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Spatial shaping of light beams has led to numerous new applications in fields such as imaging, optical communication,
and micromanipulation. However, structured radiation is less well explored beyond visible optics, where methods for
shaping fields are more limited. Binary amplitude filters are often used in these regimes and one such example is a
photon sieve consisting of an arrangement of pinholes, the positioning of which can tightly focus incident radiation.
Here, we describe a method to design generalized photon sieves: arrays of pinholes that generate arbitrary structured
complex fields at their foci. We experimentally demonstrate this approach by the production of Airy and Bessel beams,
and Laguerre—Gaussian and Hermite—Gaussian modes. We quantify the beam fidelity and photon sieve efficiency,
and also demonstrate control over additional unwanted diffraction orders and the incorporation of aberration cor-
rection. The fact that these photon sieves are robust and simple to construct will be useful for the shaping of short- or
long-wavelength radiation and eases the fabrication challenges set by more intricately patterned binary amplitude

masks. © 2015 Optical Society of America

OCIS codes: (050.1965) Diffractive lenses; (050.4865) Optical vortices; (230.1950) Diffraction gratings.
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1. INTRODUCTION

Control over spatial structuring of the amplitude and phase of
coherent light has revealed a host of novel phenomena and ap-
plications. For example, Bessel and Airy beams exhibit pseudo-
nondiffracting propagation and self-healing if obstructed [1-5].
These two properties have been used to extend depth of field in
bright-field and light-sheet microscopy and increase image quality
deep into scattering tissue, along with a range of other applica-
tions [6—10]. Another family of beams includes those with helical
wavefronts which carry orbital angular momentum (OAM).
These beams have been used to achieve superresolution-stimu-
lated emission depletion microscopy [11], increase the data capac-
ity of communication channels [12], exert torque on microscopic
particles [13], and measure rotation rate of spinning objects
[14,15]. There is now increasing interest in exploring how novel-
structured fields such as the types just described interact with
matter outside the optical regime [16-20].

Spatial structuring of the amplitude and phase of light is
routinely achieved by modulating the phase of an incident beam
using a phase-only spatial light modulator (SLM) [21,22]. Prior
to the application of phase-only SLMs, it was shown in the 1960s
that binary amplitude masks can also be used to shape both the
amplitude and phase of light. For example, the computer-generated
hologram method encodes amplitude and phase in a binary grating
by locally varying the duty cycle of the grating to control the dif-
fracted amplitude and the lateral phase of the grating to control
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the optical phase of the diffracted light [23—26]. Such binary pat-
terns have recently been implemented on digital micromirror de-
vices (DMDs) to take advantage of their high switching rates [27].
Since the development of phase-only SLMs and DMDs has been
driven by growth in commercial display technologies, beam-
shaping options become more limited outside of the near-visible
spectrum. For example, to achieve spatial structuring of electron
beams and X-rays, individually fabricated high-resolution binary
amplitude masks are often required [28-30].

In this paper, we demonstrate how simple pinhole arrays can
be used to generate arbitrarily structured complex scalar fields,
focused to predefined distances behind the array. Our proposed
concept is a generalization of a photon sieve that was first intro-
duced by Kipp ez al. in 2001 [16]. The original photon sieve was a
binary amplitude lens consisting of an arrangement of pinholes,
each positioned such that light emanating from it contributed
positively to the on-axis field at the focus of the sieve. As discussed
in [16], using pinholes allows the diameter of a photon sieve to be
extended beyond the diameter of a Fresnel zone plate of equiv-
alent resolution, and therefore the photon sieve achieves a tighter
focus due to the increased numerical aperture (NA). Since their
invention, photon sieves have received much attention as they are
particularly suitable for tight focusing and imaging with X-ray
radiation [31,32]. Photon sieves are also simple to manufacture
since they have a self-supporting structure containing no discon-
nected material in their design. In our work, instead of achieving


http://dx.doi.org/10.1364/OPTICA.2.001028

Research Article

Vol. 2, No. 12 / December 2015 / Optica 1029

enhanced focusing using many thousands of pinholes as demon-
strated in [16], we describe the design of general photon sieves
containing a few hundred pinholes that create arbitrarily struc-
tured beams at their foci. Our method arranges the pinholes
in a way that ensures the diffraction order containing the target
field forms the brightest region of the diffraction pattern, while
light radiated into other orders is still localized well enough to be
separated from the target field. We also show how the positions of
pinholes can be modified to incorporate aberration correction to
rectify known phase distortions in the optical system.

