PUBLICATIONS MATHÉMATIQUES DE L'I.H.É.S.

G.D. Mostow

Generalized Picard lattices arising from half-integral conditions

Publications mathématiques de l'I.H.É.S., tome 63 (1986), p. 91-106 http://www.numdam.org/item?id=PMIHES 1986 63 91 0>

© Publications mathématiques de l'I.H.É.S., 1986, tous droits réservés.

L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http://www.ihes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

GENERALIZED PICARD LATTICES ARISING FROM HALF-INTEGRAL CONDITIONS

by G. D. MOSTOW (*)

1. Introduction

Set

$$F_{gh}(x_2, \ldots, x_{d+1}) = \int_g^h u^{-\mu_0} (u-1)^{-\mu_1} \prod_{i=1}^{d+1} (u-x_i)^{-\mu_i} du$$

where $g, h \in \{\infty, 0, 1, x_2, \dots, x_{d+1}\}$. Then for fixed $\mu_0, \dots, \mu_{d+1}, F_{gh}$ is a multivalued function on the subset M of $(\mathbf{P}^1)^{d+3}$ defined as

$$M = \{(x_i) \mid x_i \neq 0, 1, \infty \text{ and } x_i \neq x_i \text{ for } i \neq j\}.$$

For topological reasons, the **C**-linear span of these functions form a d+1 dimensional vector space that is invariant under monodromy. Taking d+1 such functions as the homogeneous coordinates in projective d-space \mathbf{P}^d , we get a map

$$\hat{w}: \hat{M} \to \mathbf{P}^d$$

where \hat{M} is the universal covering of the space M. Set

$$\mu_{\infty} = 2 - (\mu_0 + \mu_1 + \ldots + \mu_{d+1}).$$

Assume hereafter that μ_i is real and strictly positive for all i ($0 \le i \le d+1$ or $i = \infty$). Let Γ denote the image of $\pi_1(M)$ in $PGL(d+1, \mathbb{C})$ under the monodromy action. In the preceding paper, the following sufficiency condition was proved:

If for all
$$i, j$$
 in $\{\infty, 0, 1, \ldots, d+1\}$

(INT): $(I - \mu_i - \mu_j)^{-1}$ is an integer for all $i \neq j$ such that $\mu_i + \mu_j \leq I$, then Γ is a lattice in the projective unitary group PU(d, I).

In the case d=2, this condition is essentially equivalent to Picard's, and under condition (INT), I call Γ a Picard lattice.

^(*) Supported in part by NSF Grant MCS-8203604.

The purpose of this paper is to relax condition (INT) in case some of the μ_i 's are equal. The main result, proved in § 3, states:

Let $S_1 \subset S = \{\infty, 0, 1, 2, ..., d+1\}$ and assume that $\mu_s = \mu_t$ for all $s, t \in S_1$. If $\mu_s > 0$ for all $s \in S$ and (μ_s) satisfies the condition $(\Sigma \ INT)$: For all $s \neq t$ such that $\mu_s + \mu_t < 1$

$$(1 - \mu_s - \mu_t)^{-1}$$
 is $\begin{cases} an \text{ integer if } s \text{ or } t \text{ is not in } S_1, \\ a \text{ half-integer if } s, t \in S_1; \end{cases}$

then Γ is a lattice in PU(d, 1).

When condition (Σ INT) is satisfied, we define in § 2 a finite extension Γ_{Σ} of Γ . The lattice Γ_{Σ} arises from an extension of order n! of the fundamental group $\pi_{\mathbf{I}}(\mathbf{M})$ where $n = \operatorname{card} \mathbf{S}_1$. If (μ_s) satisfies condition (Σ INT) but not (INT), then $\Gamma_{\Sigma} = \Gamma$; if (μ_s) satisfies (INT) too, then Γ_{Σ}/Γ is the symmetric group on n letters (cf. (3.11)).

In § 4, it is shown that each lattice $\Gamma(p,t)$ of PU(2,1) constructed in my paper [2] via three **C**-reflections is contained in the lattice Γ_{Σ} arising from monodromy of a hypergeometric function satisfying condition (Σ INT) for a three element subset S_1 . Conversely, each such lattice Γ_{Σ} lies in an extension (of order at most 3) of a lattice $\Gamma(p,t)$ for suitable p and t; in § 6 (p,t) is expressed in terms of $(\mu_s)_{s \in S}$. This $\Gamma(p,t)$ description of Γ applies to most of the 27 Picard lattices, since for 22 of them, at least three of the $(\mu_s)_{s \in S}$ are equal.

In § 5 there is a list of all sequences (μ_1, \ldots, μ_N) satisfying condition $(\Sigma \text{ INT})$ but not (INT) for N > 4. It is seen that $N \le 12$; that is, one gets lattices Γ in PU(d, 1) satisfying condition $(\Sigma \text{ INT})$ for $d \le 9$ but not for d > 9.

The description of Γ_{Σ} in terms of $\Gamma(p,t)$ makes it possible to give an explicit, fundamental domain for Γ_{Σ} (cf. [3]) and a two generator presentation for Γ_{Σ} in case d=2; this fundamental domain is the one described in [2] for $p \leq 5$.

None of the groups $\Gamma(p,t)$ in [2] coincide with a Picard lattice Γ ; the lattice $\Gamma(p,t)$ of [2] is commensurable with a Picard lattice only if p is even (i.e. p=4), in which case $\Gamma/\Gamma \cap \Gamma(p,t)$ has order 1 or 3 and $\Gamma(p,t)/\Gamma \cap \Gamma(p,t)$ has order 6.

2. The Main Theorem

We continue the notation of the preceding paper, referred to hereafter as DM, except that we write PU(d, 1) for PU(1, d).

Let $S = S_1 \cup S_2$ be a decomposition of the set S into disjoint subsets and assume that $\mu_s = \mu_t$ for all $s, t \in S_1$. Let Σ denote the permutation group of S_1 . Then Σ operates on P^S by permutation of factors and hence on the set M of injective maps of S into P. It stabilizes the local system L on the family of punctured projective lines over M. The action of Σ on M and $B(\alpha)_M$ descend to an action on Q, Q_{st} , Q_{sst} , and on the

bundle $B(\alpha)_Q$. Consequently, the bundle map $B(\alpha)_Q \to Q$ descends to a bundle map $B(\alpha)_{Q/\Sigma} \to Q/\Sigma$. The section w_μ of the bundle $B(\alpha)_Q$ is preserved by Σ ; hence it descends to a section, also denoted w_μ , of the bundle $B(\alpha)_{Q/\Sigma}$.

