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ABSTRACT 

This pa 
r 

er outlines a new theory of plan recognition that 
is significant y more powerful than previous approaches. Con- 
current actions. shared steps between actions, and disjunctive 
information are all handled. The theory allows one to draw 
conclusions based on the class of possible plans being per- 
formed, rather than having to prematurely commit to a single 
interpretation. The theory employs circumscription to 
transform a first-order theory of action into an action taxonomy. 
which can be used to logically deduce the complex action(s) an 
agent is performing. 

1. Introduction 

A central issue in Artificial Intelligence is the representa- 
tion of actions and plans. One of the major modes of reasoning 
about actions is called plan recognition, in which a set of 
observed or described actions is explained by constructing a 
plan that contains them. Such techni 
are-as, including story understanding, a 

ues are useful *in many 
iscourse modelmg, stra- 

tegic planning and modeling naive psycholo y. In story under- 
standing, for example, the plans of the c aracters must be i 
recognized from the described actions in order to answer ques- 
tions based on the story. In strategic planning, the planyer may 
need to recognize the plans of another agent m order to rnteract 
(co-operatively or competitively) with that agent. 

Unlike planning, which often can be viewed as purely 
hypothetical reasoning (i.e. if I did A. then P would be true), 
plan recognition models must be able to represent actual events 
that have happened as well as proposing hypothetical explana- 
tions of actions. In addition. plan recognition inherently 
involves more uncertainty than in planning. Whereas. in plan- 
ning, one is interested in finding any plan that achieves the 
desired goal. in 
the particular p an that another agent is P 

lan recognition. one must attempt to recognize 
erforming. Previous 

plan recognition models. as we shall see, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ave been unable to 
deal with this form of uncertainty in any significant way. 

A truly useful plan reco 
P 
nition system must. besides being 

well-defined. be able to hand e various forms of uncertainty. In 
particular, often a given set of observed Fctions may not 
uniquely identify a particular plan. yet many important conclu- 
sions can still be drawn and predictions about hture actions 
can still be made. 

For example, if we observe a person in a house picking up 
the car keys, we should be able to infer that they are goin 
leave the house to go to the car. even though we cannot te I f 

to 
if 

they plan to drive somewhere, or simply to put the car in the 
garage. On the basis of this information. we might ask the per- 
son to take the garbage out when they leave. To accomplish 
this. 3 system cannot wait until a single plan is uniquely 
identified before drawing any conclusions, On the other hand. a 
plan recognizer should not prematurely jump to conclusions 
either. We do not want to handle the above example by simolv L - __ 
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inferring that the person is going to put the car into the garage 
when there is no evidence to support this interpretation over 
the one involving driving to the store. 

In addition, a useful plan recognizer in many contexts can- 
not make simplistic assumptions about the temporal ordering of 
the observations either. In story understanding, for example, the 
actions might not be described in the actual order that they 
occurred. In many domains, we must also allow actions lo occur 
simultaneously with each other, or allow the temporal ordering 
not to be known at all, Finally, we must allow the possibility 
that an action may be executed as part of two independent 
plans. We might for example, make enough pasta one night in 
order to prepare two separate meals over the next two days. 

None of the previous models of plan recognition can han- 
dle more than a few of these situations in any general way. Part 
of the problem is that none of the frameworks have used a rich 
enough temporal model to support reasoning about temporally 
complex situations. But even if we were able to extend each 
framework with a general temporal reasoning facility. there 
would still be problems that remain. Let us consider three of 
the major approaches briefly, and discuss these other problems. 

The explanation-based approaches, outlined formally by 
[Cha85] all attempt to explain a set of observations by finding a 
set of assum 
with this is iR 

tions that entails the observations. The problem 
at there may be many such sets of assumptions 

that will have this property, and the theory says nothing as to 
how to select amon 
framework (e.g. f 

them, In practice, systems based on this 
[Wi 831) will over-commit, and select the first 

explanation found, even though it is not uni 
the observations. In addition. they are not a 

uely identified by 
& le to handle dis- 

junctive information. 