We first review the design of a generalized binary Fresnel zone
plate to generate an arbitrary (and therefore not necessarily cir-
cularly symmetric) spatially structured complex field at its focus.
We then describe how a generalized Fresnel zone plate can be
coarse-grained into pinholes to create an easily manufactured
and robust photon sieve.

2. GENERALIZED FRESNEL ZONE PLATES

Much work has previously been carried out on the design of novel
Fresnel zone plates, for example, to achieve a sharp Gaussian focus
[33], to create pseudo-nondiffracting beams [34], and to control
dispersion [35]. For the creation of an arbitrary scalar target field
A(x, y) = A(x, y)e®1*D) [where A(x, y) and ¢h4(x, y) are the re-
quired amplitude and phase, respectivelyl, a binary transmittance
Sfunction, T (x,y), encoding A(x, y) in its first diffraction order,
can be calculated using the computer-generated hologram

method [24]:

T(xy) = % + % sgn[cos(p(x, y)) + cos(g(x, y))], (1)

P(x:)’) = ¢A(x)}’) + ¢tilt(x),y)) (2)

q(x, y) = arcsin(A(x, y) / Aac)> 3)

where sgn(x) is the sign function and A, is the maximum of
amplitude A(x, y), which serves to normalize the amplitude to
between 0 and 1. As 7'(x, y) typically only has a partial overlap
with the target field, light is also radiated into additional diffrac-
tion orders. To prevent the target field interfering with these other
orders, it can be steered off-axis by incorporating a linear phase
ramp given by ¢ (x, y) = 27 (uyx + voy). Here, #y and v, are
constants determining the gradient of the phase ramp. In the
far field of the mask 7'(x,y), providing that the functions
p(x,9) and q(x,y) vary at a slower rate than /(«§ + v§), the
Fourier transform of the target field will be separated from addi-
tional orders. Therefore, by spatially filtering the field transmitted
by 7'(x,y) when it is illuminated with a plane wave, the target
field can be recovered in an image plane of the mask.

A similar approach can be used to design a binary transmit-
tance function that focuses an arbitrary complex field A(x, y)
to a prescribed distance f* beyond it: a generalized Fresnel zone
plate. To illustrate this, we describe the design of a Fresnel zone
plate to create an Airy beam, as recently the generation of Airy
beams outside visible wavelengths has attracted increasing atten-
tion [29]. To design a generalized Fresnel zone plate, we first con-
sider the fields propagating through a simple optical system
consisting of a single lens, which Fourier transforms a complex
field at the back focal plane of the lens (referred to here as the
near field) to the front focal plane of the lens (the far field), where
the target field will be created. Our generalized Fresnel zone plate

of focal length f will be placed at the plane corresponding to that
of the Fourier transforming lens, a distance f* behind the target
field. Therefore, we first consider the field at the back focal plane,
which is given by the Fourier transform of the target field:
B(x,y) = F(A(x,9)). In the following, the coordinates of &
have been scaled to real-space units, assuming that the Fourier
transform has been performed with a lens of focal length f.
The Fourier transform of a finite-energy approximation to a 2D
Airy beam, B x;ry (%, y), has a Gaussian amplitude modulated with
a cubic phase term as shown in Fig. 1(a) [5]. Therefore

B airy(%,y) = Boe™V Wby [0 () @

where B, is the peak amplitude, @, is the beam waist of the
Gaussian, and { is a constant scaling factor mapping lateral position
to phase. The ratio of @ and ¢ controls the propagation character-
istics of the Airy beam, such as its quasi-diffraction-free propagation
length and degree of apparent sideways acceleration (see [5] for
more detail). In particular, increasing the magnitude of { while
keeping @, constant increases the nondiffracting propagation
length of the Airy beam and correspondingly the number of lobes
visible in its cross-section. Here, these parameters have been chosen
to generate the Airy beam depicted in Figs. 1(f)-1(h). We now
calculate the field at the intermediate plane of the Fourier-trans-
forming lens, C(x, y) = C(x, y) exp ihc(x, y), which also corre-
sponds to the plane at which our generalized Fresnel zone plate
will be located. Cpry (x, y) is shown in Fig. 1(b) and has been cal-
culated by numerically propagating %y, (x, y) a distance f using
the discrete angular spectrum method [36]. The effect of the
Fourier-transforming lens is equivalent to the addition of a quad-
ratic phase term,

hawler ) =T -2+ @

where 4 is the wavelength of the incident radiation. We now in-
corporate this focusing term into our design field, yielding
Cairy (%, ) €xp(iiens (%, ), which is shown in Fig. 1(c). We can
now binarize this field using Eq. (1) with inputs