Let Q' denote the subset of Q on which Σ operates freely; Q' is an open dense submanifold of Q. From the flatness of the bundle $B(\alpha)_Q$ over Q we infer the flatness of $B(\alpha)_{Q/\Sigma}$ restricted to Q'/Σ ; this latter bundle is denoted by $B(\alpha)_{Q'/\Sigma}$.

Let o be a base point in Q', let \overline{o} denote the orbit Σo , and let

$$\theta_{\Sigma}: \pi_1(Q'/\Sigma, \overline{o}) \to \operatorname{Aut} B(\alpha)_{\overline{o}}$$

denote the monodromy homomorphism. Then

$$B(\alpha)_{Q'/\Sigma} = \widehat{Q'/\Sigma} \underset{\pi_1(Q'/\Sigma,\bar{\mathfrak{o}})}{\times} B(\alpha)_{\bar{\mathfrak{o}}} = \widetilde{Q'/\Sigma} \times_{\Gamma_{\Sigma}} B(\alpha)_{\bar{\mathfrak{o}}}$$

where $\widehat{Q'/\Sigma}$ denotes the simply connected covering space of Q'/Σ , $\Gamma_{\Sigma} = \pi_1(Q'/\Sigma, \overline{o})/\mathrm{Ker}\,\theta_{\Sigma}$, and

(2.1)
$$\widetilde{Q'/\Sigma} = (\widehat{Q'/\Sigma})/\mathrm{Ker}\,\theta_{\Sigma}.$$

Theorem. — Assume that $(\mu_s)_{s \in S}$ satisfies the condition

(2.2) (
$$\Sigma$$
 INT) For all $s \neq t$ in S such that $\mu_s + \mu_t < 1$, $(1 - \mu_s - \mu_t)^{-1}$ is an integer, if s or t is not in S_1 , a half-integer, if s , $t \in S_1$.

Then Im θ_{Σ} is a lattice in PU(card S - 3, 1).

3. Proof of the theorem

- (3.1) The basic idea of the proof is to show that under hypothesis $(\Sigma \text{ INT})$ Q'/Σ plays the same role that Q plays in DM under hypothesis (INT). We begin with some remarks about morphisms of completions of spreads.
- (3.2) Let Y_i be a locally connected Hausdorff space (i = 1, 2) and Y'_i an open dense connected subset in Y_i . Assume that each point $y \in Y_i$ has a base of open neighborhoods \mathscr{Y}_y satisfying
- (3.2.1) for V in \mathscr{V}_{y} , $V \cap Y'_{i}$ is connected,

(3.2.2) for
$$V' \subset V''$$
 in \mathscr{V}_{ν} , $\pi_1(V' \cap Y_i') \stackrel{\sim}{\to} \pi_1(V'' \cap Y_i')$.

Let $\rho_i': X_i' \to Y_i'$ denote a covering map. Considered as a map of X_i' to Y_i , ρ_i' is a spread. Let $\rho_i: X_i \to Y_i$ denote the completion of ρ_i' (i = 1, 2) (cf. DM 8.1). Then X_i and Y_i are locally connected and ρ_i is a complete spread.

Assume in addition that there are maps $\sigma': X_1' \to X_2'$ and $\tau: Y_1 \to Y_2$ such

that $\rho_2 \sigma' = \tau \rho_1$. Then by (8.1.1) of DM there is a map $\sigma: X_1 \to X_2$ such that the diagram below is commutative

$$\begin{array}{ccc} X_1' & \xrightarrow{\sigma'} & X_2' \\ & & \downarrow & \\ X_1 & \xrightarrow{\sigma} & X_2 \\ & \downarrow & \downarrow \\ Y_1 & \xrightarrow{\tau} & Y_2 \end{array}$$

Lemma (3.3). — Assume in addition that

(3.3.1) σ' is a surjective covering map,

(3.3.2) τ is an open map,

(3.3.3) for any $y \in Y_1$ and $V \in \mathcal{V}_y$ (cf. (3.2)), V is connected component of $\tau^{-1} \tau(V)$.

Then the map or is open and surjective.

Proof. — Let V be an open connected set in Y_1 small enough so that V is a connected component of $\tau^{-1}\tau(V)$ (cf. (3.3.3)). In order to prove that σ is open, it suffices, by definition of a spread, to prove that for any connected component $\rho_1^{-1}(V)^c$ of $\rho_1^{-1}(V)$, $\sigma(\rho_1^{-1}(V)^c)$ coincides with a connected component of $\rho_2^{-1}\tau(V)$.

Commutativity of the diagram and surjectivity of o' yields

$$\rho_2^{-1}\,\tau(V)\,\cap\,X_2'=\sigma'(\rho_1^{-1}\,\tau^{-1}\,\tau(V)\,\cap\,X_1').$$

Set $C_1' = (\rho_1^{-1} \tau^{-1} \tau(V) \cap X_1')^c$, the connected component of $\rho_1^{-1} \tau^{-1} \tau(V) \cap X_1'$ contained in $[\rho_1^{-1} \tau^{-1} \tau(V)]^c$, the connected component of $\rho_1^{-1} \tau^{-1} \tau(V)$ which contains $\rho_1^{-1}(V)^c$. We have $\rho_2 \sigma'(C_1') = \tau(V) \cap \rho_2(X_i)$. Inasmuch as σ' , ρ'_1 and ρ'_2 are covering maps, $\sigma'(C_1')$ coincides with a connected component $C_2' = [\rho_2^{-1} \tau(V) \cap X_2']^c$ of $\rho_2^{-1} \tau(V) \cap X_2'$, because one sees easily that $\sigma'(C_1')$ is both open and closed in C_2' . By definition of the completion of a spread, one deduces at once that

$$\sigma(\lceil \rho_1^{-1} \tau^{-1} \tau(V) \rceil^c) = \lceil \rho_2^{-1} \tau(V) \rceil^c,$$

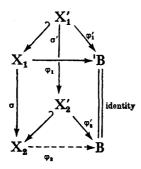
the latter denoting the connected component of $\rho_2^{-1} \tau(V)$ containing $\sigma(\rho_1^{-1}(V)^c)$. But

$$[\rho_1^{-1} \tau^{-1} \tau(V)]^c \subset \rho_1^{-1} [\tau^{-1} \tau(V)]^c = \rho_1^{-1} (V)^c,$$

the last equality by (3.3.3). Consequently $\sigma(\rho_1^{-1}(V)^c) = [\rho_2^{-1} \tau(V)]^c$. Hence σ is open. Verification that σ is surjective is direct. This completes the proof.