The approaches based on parsing (e.g. [H&32, Sid81]) 
view actions as sequences of subactions and essentially model 
this knowledge as a context-free rule in an “action rammar” . 
The rimitive (i.e. non-decomposable) actions in the B ramework 
are tR e terminal symbols in the grammar. The observations are 
then treated as input to the parser and it attempts to derive a 
parse tree to explain the observations. A system based on this 
model would suffer from the problem of over-commitment 
unless it generates the set of possible explanations (i.e. ail possi- 
ble parses). While some interesting temporal aspects in com- 
bining plans can be handled by usin more powerful grammars 
such as shuffle grammars, each in ividual tf 
modelled as a sequence of actions. 

plan can only be 

plan must be observed -- 
In addition, every step of a 

vation. 
there is no capabili 

It is not clear how more tempor 2 
for partial obser- 

ly complex plans 
could be modelled, such as those involving simultaneous 
actions, or how a single action could be viewed as being part of 
multiple plans. 

The final approach to be discussed is based on the concept 
of “likely” inference (e.g. [All83, Po184]). In these systems a set 
of rules is used of the form: “If one observes act A, then it may 
be that it is part of act B”. Such rules outline a search space of 
actions that produces plans that include the observations. In 
practice, the control of this search is hidden in a set of heuris- 
tics and thus is hard to define precisely. It is also difficult to 
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attach a semantics to such rules as the one above. This rule 
does not mean that if we observe A. then it is probable that B 
IS being executed. or even that it is possible that B is being exe- 
cuted. The rule is valid even in situations where it is impossible 
for B to be in execution. These issues are decided enttrely by 
the heuristics. As such, it is hard to make precise claims as to 
the power of this formalism. 

In this pa er we outline a new theory of plan recognition 
that is signi canrly more powerful that these previous K 
Jpproaches in that it can handle many of the above issues in an 
intuitively satisfjing way. Furthermore. there dre no restrictions 
on the temporal relatronships between the observations. 
Another important result is that the implicit assumptions that 

clt and precisely del!ned w&in a I!rrnai theory of action. 
appear to underly all Ian reco nition recesses are made expli- 

Given these assumptions and a specific body of knowledge 
about the possible actions and plans to be considered. this 
theory will give us the strongest set of conclusions that can be 
made given a set of observations. As such, this work lays a firm 
base for future work in plan recognition. 

Several 
a 

roblems often associated with plan recognition 
are not consi ered in the current approach. however. In artic- 
ular, beyond some sim 

R 
le simplicity assumptions, the P rame- 

work does not distinguis between a priori likely and non-likely 
plans. Each logically 
tions, is treated equa ly within the theory. It also can only P 

ossible explanation, given the assump- 

recognize plans that are constructed out of the initial library of 
actions defined for a particular domain. As a result, novel 
situations that arise from a combination of existing plans may 
be recognized, but other situations that require generalization 
techniques, or reasoning by analogy cannot be recognized. 

2. A New View of Plan Recognition 

It is not necessary to abandon logic, or to enter the depths 
of probabilistic inference, in order to handle the problematic 
cases of plan recognition described above. Instead, we propose 
that plan recognition be viewed as ordinary deductive inference. 
based on a set of observations, an action taxonomy, and one or 
more simplicity constraints, 

An action taxonomy is an exhaustive description of the 
ways in which actions can be performed, and the ways in which 
any action can be used as step of a more complex action. 
Because the taxonomy is complete, one can infer the disjunc- 
tion of the set of possible plans which contain the observations, 
and then reason by cases to reduce this disjunction. 

An action taxonomy is obtained by applying two closed- 
world assumptions to an axiomatization of an action hierarchy. 
The first assumption states that the known ways of performing 
an action are the only ways of performing that action. The 
assumption is actually a bit more general, in that it states the 
known wczys of specializing an action are the only ways. Each 
time an abstract action is specialized. more is known ,tbout how 
to perform it. For example, because the action type “throw” 
\peciaiizes the action type “transfer location” , we can think of 
throwing as a way to transfer location 

The second assumption states that .lli actions are purpose- 
fu!, and that all the possible reasons tr performing an action 
ire known. This assumption is realized by stating that if Jn 
Liction A occurs. and P is the set of more complex actions in 
:thich 4 occurs s a substep. then home member of P also 
occurs, 

These assumptions can be stated using McCarthy’s cir- 
cumscription scheme. The action hierarchy IS transformed by 
first circumscribing the ways of specializing an act, and then cir- 
cumscribing the ways of usmg an act. The precise formulation 
of this operation is described m section 6 below. 