2(69) = (%)) + ¢ 9) + Prens(x:9), (6)

q(x y) = arcsin[C (%, )/ C o)y @

which yields 7',p(x, y), the binary transmittance function of a
Fresnel zone plate which encodes our target field, A(x, y), gener-
ated at its focus. If the NA of the focusing is low, then our target
field is not tightly focused and interference with other unwanted
on-axis diffraction orders will not be negligible. Therefore, as just
described, adding a phase tilt to the field, ¢ (x, y), can be used to
separate the diffraction orders within the focal plane, which moves
the position of the diffraction order containing the focused target
field off-axis.

Figure 1 shows how the procedure just described can be used
to design a Fresnel zone plate that will create an Airy beam at its
focus: an Airy Fresnel zone plate. Figure 1(i) shows the field
calculated at the plane of the Fresnel zone plate, Cyyy(x;, )
exp i(Plens + Per)- This is then binarized using Eq. (1), yielding
T Airyzp (%, ), the binary transmittance function of an off-axis Airy
Fresnel zone plate, shown in Fig. 1(j). Figure 1(k) shows a sim-
ulation of the intensity of the Fresnel diffraction pattern at the
focal plane of the Airy Fresnel zone plate when it is illuminated
with a plane wave. The target Airy beam is created in the +1st
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Fig. 1. Design of a Fresnel zone plate to generate an Airy beam at its focus. (a) Gaussian amplitude (upper panel) and cubic phase (lower panel) of
B piry (%, ). Upper scale bar denotes relative amplitude. Lower scale bar denotes phase as color over a 27 range and relative amplitude as brightness. These
scale bars are also used throughout the other figures in this paper. (b) Amplitude and phase of Cy;,, (x, ), resulting from the propagation of % ;. (x, y) a
distance /" in free space. (c) Phase of the field Cp;r, €xp i@hjens. (d) Binary transmittance function of an on-axis Airy Fresnel zone plate calculated directly
from (c) without the incorporation of a phase tilt. (¢) Simulation of the intensity at the focal plane of (d). Relative intensity is indicated using the same
color map as (a). In this case, the on-axis Airy beam interferes with other on-axis diffraction orders, reducing its fidelity. Scale bars in (d) and (e) represent
1 mm. (f)-(h) Amplitude, phase, and intensity of the target field: an Airy beam generated with parameters @y = 0.01 m, ¢ = 3.5 x 10° rad/m?,
f =025 m. (i) Phase of the field Cpyry exp i(hiens + Peite)- () T airyzp> an offaxis Airy Fresnel zone plate, calculated from (i) using Eqs. (1)-(3).
(k) Simulated intensity at the focal plane of (j). The Airy beam is now well separated from other diffraction orders, therefore maintaining a high fidelity.
The border plot highlights the relative intensity along the dashed horizontal line through the center of the diffraction pattern. The simulated amplitude
and phase of the generated beam (at a plane tilted normal to its propagation direction) is shown as insets for comparison with the target field in (f) and (g).

order (the amplitude and phase of the first order are shown in the
insets). The Oth order of this mask is unfocused, and the -1st
order is diverging,.

A. Beam Fidelity

The normalized fidelity /7 quantifies how faithfully the target field
is generated (0 < F < 1, where 1 represents perfectly correlated
complex fields). This can be calculated from the overlap integral
of the target complex field U(x;, y), and the complex field actually
generated by the generalized Fresnel zone plate V(x, y), in the
first order of the diffraction pattern:

2

1
Fe 'N—F [ vy |, )

1

Ny = [ [ 1weoras- | |v<x,y)|2dxdy} L)

where N is the normalization constant and the limits of the in-
tegrals are determined by the region of interest around the first
order of the diffraction pattern.

Using Eq. (8), the theoretical fidelity of the Airy beam gen-
erated by the Airy Fresnel zone plate 7 p;yzp (%, y) is £ = 0.99.
This is slightly lower than 1 due to the small amount of light
scattered into the region of the Airy beam from the other diffrac-
tion orders. F increases as the target field is tilted further off-axis
and the diffraction orders are further separated. Conversely, if the
target field is not tilted off-axis, the fidelity of the generated beam
is severely reduced to F = 0.70 by interference with other on-axis
diffraction orders [as shown in Figs. 1(d) and 1(e)].