Remark (3.4). — By taking $X'_2 = Y'_1$, $X_2 = Y_1$, $\sigma = \rho_1$, $\rho_2 = identity$, (3.3) implies that the map ρ_1 is open and surjective if Y'_1 is connected and X'_1 is not empty.

Lemma (3.5). — Let $\sigma': X_1' \to X_2'$ and $\sigma: X_1 \to X_2$ be as in (3.3), and let $\varphi_1: X_1 \to B$ be a continuous map. Then the commutative diagram of solid arrows



can be completed as shown.

Proof. — By (3.3), the map σ is a surjective open map. Given $q \in X_2$, it suffices to prove that $\varphi_1(\sigma^{-1}q)$ is a single point, i.e. the map φ_1 descends to a continuous map φ_2 of X_2 .

Let $p \in \sigma^{-1} q$, let U be a connected neighborhood of q in X_2 and let $\sigma^{-1}(U)^{\sigma}$ denote the connected component of p in $\sigma^{-1}(U)$. Then

$$\varphi_1(p) = \lim_{\substack{x \to p \\ x \in \sigma^{-1}(\mathbb{U})^c \cap X_1'}} \varphi_1'(x) = \lim_{\substack{x \to p \\ x \in \sigma^{-1}(\mathbb{U})^c \cap X_1'}} \varphi_2'(\sigma(x)) = \lim_{\substack{y \to q \\ y \in \mathbb{U} \cap X_2'}} \varphi_2'(y)$$

since $\sigma(\sigma^{-1}(U)^{\circ} \cap X_1') = U \cap X_2'$ because σ' is a surjective covering map. It follows at once that $\varphi_1(p)$ is independent of the choice of p in $\sigma^{-1}q$.

(3.6) We shall apply (3.2) with $X_1' = \widetilde{Q}' = \widehat{Q}'/\mathrm{Ker}\,\theta$, the smallest covering space of Q' on which the monodromy acts trivially, $Y_1 = Q_{sst}$ or Q_{st} and $X_1 = \widetilde{Q}_{sst}$ or \widetilde{Q}_{st} , the completion of X_1' over Y_1 , $X_2' = \widetilde{Q}'/\Sigma$, the space defined in (2.1), $Y_2 = Q_{sst}/\Sigma$ or Q_{st}/Σ , and X_2 the completion of X_2' over Y_2 . We write $\widetilde{Q}_{sst}/\Sigma$ (resp. $\widetilde{Q}_{st}/\Sigma$) for X_2 . In both cases the map τ is the orbit map $x \mapsto \Sigma x$, and $\sigma' : \widetilde{Q}' \to \widetilde{Q}'/\Sigma$ is the lift of τ given by the map $\widehat{Q}'/\mathrm{Ker}\,\theta \to \widehat{Q}'/\mathrm{Ker}\,\theta_{\Sigma}$.

Remark. — Q-Q' is a finite union of subvarieties some of which may be of **C**-codimension I in Q. Although $\pi_1(Q', o) \to \pi_1(Q, o)$ and $\hat{Q}' \to \hat{Q}$ may fail to be injective, $\tilde{Q}' \to \tilde{Q}$ is injective, because $\text{Ker } \pi_1(Q', o) \to \pi_1(Q, o)$ lies in $\text{Ker } \theta$; this last assertion follows immediately from the fact that the map $\omega_{\mu} : \tilde{Q} \to B^+(\alpha)_{\sigma}$ is etale (DM Proposition (3.9)). In particular, \tilde{Q} is the completion of \tilde{Q}' over Q. Here the simply connected \hat{Q}' is identified with $\widehat{Q'/\Sigma}$ via $\hat{\sigma}'$, the lift of σ' :

$$\begin{array}{cccc} \widehat{\mathbb{Q}}' & \xrightarrow{\widehat{\mathfrak{G}}'} & \widehat{\mathbb{Q}'/\Sigma} \\ \downarrow & & \downarrow & & \downarrow \\ \widehat{\mathbb{Q}}'/\mathrm{Ker} \; \theta = \widehat{\mathbb{Q}}' & \xrightarrow{\sigma'} & \widehat{\mathbb{Q}'/\Sigma} = \widehat{\mathbb{Q}}'/\mathrm{Ker} \; \theta_{\Sigma} \\ \downarrow & & \downarrow & & \downarrow \\ \mathbb{Q}' & \xrightarrow{\tau} & \mathbb{Q}'/\Sigma \end{array}$$

 θ is the monodromy homomorphism of $\pi_1(Q', o)$ to Aut $B(\alpha)_o$, $\pi_1(Q', o)$ is identified with a subgroup of $\pi_1(Q'/\Sigma, \overline{o})$; $\pi_1(Q'/\Sigma, \overline{o})$ thereby acts on the space \widetilde{Q}' and thus $\operatorname{Ker} \theta_{\Sigma} \cap \pi_1(Q', o) = \operatorname{Ker} \theta$. It is perfectly clear that the hypotheses of (3.2), (3.3) and (3.5) are satisfied, and that (3.2) and (3.5) are applicable.

(3.7) Let
$$\mathscr{E}_1$$
 denote the set of all stable partitions T of S such that $\operatorname{card} T = \operatorname{card} S - 1$.

By definition each $T \in \mathcal{E}_1$ has only one element in each coset except for a single coset with two elements $\{s, t\}$ satisfying $\mu_s + \mu_t < 1$. As in DM, Q_T denotes the subset of all $y \in P^S$ such that for any $s_1, s_2 \in S$, $y(s_1) = y(s_2)$ if and only if s_1, s_2 are in the same coset. For each $T \in \mathcal{E}_1$ let Q_T denote the subset of elements in Q_T which are fixed by no elements of Σ other than the permutation of the two elements occurring in the same coset of T in case they are both in S_1 . Set

$$Q_1' = Q' \cup \coprod_{T \in \mathcal{F}_1} Q_T'$$

The degree of the orbit map $Q' \to Q'/\Sigma$ is card Σ , but locally in Q'_1 around a point of Q'_T , the degree of orbit map is 2. Clearly $Q_{sst} - Q'_1$ is a subvariety, $Q'_1 - Q'$ is a smooth divisor in Q'_1 , and the same is true for their images in Q_{sst}/Σ , even though Q_{sst}/Σ may have singularities. In fact, Q'_1/Σ is an open non-singular subvariety of the variety Q_{sst}/Σ .

Let \widetilde{Q}'_1 denote the completion of Q' over Q'_1 and let $(\widetilde{Q'/\Sigma})_1$ denote the completion of $\widetilde{Q'/\Sigma}$ over Q'_1/Σ . Then \widetilde{Q}'_1 is a branched cover with branch locus along the disjoint union of C-codimension I submanifolds $\coprod_{T \in \mathscr{F}_1} Q'_T$ and ramification along Q'_T given by the order in \mathbb{R}/\mathbb{Z} of $I - \mu_s - \mu_t$ where $\{s, t\}$ is the two-element coset of T.