The simplicity constraints become important when we 
need to recognize a plan which integrates several observations. 
The top of the action taxonomy contains actions which are 
done for their own s,ake. rather than as steps of more complex 
actions. When several actions are observed, it is often a good 

heuristic to assume that the observations are all part of the 
same top level act. rather than each being a step of an indepen- 
dent top level act. lhe simplicity constraint which we will use 
asserts that as few top level actions occur as 

P 
ossible. The sim- 

plicity constraint can be represented by a ormula of second- 
order logic which is similar to the circumscription formula. In 
any parttcular case the constraint is instanttated as a first-order 
formula which asserts “there are no more than n top level acts”. 
which n is a particular constant choosen to be as small as possi- 
ble, and still allow the instantiated constraint to be consistent 
with the observations and taxonomy. 

While one can imagine man other heuristic rules for 
choosing between interpretations o r a set of observed actions, 
the few given here cover a reat many common cases. and seem 
to capture the “obvious”  in erences one might make. More fine B 
grained plan recognition tasks (such as strategic planning) 
would probably require some sort of quantitative reasoning. 

3. Representing Action 

The scheme just described requires a representation of 
action that includes: 

--the ability to assert that an action actually occurred at a time: 

--a specialization hierarchy: 

--a decomposition (substep) hierarchy. 

Action instances are individuals which occur in the world. 
and are classified by action types. The example domain is the 
world of cooking, which includes a very rich action hierarchy, 
as well as a token bit of block stacking. (See figure 1.) The 
broad arrows indicate that one action type is a speciahzatton of 
another action type, whereas the thin arrows indicates the 
decomposition of an action into subactions. We will see how to 
represent this information in logic presently. The diagram does 
not indicate other conditions and constraints which are also part 
of an action decomposition. Instances of action types are also 
not shown. We introduce particular instances of actions using 
formulas such as 

#( E9, makePastaDish) 

to mean that E9 is a real action instance of t pe J4akePastaD 
ish. (The symbol # is the “occurs”  predicate. “, The structure of 
a particular action can be specified by a qet of role functions. 
In particular, the function T applied to an action Instance 
returns the interval of time over which the action instance 
occurs. Other roles of an action can also be represented by 
functions: e.g.. Agent(E9) could be the agent causing the action. 
and Result(E9) could be the particular meal produced b, E9. 
(For simplicity we will assume in this paper that all actions ‘ire 
performed by the same agent.) To record the observation of the 
agent making a pasta dish at time [7. one would assert: 

3 e . #(e.makePastaDish) & T(e) = 17 

Action types need not ail be conrtants, as they are here: 
often it is useful to use functions to construct ty es. such as 
Move(x.y). For sim licity. JI the actions used in 
in this paper use on P 

R t e examples 
y constant action tl pes. 

i\ction specialization is easy to represent in this scheme. 
In the cooking world. the act of making a pasta dish specializes 
the act of preparing a meal, which in turn specializes the Ass 
of top level acts. Specialization st,ttements are simply 
universally-quantified implications. For example. part of the 
hierarchy in figure 1 is represented by the following astoms: 

[l] v e . #(e, PrepareMeal) II #(e. ropLeveL4ct) 

[2] V e . #(e, MakePastaDish) II #(e. PrepareMeal) 

[3] V e . #(e, MakeFettuciniMarinara) > 
#(e, MakePastaDish) 

[4] V e . #(e, MakeFettucini) > #(e, UakeNoodles) 
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[5] v e . #(e, MakeSpaghetti) > #(e, MakeNoodles) 

[6] tl e . #(e, MakeChickenMarinara) > 
#(e, MakeMeatDish) 

The first statement, for example, means that any action instance 
which is a PrepareMeal is also a TopLevelAct 

The decomposition hierarchy is represented by implica- 
tions which assert necessary (and erhaps sufficient) conditions 
for an action instance to occur. TR is may include the fact that 
some number of subactions occur, and that various facts hold at 
various times [A1184]. These facts include the preconditions and 
effects of the action, as well as various constraints on the tem- 
poral relationships of the subactions [Al183a]. 