3. GENERALIZED PHOTON SIEVES

We now describe how the method illustrated in Section 2 can be
further adapted to design generalized photon sieves that encode
arbitrary complex fields at their foci. Evidently, the Airy Fresnel
zone plate shown in Fig. 1(j) can be coarse-grained into pinholes
positioned along the grating apertures. A similar approach has
been used, for example, to coarse-grain an on-axis spiral Fresnel
zone plate into a small number of pinholes to create beams carry-
ing OAM [37]. While this produces an approximation to the
required beam, the precise positioning of the pinholes will intro-
duce additional diffraction orders into the radiated diffraction
pattern, which may interfere with the target field and/or create
unwanted additional intensity peaks at the focal plane. Here, we
now describe a direct method (without the need for any iterative
refinement) to calculate the position of pinholes in order to ensure
that these additional diffraction orders are well controlled, pre-
serving the formation of a high-fidelity target field.

The choice of pinhole positions relies on a basic principle:
we consider the interference field created by two beams incident
with tilts about orthogonal axes, as shown in Fig. 2(a). Here, we
take the primary beam as the field focusing to produce the target
field as just described, traveling with some tilt (6,) with respect
to the optical axis [for example, Fig. 1(i) showing Cp;y(x,y)
exp i(Piens + Per)]. We now consider a secondary beam, traveling
with a tilt (6,) about an orthogonal axis to the primary beam. As
the primary and secondary beams are tilted about orthogonal axes,
we would expect the binary transmittance function calculated
from their interference field to exhibit a structure reminiscent
of two crossed gratings: a pinhole-like structure. Figure 2(b) shows
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Fig. 2. Design of a photon sieve to generate an Airy beam. (a) Schematic showing two beams (primary and secondary) incident on a plane with
orthogonal tilts, at angles 8 and 6. (b) Field created by the interference of the primary and secondary beams shown in (a), Dairycross (% ). Inset shows
the amplitude of the field. (c) Binary transmittance function of a dual beam Fresnel zone plate, calculated from the field in (b) using Eqs. (1)—(3). The
choice of the tilt angles of the primary and secondary beams affects both the position and the shape of the apertures in (c). Keeping the tilt angle of the
secondary beam the same magnitude as the tilt angle of the primary beam (i.e., §; = 0,) results in apertures that can be well approximated by circular
pinholes. (d) Binary transmittance function of an off-axis Airy beam photon sieve, 7a;yps(; y), formed by replacing each aperture in (c) with a pinhole of
equivalent area. Apertures below a threshold area have been removed, and the smallest aperture is ~5.5 pm in diameter. (¢) Simulation of the intensity at
the focal plane of the photon sieve shown in (d). As required, the Airy beam is the brightest part of the field. Plots at the edge show a cross-section of the
relative intensity along the dashed lines. (f)—(h) Comparisons of the simulated phase of the target field (f) with the beam created by the dual-beam Fresnel
zone plate (g) and the Airy photon sieve (h). (i)—(l) Comparison of the simulated propagation characteristics of the beams. (i) shows the propagation of the
target field shown in (f). (j) shows the propagation of the beam shown in (g) created by the dual-beam Fresnel zone plate. (k) shows the propagation of the
beam shown in (h) generated with the Airy photon sieve. (1) shows the propagation of a Gaussian beam of equivalent far-field beam waist to that of the
Airy beam, for comparison. The phase scale is the same as used in Fig 1(a).

the amplitude and phase of such an interference field. By keeping Our aim is to create a generalized photon sieve which creates a

the amplitudes of the primary and secondary beams the same,
their interference field forms a 2D quasi-periodic array as shown
in Fig. 2(b). Therefore, the binary transmittance function of this
dual beam Fresnel zone plate, calculated as before using Eqgs. (1)—
(3), is formed from an array of isolated apertures as shown in
Fig. 2(c). The diffraction pattern at the focal plane of the dual-
beam Fresnel zone plate now contains two first orders, each asso-
ciated with the primary or secondary beam used to create it. Even
though the apertures are not perfectly circular, the dual-beam
Fresnel zone plate is very well approximated by replacing each
aperture with a circular pinhole of equivalent area, positioned
at the center of mass of the original aperture, creating a photon
sieve. Figure 2(d) shows an Airy photon sieve, of binary transmit-
tance function 7 piyps(x, y), created by following the procedure
just described.