(3.8) Let $\rho:\widetilde{Q}'_1\to Q'_1$ (resp. $\rho_\Sigma:(\widetilde{Q'/\Sigma})_1\to Q'_1/\Sigma$) denote the completion of the covering map $\rho':\widetilde{Q}'\to Q'$ over Q'_1 , (resp. $\rho'_\Sigma:\widetilde{Q'/\Sigma}\to Q'/\Sigma$ over Q'_1/Σ).

Consider the commutative diagram

$$\widetilde{Q}'_{1} \xrightarrow{\sigma} (\widetilde{Q'/\Sigma})_{1}$$

$$\downarrow^{\rho_{\Sigma}}$$

$$Q'_{1} \xrightarrow{\tau} Q'_{1}/\Sigma.$$

The action of $\frac{\pi_1(Q'/\Sigma, \overline{\varrho})}{\operatorname{Ker} \theta} := \Gamma'_{\Sigma}$ on \widetilde{Q}' extends to \widetilde{Q}'_1 by the universal property of completions (cf. DM (8.1.1)) and σ may be regarded as a morphism of Γ'_{Σ} spaces.

Let $y \in Q'_1 - Q'$ and let V be a neighborhood of y in Q'_1 small enough so that the image of $\pi_1(V \cap Q')$ in $\pi_1(Q', o)$ is the decomposition group D_y of y and the image

of $\pi_1(\tau(V \cap Q'))$ in $\pi_1(Q'/\Sigma, \overline{o})$ is the decomposition group $D_{\tau(y)}$ of $\tau(y)$. We have $y \in Q'_T$ where $T \in \mathscr{E}_1$. As V one can take the product of a disc in Q, with a disc transversal to Q, and stable under the permutation of the two-element coset of T. Clearly $Z \cong D_y \hookrightarrow D_{\tau(y)} \cong Z$, the injection being $z \mapsto 2z$. We recall (cf. DM (8.2)) that $\rho^{-1}(y) = \text{Ker } \theta \setminus \pi_1(Q', o)/D_y$, and thus the stabilizer in $\pi_1(Q', o)$ of a point in $\rho^{-1}(y)$ is a conjugate of D_y Ker θ , and it equals D_y Ker θ for a suitable choice base of point o.

Lemma. — Suppose

$$(3.8.1) D_{\nu} \operatorname{Ker} \theta_{\Sigma} \supset D_{\tau(\nu)}$$

Then any element of $\operatorname{Ker} \theta_{\Sigma}$ which fixes the point $y \in Q'_{T}$ fixes each point of $\rho^{-1}(y)$.

Proof. — Let $\mathfrak{J} \in \rho^{-1}(y)$ and let \widetilde{V} denote the connected component of \widetilde{J} in $\rho^{-1}(V)$. Since $\sigma' : Q' \to Q'/\Sigma$ is a covering map, $\sigma(\widetilde{V})$ is the connected component of $\sigma(\widetilde{J})$ in $\rho_{\Sigma}^{-1} \tau(V)$. By hypothesis (3.8.1), we can assume that the stabilizer of \widetilde{J} in $\pi_1(Q', \sigma)$ contains the stabilizer of $\sigma(\widetilde{J})$ in $\pi_1(Q'/\Sigma, \overline{\sigma})$ modulo $\operatorname{Ker} \theta_{\Sigma}$.

Let h be an element of $\operatorname{Ker} \theta_{\Sigma}$ with hy = y. Then $h\widetilde{y} = g\widetilde{y}$ with $g \in \pi_1(Q', o)$. Hence $g\sigma(\widetilde{y}) = \sigma(h\widetilde{y}) = \sigma(\widetilde{y})$. Consequently g is in the stabilizer of \widetilde{y} in $\pi_1(Q', o) \mod \theta_{\Sigma}$. Since $g \in \pi_1(Q', o)$, we get $g = g_1 h_1$ with $h_1 \in \pi_1(Q', o) \cap \operatorname{Ker} \theta_{\Sigma} = \operatorname{Ker} \theta$ and $g\widetilde{y} = g_1 h_1 \widetilde{y} = g_1 \widetilde{y} = \widetilde{y}$. Therefore $h\widetilde{y} = g\widetilde{y} = \widetilde{y}$.

Remark. — From (3.11.1), one can see that (3.8.1) holds if μ satisfies (Σ INT) but not (INT).

Lemma (3.9). — Let $S_1 \subset S$, let Σ denote the permutation group of S_1 , and assume that $\mu_s = \mu_t$ for all $s, t \in S_1$. Let s_1, s_2 be distinct elements of S_1 , and let $[s_1, s_2]$ denote the element of $\pi_1(Q'/\Sigma, \overline{o})$ coming from a positive loop in Q'/Σ around the **C**-codimension 1 submanifold of Q'_1/Σ lying below the submanifold of Q'_1 on which the s_1 and s_2 coordinates coincide. Suppose that

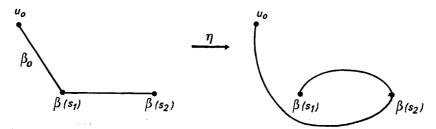
(3.9.1)
$$1-2\mu_s=\frac{2}{k}, \quad k \text{ integer, all } s \in S_1.$$

Then

order
$$\theta_{\Sigma}([s_1, s_2]) = k$$
.

Proof. — The proof is very much like the proof of Proposition (9.1.1) in DM. Let T_1 be the tree with vertices $\{s_1, s_2\}$ and let T_2 be a tree with vertices in $S - \{s_1, s_2\}$. Let $\beta: T_1 \coprod T_2 \to P$ be an embedding with $\beta \mid S = o$, the base point of Q'. Without loss of generality we may assume that $\beta(T_i) \subset D_i$ (i = 1, 2) where D_1 and D_2 are discs having disjoint closures. Choose a base $\{\ell(a), \beta \mid a; a \text{ an oriented edge of } T_1 \coprod T_2\}$ of $H_1^H(P - o(S), \check{L})$ as in (2.5) of DM. The monodromy, being the result of horizontal transport, is effected by an isotopy η of P_o which is the identity map on $P - D_1$ and turns $(o(s_2), o(s_1))$ into $(o(s_1), o(s_2))$ by one positive half-turn. This isotopy has no effect on $\ell(a)$ $\beta \mid a$ for an oriented edge $a \in T_2$. To keep track of the change in the sec-

tions of the local system along varying arcs, fix a point $u_0 \in P_0 - D_1$, let β_0 denote the singular chain given by an arc from u_0 to the point $\beta(s_1)$, let α denote the oriented edge from s_1 to s_2 , and let $\ell(\beta_0)$ be an extension of the section $\ell(\alpha)$.