For the level of analysis in the present pa et, we do not 
need to distinguish the minimal necessary set o P conditions for 
an action to occur, from a larger set which may include facts 
which could be deduced from the components of the act. It is 
also convenient to eliminate some existentially quantified vari- 
ables by introducing a function S(i,e) which names the i-th 
subaction (if any) of action e. (The actual numbers are not 
important; any constant symbols can be used.) For example, 
the makePastaDish action is decomposed as follows: 

PI v e . #(e, MakePastaDish) 1 
3 tn . #(S(l.e), MakeNoodles) & 

# Boil) & 
# MakeSauce) & 
Object(S(2.e))= Result(S( 1.e)) & 
hold( noodle( Result( S( 1,e)). tn) & 
overlap(T(S(l,e)), tn) & 
during(T(S( 2,e)), tn) 

This states that every instance of MakePastaDish consists of (at 
least) three steps: making noodles, boiling them. and making a 
sauce. The result of making noodles is an object which is 
(naturally) of type noodle, for some period of time which fol- 
lows on the heels of the making. (Presumably the noodles 
cease being noodles after they are eaten.) Furthermore. the 
boiling action must occur while the noodles are, in fact, noo- 
dles. A complete decomposition of MskePastaDish would con- 
tain other facts, such that result of the MakeSauce act must be 
combined at some point with the noodles. after they are boiled. 

The constraint that all the subactions of an action occur 
during the time of the action is expressed for all acts by the 
axiom: 

[S] t/ i,e . during(T(S(i.e)), T(e)) 

It is important to note that a decomposable action can still be 
further specialized. For example, the action type MakeFettu- 
ciniMa.rinara specializes MakePastaDish and adds additional 
constraints on the above definition. In particular, the type of 
noodles made in step 1 must be fettucini, while the sauce made 
in step 3 must be marinara sauce. 

A final component of the action hierarchy are axioms 
which state action-type disjointedness. Such axioms are 
expressed with the connective “not and”, written as V: 

[9] t/ e , #(e,MakeFettuciniAlfredo) 
V #(e,MakeFettuciniMarinara) 

This simply says that a particular action cannot be borh an 
instance of making fettucini Alfred0 and an instance of making 
fettucini Marinara Disjointedness axioms can be compactly 
represented and used in resolution-based inference using tech- 
niques adapted from [Ten86]. 

- . . 

TopLevelAct 

PreDareMeal StackBlocks 

Rnil 
WI.. 

MakeNoodles 

MakeChicken 

r 

MakeFettucini 
MakeMarinara 

Figure 1: Action Hierarchy 
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4. Creating the Taxonomy 

The assumptions necessary for plan recognition can now 
be specified more precisely by considenng the full action 
hierarchy presented m Ii 

t! 
ure 1. Let KBl be the set of axioms 

schematically represente by the graph, including the axioms 
mentioned above. KBl will be transformed into a taxonomy by 
appl in the completeness assumptions discussed above. The 
resu t 0 the first assum r$ 

i 
tion (all ways of specializin an action 

are known) is the data ase KB2, which includes s 1 of KBL, 

together with statements which assert specialization complete- 
ness. These include the following, where the symbol @ 1s the 
connective ‘*exclusive or”. 

[lo] t/ e . #(e, 

[ll] V e . #(e. 
e, MakePastaDish) @ 
e, MakeMeatDish) 

[12] V e . #(e, MakePastaDish) 1 
# e, MakeFettucini Marinara) @ 
# 

I 
e. MakeFettuciniAifredo) @ 

# e. ~/lakeSpagh~rtiC,lrbon~lr~) 

[13] v e . #(e. MakeMeatDish) 1 
# e. :MakeChicken~l;rrinara) $ 
# e. ~~ilakeChickenPrirnavera) 

[14] t/ e . #(e, MakeNoodles) 3 
# e. MakeFettucini) @ 
# I e. MakeSpaghetti) 

These state that eve 
7 

top level action is either a case of 
preparing a meal. or 0 stacking blocks: that every meal 
preparation is either a case of making a pasta dish or making a 
meat dish; and so on, all the way down to particular, basic 
types of meals. Not all actions, of course, are specializations of 
TopLevelAct For example, axiom [14] states that every Mak- 
eNoodles can be further classified as a MakeFettucini or as a 
MakeSpaghetti, but it is not the case that any MakeNoodles can 
be classified as a TopLeveIAct. 

