0.5). The deadline is set to
arrivaltimei + pi. We define data error as the relative de-
viation between cvi and vj , i.e., dei = 100 × |cvi−vj |

|cvi| (%).
User Transactions. Each sourcei generates a transac-

tion Ti, consisting of one mandatory subtransaction and
|Oi|, uniformly distributed between 1 and 10, optional
subtransaction(s). The estimated (average) execution time
of the mandatory and the optional (eeti[ti,j ]) subtransac-
tions is given by U : (1ms, 4ms). The estimation er-
ror esterr is used to introduce execution time estimation
error in the average execution time given by aeti[ti,j ] =
(1+esterr)×eeti[ti,j ]. Further, upon generation of a trans-
action, sourcei associates an actual execution time to each
subtransaction ti,j , given by N : (aeti[ti,j ],

√
aeti[ti,j ]).

The deadline is set to arrivaltimei + eeti × slackfactor.

The slack factor is uniformly distributed according to U :
(10, 20).

In the experiment presented here, we consider five sub-
classes sbc1,1, sbc1,2, sbc2,1, sbc2,2, and sbc3,1. The QoS
specification given in Section 4.1 is used. The workload
submitted to the RTDB is distributed among the subclasses
according to 25%, 25%, 10%, 25%, and 15%. The work-
load distribution captures the cases when the workload is
equally divided among the subclasses in a service class
(subclasses in svc1) and the case when the workload is
not equally divided among the subclasses in a service class
(subclasses in svc2). No workload is submitted to the
RTDB before time 0s, hence, the critical instant occurs at
0s which produces the worst case workload change. This
puts the performance of the system in a transient state at 0s,
followed by a steady state once the workload has settled.

5.3 Baseline

To the best of our knowledge, the only work on tech-
niques for managing data imprecision and transaction im-
precision satisfying QoS or QoD requirements for differen-
tiated services was presented by Amirijoo et al. [3]. How-
ever, that approach does not support multiple QoS require-
ments within a service class, and as such that approach
and MCIDS are not comparable. For this reason we com-
pare MCIDS with a baseline, called Admit-All, where all
transactions are admitted, and no QoD management is per-
formed. Transactions with equal importance are inserted in
the same ready queue and scheduled using EDF. The ready
queues are processed in the order of importance. This way
we can study the impact of the workload on the system, e.g.,
how ate is affected by increasing workload.

5.4 Experiment 1: Results of Varying Load

The goal of this experiment is to see how MCIDS reacts
to increasing submitted load. We show that MCIDS satisfies
a given QoS specification and that the importance require-
ments of the transactions are met. We measure ate, ap, and
mwde and apply loads from 40% to 700%. The execution
time estimation error is set to zero (i.e. esterr = 0). We
measure the system performance during steady state when
the load is not changing considerably (the transient state
performance is examined in detail in Section 5.6, where it
is shown that MCIDS also manages significant variations
in load). To measure the performance of the system during
steady state, we start measuring ate, ap, and mwde after
200s to remove the effects of the transients in the beginning
of the simulation. Figures 5(a), 6(a), and 7(a) show ate,
ap, and mwde when load is varied. The dashed lines indi-
cate references, while the dashed-dotted lines give the spec-
ified overshoot (according to the QoS specification). The
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confidence intervals for ate, ap, and mwde are less than
[ate− 6.81%, ate + 6.81%], [ap− 13.69%, ap + 13.69%],
and [mwde − 17.02%, mwde + 17.02%], respectively.

Starting with the admission percentage given in Figure
6(a), we note that as the load increases the admission per-
centage ap3,1 of subclass sbc3,1, representing the least im-
portant transactions, decreases and more transactions are
rejected. Transactions in sbc2,1 and sbc2,2 are the sec-
ond least important transactions and, therefore, the admis-
sion percentage of sbc2,1 and sbc2,2, i.e., ap2,1 and ap2,2,
starts decreasing when most of the transactions in sbc3,1

are rejected. Similarly, the most important transactions, i.e.,
transactions in sbc1,1 and sbc1,2, are rejected when the less
important transactions (transactions in sbc2,1, sbc2,2, and
sbc3,1) are rejected. Hence, the strict hierarchic admission
policy, where the least important transactions are rejected
in favor of the most important transactions, is enforced. As
we can see from Figure 5(a), ate of the subclasses increases
with increasing load. Admit-All violates the QoS speci-
fication as atev,bv is greater than the overshoot given by
atev,bv

r × (100 + Mv,bv
p ). Using MCIDS, atev,bv reaches

its reference atev,bv
r and atev,bv is less than the overshoot

for all subclasses and, hence, satisfying the QoS specifica-
tion. Note that when apv,bv becomes zero then atev,bv is
equal to zero as we always measure the average transaction
error over admitted transactions. Consequently, ate1,1 and
ate1,2 are greater than zero as ap1,1 and ap1,2 do not reach
zero. Turning to Figure 7(a) we see that mwde starts in-
creasing as the load increases, trying to lower the update
load so that no user transactions are rejected. Hence, QoD
is degraded during high loads in order to accommodate as
many transactions as possible.