diffraction pattern in which the target field forms the brightest
order. This is important, for example, if the photon sieve were
to be used as a lens for imaging, where a single well-defined
point-spread function is required. If the amplicude and phase
of the primary and secondary beams are identical (expect for their
orthogonally tilted incident angles), the symmetry of these beams
dictates that the focal plane will contain two equally bright copies
of the target field. Such a photon sieve and the resulting diffrac-
tion pattern are shown in Figs. 3(a) and 3(d), and it can be seen
that both have a diagonal line of mirror symmetry. However, there
is no requirement for the phase of the secondary beam used to
design the sieve to be identical to the first: modifying the secon-
dary beam’s phase repositions the apertures, which changes the
structure of the diffraction orders of the secondary beam while
leaving the primary beam’s first diffraction order unaffected.
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Therefore, we can take advantage of the phase freedom of the
secondary beam to reduce the maximum intensity of light in the
secondary diffraction orders. This is the case in Fig. 2, where
the cubic phase dependence of the secondary beam has been re-
moved to cancel its quasi-non-diffractive quality and a shorter-
focal-length lens term has been applied to refocus it to a different
depth. Therefore, the interference field, Dajrycross> used to design
the Airy photon sieve from the interference of two crossing beams
and shown in Figs. 2(b) and 2(c), is given by

DAiryCross = C’Airy[figbpri + gid)s“]’ (1 0)

d)pri = ¢cub + 2mupx + ¢lens(x’_y’ fl)) (11)

Fig. 3. Control of additional diffraction orders. (a)—(c) show three
different photon sieve designs (once again, the smallest pinhole diameter
in these arrays is ~5.5 pm), and (d)—(f) show the corresponding simu-
lated diffraction patterns at the focal plane. Relative intensity cross-
sections along the dashed lines are plotted at the border of each figure.
The primary beam used to design each photon sieve is the same:
CAiryei‘ﬁP", where ¢,,;; is given by Eq. (11), resulting in the same primary
first diffraction order in each case. The phase of the secondary beams
varies (Cpjry€®=), thus changing the nature of the other diffraction
orders. In (a), .. = @pri» resulting in twin copies of the Airy beam pro-
duced in the primary and secondary first orders. In (b), the cubic phase
term is dropped: @y = 2710y + Plens(x5 9> f1)> so while the secondary
order is still focused to the same plane, it no longer exhibits the pseudo-
diffraction-free properties of an Airy beam. In (c), ¢y = 27uyy, the
secondary beam is no longer focused, and the pinholes are positioned in
regularly spaced rows, resulting in regularly spaced copies of the Airy
beam. Scale bars represent 1 mm.

(/)sec = 2””0}’ + (ﬁlens(x))’) fz)) (12)

where ¢, and ¢ describe the phase of the primary and secon-
dary beams, respectively. Here, f, = 0.65 f,—a ratio chosen to
ensure that the secondary order and any other unwanted “ghost”
orders come to a focus outside the specified focal plane of the
photon sieve. Figure 2(e) shows the simulated intensity of the
Fresnel diffraction pattern at the focal plane of the Airy photon
sieve. It can be seen that the maximum intensity of the Airy beam
dominates over the maximum intensity of other diffraction or-
ders, as required. Figure 3 shows how the choice of the phase
of the secondary beam results in different ghost diffraction orders.
In each case, the power radiated into each diffraction order is the
same but the peak intensity and form of the additional diffraction
orders can be controlled.

Figures 2(f)-2(h) show simulations comparing the target field
(f) with the field generated with a dual-beam Fresnel zone plate
(g) and the Airy photon sieve (h). It can be seen qualitatively that
coercing the apertures into pinholes does not significantly degrade
the fidelity of the output beam. Using Eq. (8), we can quantita-
tively assess the impact of coarse-graining the dual-beam Fresnel
zone plate into pinholes. We find a fidelity of F = 0.99 for the
beam generated using the dual-beam Fresnel zone plate shown in
Fig. 2(c), and F = 0.95 for the beam generated using the Airy
photon sieve shown in Fig. 2(d). The high theoretical fidelity
of the Airy photon sieve output is further borne out by examining
the propagation characteristics of the generated Airy beams.
Figures 2(i)-2(k) show simulations comparing the propagation
of the Airy beams in Figs. 2(f)-2(h). As the diffraction orders
spread in different directions, interference between them is
minimal as they propagate and the propagation of the Airy beam
generated using the Airy photon sieve (k) is very similar to the
propagation of the Airy beam generated by the dual-beam
Fresnel zone plate (j) and the target field ().