The second assumption asserts that the given decomposi- 
tions are the only decom ositions. KB2 is transformed to the 
final taxonomy KB3, whit rl includes all of KB2, as well as: 

[15] V e . #(e, MakeNoodles) > 
3 a . #(a, MakePastaDish) & e = S(l,a) 

[16] V e . #(e, MakeMarinara) 1 
3 a. #(a, MakeFettuciniMarinara) & e = V 

#(a, MakeChickenMarinara) & e = 

[17] V e . #(e, MakeFettucini) > 
3 a. 

\ 

#(a, MakeFettuciniMarinara) & e = S(l,a ] V 

#(a, MakeFettuciniAlfredo) & e = S(1.a) i 

Axiom [15] states that whenever an instance of MakeNoodles 
occurs, then it must be the case that some instance of MakePas- 
&Dish occurs. Furthermore, the MakeNoodles act which is 
required as a substep of the MakePastaDish is in fact the given 
instance of MakeNoodles, Cases like this, where an action can 
on1 be used in one possible su 
hi $I level of action abstraction. P 

er-action, usually occur at a 
t is more common for many 

uses for an action to occur in the taxonomy. The given hierar- 
chy has two distinct uses for the action MakeMarinara, and this 
is captured in axiom [16]. From the fact that the agent is mak- 
ing Marinara sauce, one is justified in concluding that an action 
instance will occur which is either of type MakeFettuciniMari- 
nara or of type MakeChickenMarinara. 

All these transformations can easily be performed 
automatically given an action taxonomy of the form described 

in the previous section. The formal basis for these transforma- 
tions is described in section 6. 

5. Recognition Examples 

We-are now ready to work through some examples of plan 
recognition using the cooking taxonomy. In the steps that- fol- 
low, existentially-quantified variables will be replaced by tresh 
constants. Constants introduced for observed action inst‘ances 
begin with E. and those for deduced action instances being with 
K. Simple cases typical of standard 
accounted for. In this section, we s R 

Ian recognmon are easrly 
all consider an extended 

example demonstrating some more problematic cases. 

Let the first observation be disjunctive: the agent is 
observed to be either making fettucini or making spaghetti. but 
we cannot tell which. This is still enough information to make 
predictions about future actions. The observation is: 

[18] #(El, MakeFettucini) V #(El. MakeSpaghetti) 

The abstraction axioms let us infer up the hierarchy:’ 

[19] #(El, MakeNoodles) abstraction axioms [-+I. [5] 

[20] #(KOl, MakePastaDish) decomposition axiom [15], 
and extstential instantiation 

[21] #(KOl, PrepareMeal) abstraction axiom [2] 

[22] #(KOl, TopLevelAct) abstraction axiom [l] 

Statement [20 
the future: a lo 

together with [7] lets us make a prediction about 
il will occur: 

[23] #(S(2,KOl), boil) 8c 
Object(S(2,KOl)) = ResuIt( El) & 
after(T(S(2,KOl)),T(El)) 

Thus even thou 
P 
h the particular plan the agent is performing 

cannot be exact y identified, specific predictions about future 
activities can still be made. 

The previous step showed how one could reason from a 
disjunctive observation u 

4 
the abstraction hierarchy to a non- 

disjunctive conclusion. ith the next observation, we see that 
omg a up -the decomposition hierarchy from a non-disjunctive 
ierarchy can lead to a disjunctive conclusion. Suppose the 

next observation is: 

[24] #(E3, MakeMarinara) 

Applying axiom (161, which was created by the second com- 
pleteness assumption, leads to the conclusion: 

(251 # K02, MakeFettuciniMarinara) V 

# I K02, MakeChickenMarinara) 

The abstraction hierarchy can again be used to collapse this dis- 
junction: 

[26] #(K02, MakePastaDish) V #(K02, MakeMeatDish) 

[27] R (K02, PrepareMeal) 

[28] #(K02, TopLevelAct) 

At this point the simplicity constraint comes into play. The 
strongest form of the constraint, that there is only one top level 
action in progress, is tried first: 

[29] V el,e2 . #(el. TopLevelAct) & 
#(eZ, TopLevelAct) > el =e2 

Together with [22] and [28]. this implies: 