In summary we have shown that MCIDS provides ro-
bust and reliable performance that is consistent with the
QoS specification for varying load. The admission mecha-
nism enforces the desired strict hierarchic admission policy,
where the least important transactions are rejected and the
most important transactions are admitted and executed.

5.5 Experiment 2: Results of Varying esterr

The goal of this experiment is to see how MCIDS reacts
to varying execution time estimation error. We show that
MCIDS is not significantly affected by the execution time
estimations errors. We measure ate, ap, and mwde and
vary esterr between -0.2 and 3 with steps of 0.2. This way
we examine the effects of both overestimation and underes-
timation of the execution time. The load is set to 200%. We
measure the system performance during steady state when
the load is not changing considerably (the transient state
performance is examined in detail in Section 5.6). To mea-
sure the performance of the system during steady state, we
start measuring ate, ap, and mwde after 200s to remove
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Figure 8. Transient Performance
the effects of the transients in the beginning of the simula-
tion. Figures 5(b), 6(b), and 7(b) show ate, ap, and mwde
when esterr is varied. The dashed lines indicate references,
while the dashed-dotted lines give the specified overshoot
(according to the QoS specification). The confidence inter-
vals for ate and ap are less than [ate−5.09%, ate+5.09%]
and [ap − 9.85%, ap + 9.85%], respectively. The confi-
dence interval for mwde is zero, as mwde is constant for
all esterr.

Ideally, the performance of the MCIDS should not be
affected by execution time estimation errors. This corre-
sponds to no or little variations in ate, ap, and mwde as
esterr changes. As shown in Figures 5(b), 6(b), and 7(b),
ate, ap, and mwde do not change significantly with varying
esterr. From above we conclude that MCIDS is insensitive
to changes to execution time estimation error as ate, ap,
and mwde do not change significantly with varying esterr.
This means that MCIDS conforms to inaccurate execution
times, satisfying the QoS specification.

5.6 Experiment 3: Transient Performance

Studying the average performance is often not enough
when dealing with dynamic systems. Therefore we study
the transient performance of MCIDS by measuring ate. The
load is set to 200% and esterr set to zero. Figure 8 shows
the transient behavior of ate for all subclasses. The dash-
dotted lines indicate specified overshoots (according to the
QoS specification), whereas the dashed lines represent ref-
erences.

The overshoot requirements for the most important sub-
classes sbc1,1 and sbc1,2 are satisfied. This also holds for
ate2,2, which is lower than its overshoot. As we can see
ate2,1 is somewhat greater than the overshoot, however, the
difference between the maximum ate2,1 and the overshoot
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is to small to be considered as a direct violation of the spec-
ification. The overshoot of ate3,1 is undefined since the
steady state value of ate3,1 is zero.3 Hence, the overshoot
requirements for the most important service classes are sat-
isfied.

As we can see, ate3,1 reaches 100% and it takes a while
until ate3,1 becomes zero. Using feedback control we are
able to react to changes only when the controlled vari-
able has changed and, hence, when ate3,1 is greater than
ate3,1

r , the ATE controller for sbc3,1 computes a positive
δc3,1

ATE , requesting for more capacity. As the assigned ca-
pacity of server3,1 is less than the requested capacity (c3,1

is near zero), transactions are rejected instead according to
the capacity allocation algorithm (see Figure 4). The rejec-
tion rate increases as δc3,1

ATE increases and, hence, a larger
δc3,1

ATE results in improved suppression of ate3,1 and faster
convergence to zero. The magnitude of δc3,1

ATE increases as
the magnitude of the P-controller parameter KP (see Sec-
tion 4.3) increases. Now, we have tuned each controller
when the load is 100% and considering that the applied
load in the experiment is 200%, the magnitude of KP of
each controller is not sufficiently large to efficiently sup-
press ate3,1.