A. Beam Generation Efficiency

As described in Section 3, the generalized photon sieves are de-
signed using a field representing the interference of two crossing
beams of equal amplitude. Therefore, we anticipate that their
efficiency would be approximately half that of the corresponding
generalized Fresnel zone plates described in Section 2. The effi-
ciency of any filter is given by the overlap integral between the
required field at the plane of the filter and the actual field at the
plane just after the filter itself. Therefore the normalized efficiency
of the filters described here, £ (0 < E < 1), is given by

1 )
7// T (x, y)[C(x, y)e Pt Pe)]*dxdy
Ng J.

Ny = { [ 11 aras - [ |c<x,y>|2dxdyr, (14)

where NV is again the normalization factor and, in this case, the
limits of the integrals are set by the edges of the filter. Using
Eq. (13), the theoretical efficiency of the Airy Fresnel zone plate
shown in Fig. 1(j) is £ = 15%, compared to £ = 7% for the
Airy photon sieve shown in Fig. 2(d), which agrees well with
our prediction.

The efficiency of the generalized photon sieves could poten-
tially be improved by reducing the amplitude of secondary beam
compared to the primary beam. We explored this possibility
numerically and found that the greater the difference in relative

2
E— , (13)
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amplitudes of the primary and secondary beams, the less well-ap-
proximated the dual-beam Fresnel zone plate is by pinholes, and
so there is a trade-off between generation efficiency and beam

fidelity in this approach [38].

4. EXPERIMENTAL DEMONSTRATIONS OF
GENERALIZED PHOTON SIEVES

To validate the numerical simulations, we used a DMD to display
patterns corresponding to a variety of simple photon sieves and
experimentally measured the diffraction pattern at their focal
planes. Figure 4(a) shows a schematic of the experimental setup.
Figure 4(b) shows the intensity of the Fresnel diffraction pattern
at the focal plane of the Airy photon sieve shown in Fig. 4(d), with
a focal length of 20 cm. The measured intensity agrees well with
that expected from the numerical simulations shown in Fig. 2. To
experimentally characterize the phase profile of the resultant
beam, we also recorded its interference with a tilted planewave,
as shown in Fig. 4(b) inset. As expected, the phase in neighboring
intensity lobes of the Airy beam switches by 7 radians, indicated
by the lateral movement of the intensity fringes by half a period in
adjacent lobes. The propagation of the Airy beam over a distance
of 10 c¢m is shown in Fig. 4(c) (bottom row) and compares well
with a simulation of the propagation of the target field (top row).
Figures 4(d) and 4(e) show the pinhole configurations and the cor-
responding + st order intensity distributions at the focal plane of
the sieve as the focal length is varied: the focal length = 20 ¢cm in

Single
mode
fiber

) +1 Camera
Rejected
light

(c) Simulated propagation

Experimentally measured propagation

Fig. 4(d) and 25 c¢m in Fig. 4(e). As expected, the beam in Fig. 4(e)
is enlarged due to the lower NA of the photon sieve.

We also used the design principles just detailed to create
photon sieves for the generation of a range of additional types
of beams. Figure 5 shows the required target fields, photon
sieves, and experimentally measured fields for the generation of
a Laguerre—Gaussian (LG) mode, a zero-order Bessel beam,
Hermite—Gaussian mode, and a petal pattern formed from the
superposition of two LG beams. The beams demonstrated in
Figs. 5(a), 5(c), and 5(d) are either structurally stable (a, ¢) or
spiral-type (d). These types of beams have intensity profiles which
are maintained upon propagation from near to far field except for
a magnification and/or rotation (in the case of the spiral type
beam). Therefore, it can be seen that the distribution of pinholes
in these cases looks like the required amplitude of the target beam
itself [40]. As the design method is based on scalar diffraction
theory, it is appropriate for the generation of arbitrary scalar fields,
limited only in spatial resolution by the minimum pinhole
size (providing this is larger than the wavelength of incident
radiation) and separation achievable in the manufacture of the
sieve or, in our experiment, the resolution of the DMD used to
demonstrate the effect.