(301 KOl = K02 

Substitution of equals yields: 

[31] #(K02, MakePastaDish) 

One of the disjointedness sAiorns t‘rom the original action 
hierarchy is: 
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[32] V e . #(e. MakePastaDish) C #(e. ,&Iake\leatDjsh) 

Statements [30]. [31]. and [6] let us deduce: 

[33] 1#( K02. MakeMeatDish) 

[34] 1##KOO, MakeChickenMarinara) 

Finally. [34] and [25] let us conclude that only one plan. which 
contains both observations, is occurring: 

[35] xf(KO2, MakeFettuciniMarinara) 

Tern 
ples. as 51 

oral constraints did not play a role in these exam- 
ey do in more complicated cases. For example, 

observations need not be received in the order in which the 
observed events occurred, or actions might be observed in an 
order where the violation of temporal constraints can ~IOW the 
system to reject hypotheses. For example, if a Boil act at an 
unknown time were input, the system would assume that it was 
the boil act of the (already deduced) MakePastaDish act. If the 
Boil were constrained to occur before the initial MakeNoodles, 
then the strong simplicity constraint (and all deductions based 
upon it) would have to withdrawn, and two distinct top level 
actions postulated. 

Different top level actions (or any actions, in fact) fan 
share subactions, if such sharing is permitted by the particular 
domain axioms. For example, sup ose every Prepare&Meal 
action begins with GotoKitchen, and J: e agent is constrained to 
remain in the kitchen for the duration of the act. If the agent is 
observed performing two different instances of PrepareMeal. 
and is further observed to remain in the kitchen for an interval 
which intersects the time of both actions. then we can deduce 
that both PrepareMeal actions share the same initial step. This 
example shows the importance of including obsenations that 
certain states hold over an interval. Without the fact that the 
agent remained in the kitchen. one could not conclude that the 
two PrepareMeal actions share a step. since it would be possible 
that the agent left the kitchen and then returned. 

6. Closing the Action Hierarchy 

Our formulation of plan recognition is based on an ex ii- 
citiy asserting that the action hierarch 
the “plan library”) is complete. Whi e the transformation of r 

(also commonly ca Ied P 

the hierarchy into a taxonomy can be automated. some details 
of the process are not obvious. It is not correct to simply apply 
predicate completion, in the style of [Cla78]. For example. 
even if action A is the only act which is stated to contain act B 
as a substep, it may not be correct to add the statement 

v e . #(e.B) > 3 el . #(el.A) 

if there is some act C which either speci;ilires or generalires B. 
and is USed in an action other than A. Ior e\,~llple. in our 
action hierarchy. he only expfrcll mention of MakeSauce 
appears in the decomposition of JlahcP:titaI>rsh. But the tax- 
onomy should not contain the statement 

v e . #(e. MakeSauce) 2 
3 a . #(a, MakePastrlDish) & e = S(3.a) 

because a particular instance ot MakeSauce ma) a k0 he an 
instance of MakeMarinara. and occur in the decomposition of 
the action MakeChickenMarinara. Only the weaker statement 

v e . #(e, MakeSauce) 1 
3 a . [#(a MakePastaDish) & e= S(3,a)] V 

[#(a, MakeChickenMarinara) & e = ‘$3-a)] 

is justified. It would be correct. however. to infer from an 
observation of MakeSauce which is known not to be an 
instance of MakeMarinara that MakePastaDish 0ccui-s 

We would like, therefore, a clear understanding of the 
semantics of closing the hierarchy. McCarthy’s notion of 
minimal entailment and circumscription [McC85] provides a 
semantic and proof-theoretic model of the process. The imple- 

.-;6 i SCIENCE 

mentation described in section 7 can be viewed as an efficient 
means for performing the sanctioned inferences. 

There is not space here to fully explain how and why the 
circumscription works; more details ap 
liarity with the technical vocabulary o P 

ear in [Kau85]. A fami- 
circumscription is prob- 

ably needed to make complete sense of the rest of this section. 
Roughly, circumscribing a predicate minimizes its extension. 
Predicates whose extensions are allowed to change during the 
minimization are said to vary. All other predicates are are 
called parameters to the circumscription. In anthropomorphic 
terms, the circumscribed predicate is trying to shrink. but is 
constrained by the parameters. who can choose to take on any 
values allowed by the original axiomatization. For example. 
circumscribing the predicate p in the theory: 

v x . p(x) = q(x) 

where q acts as a parameter does nothing because q can 
“force” the extension of p to be arbitrarily large. On the other 
hand, if 
cumscribe El 

varies during the circumscription, then the cir- 
theory entails that the extension of p is empty. 