By increasing the magnitude of the P-controller parame-
ter as the applied load increases, better QoS adaptation is
achieved. One way to deal with changing system prop-
erties, e.g., the load applied on the system, is to use gain
scheduling or adaptive control [23], where the behavior of
the controlled system is monitored at run-time and con-
trollers adapted accordingly. In our case, the RTDB reacts
to the higher applied load by increasing the magnitude of
the P-controller parameter such that faster QoS adaptation
is achieved. We believe that using gain scheduling, where
the parameter of the P-controllers changes according to the
current applied load, results in a substantial performance
gain with respect to faster QoS adaptation. In our future
work we plan to use gain scheduling to update the control
parameters.

6 Related Work

Liu et al. [18] and Hansson et al. [13] presented algo-
rithms for minimizing the total error and total weighted er-
ror of a set of tasks. Bestavros and Nagy have presented ap-
proaches for managing the performance of RTDBs, where
the execution time of the transactions are unknown [4].
Each transaction contributes with a profit when completing
successfully. An admission controller is used to maximize
the profit of the system. The work by Liu et al., Hansson et
al., and Bestavros and Nagy focus on maximizing or mini-
mizing a performance metric (e.g. profit). The latter cannot

3Recall from Figure 1 that overshoot is defined in relation to the steady-
state value of the controlled variable.

be applied to our problem, since we want to control a set
of performance metrics such that they converge toward a
set of references given by a QoS specification. Kuo et al.
described the notion of similarity, where transactions that
produce similar results are skipped during overloads [14].
However, in the work by Kuo et al. the effects of changes to
workload characteristics, such as execution time estimation
error, are not reported.

Turning to imprecise data services, the query proces-
sor APPROXIMATE produces monotonically improving
answers as the allocated computation time increases [24].
The relational database system CASE-DB can produce ap-
proximate answers to queries within certain deadlines [20].
Lee et al. studied the performance of real-time transaction
processing where updates can be skipped [17]. In contrast
to the above mentioned work, we have introduced impreci-
sion at both data object and transaction level and presented
QoS in terms of data and transaction imprecision.

Rajkumar et al. presented a QoS model, called Q-RAM,
for applications that must satisfy requirements along mul-
tiple dimensions such as timeliness and data quality [16].
However, they assume that the amount of resources an ap-
plication requires is known and accurate, otherwise optimal
resource allocation cannot be made. Goddard and Liu, and
Brandt et al. presented task models where the parameters
of the tasks (e.g., execution time and period) that represent
QoS change during run-time [10, 5]. However, their models
require that worst case execution times are known, which
does not conform to the task model presented in this paper.
Further, it is not possible to specify the importance of the
tasks in contrast to the model presented in this paper.

Kang et al. used a feedback control scheduling archi-
tecture to balance the load of user and update transactions
for differentiated real-time data services [15]. However,
in this work orthogonality in importance and QoS require-
ments cannot be realized. In our earlier work we proposed
an approach, called RDS, for managing the performance of
multi-class real-time data services [3]. However, in that ap-
proach only one QoS class is associated with an importance
class. In this paper, a generalized approach is presented,
where multiple QoS classes are associated with an impor-
tance class.

Feedback control scheduling has been receiving special
attention in the past few years [19, 21, 2]. However, none of
them have addressed QoS management of imprecise real-
time data services.

7 Conclusions and Future Work

New emerging applications, e.g., web services and
telecommunication, operate in highly unpredictable envi-
ronments where the workload characteristics cannot be pre-
cisely predicted. This makes the schedulability analysis
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and overload management very difficult and, consequently,
deadline misses may occur or an unacceptable level of QoS
may be experienced. As many real-time systems often con-
sist of several applications with varying degrees of impor-
tance or criticality, it is vital for a real-time system to con-
sider the importance of the applications and to reject re-
quests from less important applications in the face of an
overload. Deadline misses or very low QoS have less im-
pact on low importance applications as opposed to impor-
tant applications, which may result in a catastrophe. In
this paper we present a general approach, called MCIDS,
for specifying and managing performance for differentiated
and imprecise real-time data services. The performance
specification model allows the database operator to spec-
ify the importance and the QoS requirement of the transac-
tions. The QoS specification is expressed in terms of de-
sired nominal performance and the worst-case system per-
formance and system adaptability in the face of unexpected
failures or load variation. The presented architecture and
algorithms enables an RTDB to prioritize more important
transactions, ensuring that the most important transactions
are processed during overloads. We show through exper-
iments that MCIDS satisfies importance and QoS require-
ments even for transient overloads and with inaccurate run-
time estimates of the transactions.

For our future work we consider other metrics for QoS,
e.g., utilization, and adapt techniques from adaptive con-
trol [23] to better track changes in the dynamics of the con-
trolled system.
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