We can assume that the value of $\ell(u_0)$ remains unchanged during the isotopy. We have

$$\eta_{*}(\ell(a).\beta \mid a) = \eta_{*}(\ell(\beta_{0}) \beta_{0} + \ell(a).\beta \mid a) - \eta_{*}(\ell(\beta_{0}).\beta_{0})
= -\alpha_{s_{a}}^{-1}\ell(a).\beta \mid a.$$

Inasmuch as the local system \check{L} is stable under Σ , the monodromy $[s_1, s_2]$ effects on $H_1^{lt}(P - S, \check{L})$ a linear transformation with matrix relative to the base $\{\ell(a).\beta \mid a; a \text{ an oriented edge of } T_1 \text{ or } T_2\}$

$$diag(-\alpha_{s_*}^{-1} I, I, ..., I).$$

By hypothesis, $1 - 2\mu_{s_1} = \frac{2}{k}$ with k an integer. Hence

$$lpha_{s_1} = \exp 2\pi i \mu_{s_2} = \exp 2\pi i \left(\frac{1}{2} - \frac{1}{k}\right)$$

and $-\alpha_{s_1}^{-1} = \exp \frac{2\pi i}{k}$. From this result follows.

Corollary (3.10). — Let $\mathscr{E}_{1,1}$ denote the set of partitions in \mathscr{E}_1 whose two-element coset lies in S_1 . Assume (3.9.1). Let $\sigma: \widetilde{Q}'_1 \to \widetilde{Q}'_1/\Sigma$ be defined as in (3.6) and (3.8). Then

- (1) if k is even, σ is a covering map;
- (2) if k is odd σ has local degree 2 at each point of $\rho^{-1}(Q'_T)$ for all $T \in \mathcal{E}_{1,1}$.

Proof. — The map σ is open and surjective by (3.3). Consider $\rho: \widetilde{Q}'_1 \to Q'_1$ at a point \widetilde{y} of $\rho^{-1}(y)$ with $y \in Q'_T$ where $T \in \mathscr{E}'_{1,1}$. Then

local degree of
$$\rho = \operatorname{order} \frac{D_y}{D_y \cap \operatorname{Ker} \theta} = \operatorname{order} \frac{D_y \operatorname{Ker} \theta_{\Sigma}}{\operatorname{Ker} \theta_{\Sigma}}$$

$$= \operatorname{order} \theta_{\Sigma}([s_1, s_2]^2)$$

where $\{s_1, s_2\}$ determines T. Hence

local degree of
$$\rho = \begin{cases} k/2 & \text{if } k \text{ is even,} \\ k & \text{if } k \text{ is odd.} \end{cases}$$

QC

Similarly, the local degree of $\rho_{\Sigma}: (\widetilde{Q'/\Sigma})_1 \to Q'_1/\Sigma$ is the order of $\theta_{\Sigma}([s_1, s_2])$ above any point of $\tau(Q'_T)$, where $\tau: Q'_1 \to Q'_1/\Sigma$ is the orbit map. Since the local degree of τ at y is 2, one can verify from the commutative diagram of (3.8) the asserted local degree of σ at points of $\rho^{-1}(Q'_T)$ for all $T \in \mathscr{E}_{1,1}$. Since σ is a covering map on \widetilde{Q}' , the result follows.

(3.11) The exact homotopy sequence of the fibration of Q' by Σ orbits gives the exact sequence

$$I \to \pi_1(Q', o) \to \pi_1(Q'/\Sigma, o) \to \Sigma \to I$$
.

Assume (3.9.1) with k odd. Then, by Lemma (3.9), $\theta_{\Sigma}([s_1, s_2])$ lies in the group generated by $\theta_{\Sigma}([s_1, s_2]^2)$ for any 2-element coset $\{s_1, s_2\}$ of a partition in $\mathscr{E}_{1,1}$. It follows at once that

(3.11.1)
$$\theta_{\Sigma}(\pi_{1}(Q', o)) = \theta_{\Sigma}(\pi_{1}(Q'/\Sigma, \overline{o}), \text{ or equivalently} \\ \pi_{1}(Q', o) \text{ Ker } \theta_{\Sigma} = \pi_{1}(Q'/\Sigma, \overline{o}), \text{ or equivalently,} \\ \frac{\text{Ker } \theta_{\Sigma}}{\text{Ker } \theta} \cong \Sigma.$$

Hence the action of Σ on Q'_1 has a faithful lift to the action of $\frac{\operatorname{Ker} \theta_{\Sigma}}{\operatorname{Ker} \theta}$ on \widetilde{Q}'_1 and to \widetilde{Q}_{sst} as well. Thus if k is odd, we may write, by abuse of notation

$$(3.11.1)'$$
 $\widetilde{Q}_{sst}/\Sigma = \widetilde{Q}_{sst}/\Sigma.$

The action of the transposition of two elements of S on \tilde{Q}_{sst} is clear from (3.8).

If on the other hand (3.9.1) holds with k even, then for all $T \in \mathscr{E}_{1,1}$ and $y \in Q'_T$ (under the identification of $\pi_1(Q', o)$ with a subgroup of $\pi_1(Q'/\Sigma, \overline{o})$) $D_{\tau(y)}/D_y = \theta_{\Sigma}(D_{\tau(y)})/\theta(D_y)$, since each side is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, by Lemma (3.9) for the right side and by the local degree of τ being 2. It follows that $D_{\tau(y)} \cap \operatorname{Ker} \theta_{\Sigma} \subset D_y$. Hence

$$D_{\nu} \cap \operatorname{Ker} \theta = D_{\tau(\nu)} \cap \operatorname{Ker} \theta_{\Sigma}$$
.

Since these subgroups together with $\{D_y; y \in Q - Q'\}$ generate $Ker \theta$ and $Ker \theta_{\Sigma}$ (because Q_{st} and \widetilde{Q}_{st} are simply connected), we get $Ker \theta = Ker \theta_{\Sigma}$. Consequently

(3.11.2)
$$\frac{\mathrm{Image}\ \theta_{\Sigma}(\pi_{1}(Q'/\Sigma,\,\overline{\varrho}))}{\mathrm{Image}\ \theta(\pi_{1}(Q',\,\varrho))} = \Gamma_{\Sigma}/\Gamma = \Sigma$$

and

(3.11.2)'
$$\widetilde{Q}_{st} = \widetilde{Q_{st}/\Sigma}$$
.