5. ABERRATION CORRECTION

So far we have considered the design of a photon sieve, assuming
it will be illuminated by a plane wave. However, it is also

Fig. 4. Experimental verification of an Airy beam photon sieve. (a) Schematic of the experimental setup. An Airy photon sieve, 7 a;yps (x; y) [shown in
(d)] is displayed on a DMD (Texas Instruments DLP3000, 684 x 608 micromirrors, active area of 3.70 x 6.57 mm). We note that the use of a DMD
introduces an additional lateral phase tilt due to the offset of the DMD pixels which each pivot about their own axis. We compensate for this by laterally
stretching the displayed pattern. The degree of stretch is dependent upon the incident angle of the illuminating beam. This would be unnecessary if
fabricating a planar photon sieve. A 633 nm wavelength laser beam was guided through a single-mode fiber to produce a TEM 00 output mode, which is
then expanded to overfill the DMD. (b) The intensity of the diffraction pattern from light incident at positions inside the pinholes is observed with a
CMOS camera (Hamamatsu ORCA-Flash 4.0) at the focal plane of the photon sieve at distance f from the DMD. Mirrors corresponding to the positions
outside the pinholes transmit light into a rejected order away from the camera. Inset shows the interference of the Airy beam with a plane wave (formed
from light scattered from around the active area of the DMD, which was blocked in the main image). (c) Top row: simulated propagation of the required
Airy beam showing the intensity at (i) the focal plane, (ii) 5 cm beyond, and (iii) 10 cm beyond the focal plane. Bottom row: experimentally measured
intensity of the Airy beam as it propagates the same distances. (d) and (e) Pinhole configurations (the smallest pinhole diameter in these arrays is ~5.5 pm)
and corresponding first-order intensity distributions at the focal plane for two different focal lengths of Airy beam photon sieve. Focal length = 20 ¢cm in
(d) and 25 cm in (e). As expected, the beam in (e) is enlarged due to the lower NA of the photon sieve. Scale bars in (d) and (e) represent 1 mm.
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Fig. 5. Experimental demonstration of photon sieves to create a range of different spatial modes. The focal length of the photon sieves is 20 cm and the
smallest pinhole diameter in these arrays is once again ~5.5 pm. In each case, the insets show the target intensity and phase (top left and right, re-
spectively) and the experimentally measured intensity and plane wave interference pattern (bottom left and right, respectively). In each case, the measured
intensity pattern is zoomed out to show the separation of the target beam from other diffraction orders. (a) Laguerre—Gaussian beam carrying a vortex
charge of # = 5 and radial mode p = 4. (b) Bessel beam of vortex charge £ = 0. To create this, the Fourier transform of a pseudo-diffraction-free Bessel
beam was approximated by an annular slit [39]. (c) Hermite—Gaussian beam of mode order m = 7, n = 5. (d) Superposition state of two LG beams of
opposite vortex charge £ = £5, p = 0. Scale bars represent 1 mm. The phase scale is the same as used in Fig 1(a).

straightforward to adapt the design to accommodate an illuminat-
ing field other than a plane wave. For example, any phase aber-
rations ¢,;,(x, y), found in the incident field or due to any
warping of the shape of the sieve itself, can simply be absorbed
into the design equation as long as they are known, according to

2(6y) = ¢ + Puitc + Prens = Dave- (15)

This adjusts the position of the pinholes so that the beams in the
+1st orders of the photon sieve are aberration-corrected. The

Fig. 6. Experimental demonstration of aberration correction of a non-
planar illuminating wave. (a) Estimate of the phase front of the beam
incident on the photon sieve. (b) Uncorrected photon sieve to generate
a LG beam varying a vortex charge of # = 2 and radial mode of p = 0.
Inset shows the resultant distorted first-order beam. (c) Aberration-cor-
rected photon sieve, where the positions of the apertures have been ad-
justed to accommodate the aberrations in the illuminating beam. Inset
shows that distortions in the first-order beam are now corrected. Scale
bars in (b) and (c) represent 1 mm, and 0.5 mm in the insets. The phase
scale is the same as used in Fig. 1(a).

~1st orders, which are complex conjugates of the +1st orders,
are consequently doubly distorted. However, the additional dis-
tortion of the -1st orders is unimportant, as these orders diverge
from the sieve and are diffuse at its focal plane. Aberration cor-
rection is experimentally demonstrated in Fig. 6, where the single-
mode TEM 00 beam has been deliberately distorted by passing
it through a perspex sheet of low optical quality prior to its in-
cidence on the DMD. Figure 6(a) shows an estimate of the phase
distortion in the illuminating wave [41]. Figure 6(b) shows an
uncorrected photon sieve designed to generate a LG beam carry-
ing a vortex charge of # = 2 and radial mode of p = 0. The aper-
tures are now colored according to the relative phase of the light
emanating from them. The inset shows that the first-order beam
at the focal plane of (b) is distorted. In Fig. 6(c), the photon sieve
has been redesigned according to Eq. (15), incorporating
the estimated phase distortion in Fig. 6(a). The inset in (c) shows
the first-order LG (£ = 2, p = 0) beam, which has now been

aberration-corrected.