Theorem (3.12). — Let S_1 be a subset of S and let Σ denote the permutation group of S_1 . Assume that $(\mu_s)_{s \in S}$ satisfies condition $(\Sigma \text{ INT})$ (cf. (2.21)). Then $\operatorname{Im} \theta_{\Sigma}$ is a lattice in $\operatorname{PU}(\operatorname{card} S - 3, 1)$.

Proof. — We can assume that S_1 has more than one element. Set $1 - 2\mu_s = \frac{2}{k}$ for $s \in S_1$. By hypothesis (Σ INT), k is an integer. If k is even, then Im θ_{Σ} is a finite extension of Im θ by (3.11.2) and moreover condition (INT) of DM is satisfied. Hence Im θ is a lattice by the main theorem of DM. Thus Im θ_{Σ} is a lattice if k is even.

Assume now that k is odd. Set

$$egin{aligned} & U_{\Sigma} = Q_{st}/\Sigma, & U_{\Sigma,0} = Q'/\Sigma, & U_{\Sigma,1} = Q_{1}/\Sigma \ & U = Q_{st}, & U_{0} = Q', & U_{1} = Q_{1} \ & \widetilde{U}_{\Sigma} = \widetilde{Q_{st}/\Sigma}, & \widetilde{U}_{\Sigma,0} = \widetilde{Q'/\Sigma}, & \widetilde{U}_{\Sigma,1} = \widetilde{Q_{1}/\Sigma} \end{aligned}$$

where $Q_1 = Q \cup \coprod_{T \in \mathscr{F}} Q_T$, and $\widetilde{Q_1/\Sigma}$ is the completion of Q'/Σ over Q_1/Σ . By (3.5) we have a commutative diagram

$$(3.12.1) \qquad \stackrel{\widetilde{Q}_{st}}{\longrightarrow} \begin{array}{c} w_{\mu} \\ \\ \downarrow \\ \widetilde{Q_{st}/\Sigma} \xrightarrow{w_{\mu}} \begin{array}{c} B^{+}(\alpha)_{o} \end{array}$$

Inasmuch as w_{μ} is etale on \widetilde{Q} by Proposition (3.9) of DM, it follows at once that w_{μ} is etale on $\widetilde{Q/\Sigma}$, the completion of $\widetilde{Q'/\Sigma}$ over Q/Σ and that $\widetilde{Q/\Sigma}$ is non-singular even though Q/Σ may have singularities. As in DM, we take a stratification \mathscr{S} of Q_{st} with strata Q_T where T ranges over the stable partitions of S. Let \mathscr{S}_{Σ} denote the image of \mathscr{S} under σ . We wish to apply Proposition (10.16.1) of DM to the diagram

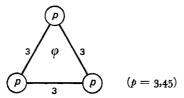
All of the hypothesis of Proposition (10.16.1) descend from U_i to $U_{\Sigma,i}$ except possibly the assertion in $I(e): w_{\mu} \mid \widetilde{U}_{\Sigma,1}$ is a local homeomorphism. This last condition follows directly at all points except those in $\sigma(Q_T)$ with $T \in \mathscr{C}_{1,1}$. However, at such points we use in diagram (3.12.1) that σ has local degree 2 by Corollary (3.10). Consequently at $\sigma(Q_T)$ with $T \in \mathscr{C}_{1,1}$, the map $w_{\mu}: \widetilde{Q}_{st}/\Sigma \to B^+(\alpha)_{\overline{o}}$ has local degree $\frac{1}{2}$ (the degree of $w_{\mu}: \widetilde{Q}_{st} \to B^+(\alpha)_o$ at Q_T). The computation in DM § 9 shows that $w_{\mu} \mid \widetilde{U}_{\Sigma,1}$ has local degree 1 at points of $\sigma(Q_T)$ for $T \in \mathscr{C}_{1,1}$. By Proposition (10.16.1), $w_{\mu}: \widetilde{U}_{\Sigma} \to B^+(\alpha)_{\overline{o}}$ is a local homeomorphism. The proof of Theorem (10.18.2) of DM applies verbatim to yield that $\widetilde{w}_{\mu}: \widetilde{Q}_{sst}/\Sigma \to \overline{B}^+(\alpha)$ is a homeomorphism onto an open subset

GENERALIZED PICARD LATTICES ARISING FROM HALF-INTEGRAL CONDITIONS

of $\overline{B}^+(\alpha)_{\overline{o}}$ in the DM (5.4) topology and maps $\widetilde{Q}_{st}/\Sigma$ homeomorphically onto $B^+(\alpha)_{\overline{o}}$. The image is a lattice, by the same reasoning as in DM. This completes the proof.

4. RCP

In [2], there is a geometric construction of a fundamental domain for groups $\Gamma(\phi)$ in PU(2, 1) generated by **C**-reflections on a 3 dimensional complex vector space $V(\phi)$ with Coxeter diagram



and ibid p. 248 there is a list of the groups $\Gamma(\varphi)$ which satisfy the condition (CD2) ensuring discreteness. Let $A\Gamma(\varphi)$ denote the group obtained by adjoining to $\Gamma(\varphi)$ the group of cyclic permutations of its generators. Then $card(A\Gamma(\varphi)/\Gamma(\varphi)) = 1$ or 3.

Theorem. — Let d=2, $\mu_0=\mu_1=\mu_2$, and let Σ denote the symmetric group on $\{0,1,2\}$. Then each of the groups $A\Gamma(\varphi)$ satisfying condition (CD2) coincides with the group Γ_{Σ} for suitable $\{\mu_i \mid i=0,\ldots,4\}$ satisfying condition (Σ INT).

Proof. — Set $\eta = e^{\pi i/p}$, $\rho = \text{order } \overline{\eta} i \varphi^3$, $\sigma = \text{order } \overline{\eta} i \overline{\varphi}^3$, $t = \frac{1}{\pi} \arg \varphi^3$. The list $\Gamma(\varphi)$ is specified by the values of t, ρ , σ with $0 < t < 3 \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. We write

of $\Gamma(\varphi)$ is specified by the values of t, ρ , σ with $0 \le t < 3\left(\frac{1}{2} - \frac{1}{p}\right)$. We write $k_{ij} = (1 - \mu_i - \mu_j)^{-1}$, $0 \le i < j \le 4$ and $\Gamma(p, t) = \Gamma(\varphi)$.

Set
$$\mu_{0} = \frac{1}{2} - \frac{1}{p},$$

$$k_{03} = \rho,$$

$$k_{04} = \begin{cases} \sigma & \text{if } 0 \le t \le \frac{1}{2} - \frac{1}{p}, \\ -\sigma & \text{if } \frac{1}{2} - \frac{1}{p} < t < 3\left(\frac{1}{2} - \frac{1}{p}\right), \end{cases}$$

$$t = \frac{1}{k_{03}} - \frac{1}{k_{04}}.$$

By a lengthy but straightforward calculation (cf. [3]), the map $R_1(\varphi) \mapsto \theta_{\Sigma}([o\ i\])$, $R_2(\varphi) \mapsto \theta_{\Sigma}([i\ 2])$, $R_3(\varphi) \mapsto \theta_{\Sigma}([2o])$ yields an isomorphism of $A\Gamma(\varphi)$ onto Γ_{Σ} induced by an isometry of $V(\varphi)$ onto $(H^1(P_{\varrho}, L), \psi)$. (For a geometric proof, cf. [4]).

We list the groups $\Gamma(\varphi)$ and the corresponding (μ_1) . From p. 248 of [2] we see where $A\Gamma(\varphi)/\Gamma(\varphi)$ has order 1 or 3. In the last five cases, $A\Gamma$ contains a Picard lattice as a subgroup of index 6 by (3.11.2). In the last column, write $A\Gamma$ if $\Gamma_{\Sigma} + \Gamma(p,t)$.

#	þ	k_{03}	k_{04}	t	μ_0	μ_3	μ_{4}	Arith	$\Gamma_{\Sigma} = \Gamma \text{ or } A\Gamma$
I	3	12	12	o	1/6	9/12	9/12		$A\Gamma$
2	3	10	15	1/30	1/6	22/30	23/30	NA	Γ
3	3	9	18	1/18	1/6	13/18	14/18		$A\Gamma$
4	3	8	24	1/12	1/6	17/24	19/24	NA	$oldsymbol{\Gamma}$
5	3	7	42	5/42	1/6	29/42	34/42	NA	Г
6	3	6	∞ ,	1/6	1/6	4/6	5/6		$A\Gamma$
7	3	5	– 30	7/30	1/6	19/30	26/30		f r
8	3	4	- 12	1/3	1/6	7/12	11/12		Γ
9	5	5	10	1/10	3/10	5/10	6/10		Г
10	5	4	20	1/5	3/10	9/20	13/20	NA	$oldsymbol{\Gamma}$
ΙI	5	3	- 30	11/30	3/10	11/30	22/30	NA	$A\Gamma$
12	5	2	- 5	7/10	3/10	2/10	9/10		Γ
13	4	8	8	0	1/4	5/8	5/8		$\mathbf{r} = \mathbf{r}$
14	4	6	12	1/12	1/4	7/12	8/12	NA	$A\Gamma$
15	4	5	20	3/20	1/4	11/20	14/20	NA	Г
16	4	4	∞	1/4	1/4	2/4	3/4		. .
17	4	3	<u> </u>	5/12	1/4	5/12	10/12		АΓ

5. Lattices Γ_{Σ} in PU(N-3, 1) for $N \geq 5$ satisfying $(\Sigma \text{ INT})$, p odd (5.1) $N \geq 5$.

There are groups Γ_{Σ} satisfying condition (Σ INT) only for $N \leq 12$. We list all cases with $6 \leq N \leq 12$, p odd. All are arithmetic. For p=3, all are centralizers of a subgroup of the first one except for $\left(\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{7}{12},\frac{7}{12}\right)$.

N	þ	μ_0	Multiplicity of μ_0	Remaining μ _i
12	3	$\frac{1}{6}$	12	
11	3	$\frac{1}{6}$	10	$\frac{2}{6}$
	3	$\frac{1}{6}$	9	$\frac{3}{6}$ $\frac{3}{6}$
10	3	$\frac{1}{6}$	8	$\frac{2}{6}$ $\frac{2}{6}$
9	3	$\frac{1}{6}$	8	$\frac{4}{3}$

N	þ	μ_0	Multiplicity of μ_0	Remaining µ,
	3	$\frac{1}{6}$	7	$\frac{2}{6}$ $\frac{3}{6}$
	3	$\frac{1}{6}$	6	$\begin{array}{ccc} 2 & 2 & 2 \\ \mathbf{\overline{6}} & \mathbf{\overline{6}} & \mathbf{\overline{6}} \end{array}$
8	3	<u>1</u>	7	<u>5</u> 6
	3	$\frac{1}{6}$	6	$\frac{4}{6}$ $\frac{2}{6}$
	3	$\frac{1}{6}$	6	$\frac{3}{6}$ $\frac{3}{6}$
	3	$\frac{1}{6}$	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7	3	$\frac{1}{6}$	5	$\frac{3}{6}$ $\frac{4}{6}$
	3	$\frac{1}{6}$	5	$\frac{2}{6}$ $\frac{5}{6}$
	3	$\frac{1}{6}$	5	$\frac{7}{12} \frac{7}{12}$
	3	$\frac{1}{6}$	4	$\begin{array}{cccc} \frac{2}{6} & \frac{2}{6} & \frac{4}{6} \end{array}$
	3	$\frac{1}{6}$	4	$\begin{array}{ccc} \frac{2}{6} & \frac{3}{6} & \frac{3}{6} \end{array}$
	5	$\frac{3}{10}$	6	2 10
6	3	$\frac{1}{6}$	4	$\frac{4}{6}$ $\frac{4}{6}$
	3	$\frac{1}{6}$	4	$\frac{3}{6} \frac{5}{6}$
	3	$\frac{1}{6}$	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3	$\frac{1}{6}$	3	$\frac{3}{6} \frac{3}{6} \frac{3}{6}$
	5	$\frac{3}{10}$	5	5
	5	$\frac{3}{10}$	4	$\frac{2}{10} \frac{6}{10}$

$$(5.2) N = 5.$$

In addition to lattices listed in § 4 which satisfy condition (Σ INT) but not condition (INT), we have the following.

Þ	μ_0	Multiplicity	Remaining μ_i	Arith
5	$\frac{3}{10}$	4	8 10	
5	3	2	$\frac{9}{20}, \frac{9}{20}, \frac{1}{2}$	NA
7	<u>5</u> 14	4	$\frac{8}{14}$	
9	$\frac{7}{18}$	4	8 18	NA
	$\frac{7}{18}$	3	$\frac{5}{18}$, $\frac{10}{18}$	NA

The lattice corresponding to $\mu = \left(\frac{3}{10}, \frac{3}{10}, \frac{3}{10}, \frac{3}{10}, \frac{8}{10}\right)$ deserves mention.