6. DISCUSSION AND CONCLUSIONS

We have described an intuitive method to design generalized pho-
ton sieves that can create arbitrarily structured complex fields at
their foci. The spatial resolution of the target field is limited by the
NA of the sieve. As the NA is increased, smaller and more closely
spaced pinholes are required. When the pinhole diameters ap-
proach the size of the wavelength of the illuminating radiation,



Research Article

Vol. 2, No. 12 / December 2015 / Optica 1035

the assumptions inherent in scalar diffraction theory are no longer
valid (which is also true for the features in generalized Fresnel
zone plates) [36,42,43]. This places a minimum limit on the size
of the pinholes and thus a maximum limit on the NA of the pho-
ton sieve and the spatial resolution of the target field. We have
shown how to quantify the fidelity and efficiency of our gener-
alized photon sieves using Egs. (8) and (13). These equations
can also be used to assess the impact of pinhole size and shape
errors or further coarse-graining (such as limiting pinhole diam-
eters to a discrete range) on the fidelity and output efficiency of
the photon sieve.

In our design method, the target beam is formed off-axis, en-
abling creation of a high-fidelity target field from a relatively low
number of pinholes by laterally separating it from other diffrac-
tion orders at the focal plane. In addition to the design method we
have described here, we also note that there is an alternative
method to design o7-axis generalized photon sieves using many
more pinholes. For example, the phase distribution shown in
Fig. 1(c) could be used as an underlying guide to position
pinholes quasi-randomly following the methods described by
Kipp er al. in [16]. In this alternative approach, the amplitude
modulation of the field could be captured with a pinhole density
apodization given by ~asinc(C(x, y)/Cn.y)- Following [16], by
positioning pinholes of a size which overlaps several Fresnel zones,
the numerical aperture of the lens could be increased for a fixed
minimum pinhole size. In this case, the peak intensity of the
on-axis target field would be much greater than other diffraction
orders, therefore rendering interference with the zero diffraction
order negligible. However, as there is no in-built control of addi-
tional diffraction orders caused by the quasi-random positioning
of the pinholes with this strategy, the fidelity of the resultant field
may potentially still suffer.

Although photon sieves deliver a slightly lower efficiency than
Fresnel zone plates, they offer several other advantages. Photon
sieves are simpler to manufacture, as they consist of an array of
isolated circular apertures rather than the arbitrarily shaped and
high-aspect-ratio apertures that can be present in binary gratings
[see Fig. 1(j)]. Photon sieves are also more robust than Fresnel
zone plates, as they contain no disconnected material in their de-
sign [as in the case of on-axis Fresnel zone plates, which require a
supporting structure with which to hold their concentric rings in
place, see Fig. 1(d)]. This increased robustness facilitates their fab-
rication and use, as a high flux of radiation incident on delicate
microscale structures can distort and damage them over time [44].

The design principles described in this paper can also be used
to design transmissive binary-phase photon sieves, which would
significantly increase their efficiency [45]. In this case, the region
defined by each pinhole now represents a region that is 7 phase-
shifted relative to the background material. It is also straightfor-
ward to adapt our method to design arrays of pinholes that gen-
erate the target beam in the far field. In this case, we simply follow
the same procedure as outlined above but ignore the propagation
step and do not add a lens phase term.

For the creation of structured electron beams, the use of the
generalized Fresnel zone plates and photon sieves with control-
lable focal lengths described in this work potentially introduce
more flexibility into where in the optical system the mask can be
placed. If used in a scanning electron microscope (SEM), for ex-
ample, as the positioning of the mask is not constrained to the far
field of the sample, it could potentially be placed inside the main

sample chamber, negating any requirement to access the con-
denser lens of the SEM.

In summary, by considering the interference field created by
primary and secondary beams crossing at a small angle, we have
demonstrated a direct approach to encoding both amplitude
and phase information into an array of pinholes, creating gener-
alized photon sieves. Furthermore, our design method allows in-
corporation of aberration correction, and enables control over the
intensity and form of unwanted additional diffraction orders pro-
duced by the photon sieve. In order to validate our simulations,
we have experimentally demonstrated our approach at visible
wavelengths using a DMD. However, due to the scale invariance
of scalar diffraction theory, the generalized photon sieves de-
scribed in this paper will be most usefully applied to simplify the
shaping of radiation in regimes beyond visible light, where SLMs
and DMDs cannot be used.
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