1. Let M_{st} denote the subset of μ -stable points in $(\mathbf{P}^1)^5$ and let $\pi: M_{st} \to Q_{st}$ denote the map to PGL orbits. The group Σ_4 of permutations on the first four coordinates descends to an action on P_{st} . We have

$$(x_1, x_2, 1, 0, \infty) \equiv (1 - x_1, 1 - x_2, 0, 1, \infty) \mod PGL$$

 $\equiv \sigma(1 - x_2, 1 - x_1, 1, 0, \infty) \mod PGL$

where σ denotes the permutation (1,2)(3,4). Hence σ fixes each point of the line $L = \{\pi(x, 1-x, 1, 0, \infty) : x \neq \infty\}$ and this line punctured at $x = 0, \frac{1}{2}, 1$ lies in the set Q - Q' (cf. Remark of (3.6)). In this example, Q_{st} is the projective plane and σ descends to the involution $[x_1, x_2, 1] \rightarrow [1 - x_2, 1 - x_1, 1]$ in the line $x_1 + x_2 = 1$.

2. The lattice Γ_{μ} is the lattice $\Gamma\left(5,\frac{1}{2}\right)$ of [2] by the result in § 4 above. On the other hand, it is proved in [2] that $\Gamma\left(5,\frac{1}{2}\right)$ is isomorphic to $\Gamma\left(5,\frac{7}{10}\right)$. Using the result in § 4, $\Gamma\left(5,\frac{7}{10}\right)$ coincides with the group Γ_{ν} , $\nu=\left(\frac{3}{10},\frac{3}{10},\frac{3}{10},\frac{2}{10},\frac{9}{10}\right)$. Consequently, $\Gamma_{\mu}\cong\Gamma_{\nu}$. It is clear that Γ_{ν} contains a complex reflection of order 2, a fact that is not so obvious for Γ_{μ} . The existence of this reflection in Γ_{μ} is related to the involution in the line L above.

We take this opportunity to insert 3 errata for the proof that $\Gamma\left(5, \frac{1}{2}\right) \cong \Gamma\left(5, \frac{7}{10}\right)$ in [2]:

Read on page 273, Equation (21.1): ...
$$-\alpha \varphi \frac{1-\eta+2\eta^{-2}}{1+\eta+\overline{\eta}}$$
 line 12: Γ_{12} not F_{12} line 13: ... subgroup of $\Gamma \cap PU(2)$.

6. $A\Gamma(\varphi)$ as extensions of Picard lattices in PU(2, 1)

The 27 Picard lattices are listed in (14.3) of DM. For all except five of these lattices, at least three of the μ 's are equal; we relabel these μ_0 , μ_1 , μ_2 . The corresponding extended lattice Γ_{Σ} with Σ the permutation group on $\{0, 1, 2\}$ coincides with the group $A\Gamma(\varphi)$ by \S 4. We list below the p and t-parameters of the corresponding Γ_{Σ} , labelling each Picard lattice by its position on the list of DM (14.3).

Clearly
$$p = \left(\frac{1}{2} - \mu_0\right)^{-1}$$
. By § 4,

$$t = k_{03}^{-1} - k_{04}^{-1} = (1 - \mu_0 - \mu_3) - (1 - \mu_0 - \mu_4) = \mu_4 - \mu_3.$$

We order the indices so that $\mu_3 \le \mu_4$. As a result $k_{03} > 0$ and $k_{03} < |k_{04}|$. (Of the five Picard lattices not on the list, two are non-arithmetic.)

DM#	D	$D\mu_0$	$D\mu_3$	$D\mu_4$	þ	t	k_{03}	k_{04}	$\Gamma_2 = A\Gamma \text{ or } \Gamma$
1	3	I	I	2	6	$\frac{1}{3}$	3	∞	АΓ
2	4	2	I	1	∞	0	4	4	$oldsymbol{\Gamma}$
3	4	I	2	3	4	$\frac{1}{4}$	4	œ	Γ
4	5	2	2	2	10	0	5	5	$oldsymbol{\Gamma}$
5	6	2	3	3	6	0	6	6	АΓ
6	6	3	I	2	∞	$\frac{1}{6}$	3	6	АΓ
8	6	2	I	5	6	$\frac{2}{3}$	2	— 6	Γ
9	8	3	3	4	8	$\frac{8}{1}$	4	8	$oldsymbol{\Gamma}$
10	8	2	5	5	4	0	8	.8	$_{i_{1},i_{2},i_{3},i_{4},i_{5},i_{5}}$, $oldsymbol{\Gamma}$
11	8	3	I	6	8	$\frac{5}{8}$	2	- 8	$oldsymbol{\Gamma}$
12	9 1	4	2	4	18	<u>4</u> 18	3	9	ΑΓ

DM#	ŧ D	$\mathbf{D}\mu_0$	$D\mu_3$	$D\mu_{4}$	þ	t	k ₀₃	k_{04}	$\Gamma_{2}=A\Gamma$ or Γ
13	10	4	I	7	10	$\frac{6}{10}$	2	— 10	Г
14	12	5	4	5	12	$\frac{1}{12}$	4	6	Г
16	12	5	3	6	12	$\frac{3}{12}$	3	12	АΓ
17	12	4	5	7	6	$\frac{2}{12}$	4	12	Г
21	12	5	I	8	12	$\frac{7}{12}$	2	— 12	Γ
22	12	3	7 7	8	4	112	6	12	АΓ
23	12	3	5	10	4	<u>5</u>	3	— 12	АΓ
24	15	6	4	8	10	$\frac{10}{30}$	3	15	$A\Gamma$
25	18	8	1	11	18	18	2	- 18	, r
26	20	5	11	14	4	$\frac{3}{20}$	5	20	Г
27	24	9	7	14	8	<u>7</u> 24	3	24	АΓ

BIBLIOGRAPHY

Department of Mathematics, Yale University, Box 2155, Yale Station, New Haven, CT, 06520

Manuscrit reçu le 16 août 1983.

^[1] Deligne, P., and Mosrow, G. D., Monodromy of Hypergeometric Functions and Non-lattice Integral Monodromy Groups, *Publ. Math. I.H.E.S.*, this volume, 5-90.

^[2] Mostow, G. D., On a Remarkable Class of Polyhedra in Complex Hyperbolic Space, Pacific J. of Math., 86 (1980), 171-276.

^[3] Mostow, G. D., On Polyhedra in Complex Hyperbolic Space Associated to Hypergeometric Functions in *n*-Variables (to appear).

^[4] Mostow, G. D., Braids, Hypergeometric Functions and Lattices (to appear).