As demonstrated above, the first assum 
known ways of specializing an action are a I the ways. Let us P 

tion states that the 

call all action types which are not further specialized basrc. 

Then another wa) of putting the assumption is to sav that the 
“occurs”  predicate. #. holds of an insr,ance and an’ abstract 

action type only if it h lo, because # holds of that instance 
and a basic action type which specializes the abstract type. So 
what we want is to circumscribe that 
non-basic action ty 

P 
es. This can be one by adding a predicate a 

art of # which applies to 

which is true of al basic action instances, and to let this 
cate act as a parameter during the circumscription of #. f  

redi- 
n our 

example domain. the following two statements. which we will 
call \I/. define such a predicate. 

Let + = ( tr x basic(\) I= 
r = MakeFettuciniMarinara V 
\= Boil V . . . , 

V e,r #b&c(e.t) = #(e.\) & basic(x) ) 

KBl is the set of axioms which make up the original action 
hierarchy. KB2 is then defined to be the circumscription of # 
relative to KBl together with \L. where all other predicates 
(including #basic) act as pammeters. 

KB2 = Circumscribe(KB1 ir \L. #) 

Interestingly. the process works even if there are manv levels of 
abstraction hierarchy above the level of basic actions. ‘Note that 
basic actions (such as MakeFettuciniMarinara) may be decom- 
posable. even though they are not further specialized. 

The second assum 
occurs only as part o P 

tion states that any non-top-level action 
the decomposition of some top-level 

action. Therefore we want to circumscribe that part of # 
which applies to non-to -level actions. This can be done by 
adding a predicate to K fl 2 which is true of all top-level action 
instances. and circumscribin 
added above must be allowe a’ 

# again. The predicate #basic 
to vary in the circumscription. 

Let @ = ( V e . #topleveI(e) > #(e,TopLevelAct) ) 

KB3 = Circumscribe(KB2 U @. #‘, #basic) 

As before, the process can percolate though many levels of the 
action decomposition hierarchy. Note that the concepts basic 
action and top-level action are not antonyms; for example, the 
type MakeFettuciniMarinara is basic (not speciahzable). yet any 
instance of it is also an instance of TopLeveiAct 

Circumscription cannot be used to express the simplicity 
constramt. Instead, one must minimize the cardinality of the 
extension of #, after the observations are recorded. [Kau85] 
describes the cardinality-minimization operator, which is simi- 
lar, but more powerful than. the circumscription operator. 



7. Implementation Considerations 

The formal theory described here has given a precise 
semantics to the plan recognition reasonin process by specify- 
ing a set of axioms from which all desire t 
derived deductively. Although no 

conclusions may be 
universally-applicable 

methods are known for automating circumscription. b . 
f7 

placing 
reasonable restrictions on the form of the action ierarchy 
axioms. we can devise a special-purpose algorithm for comput- 
ing the circumscriptions. As a result. in theory we could simply 
run a general purpose theorem proker gilen the resulting 
axioms to prove any particular (valid) conclusion. In practice. 
since we often don’t have a specific questlon to ask beyond 

“what is the agent’s goal?”  or “what will happen next?“, it is 
considerably more usetil to design a specialized forward chain- 
in 

f 
reasoning process that essentially embodies a particular 

in erence strategy over these axioms. 

We are in the process of constructing such a specialized 
reasoner. The algorithm divides into two components: the 
preprocessing stage and the forward-chaining stage. The 
preprocessing stage is done once for any given domain. The 
two corn 

E 
leteness assumptions from in the previous section are 

realized y circumscribing the action hierarchy. The result of 
the circumscri 

R 
tion can be viewed as an enormously long logi- 

cal formula. ut is quite compactly represented bl a graph 
structure. 

The forward-chaining stage be ins when obsenations are 
received. This stage incorporates tl e assumption that ;1s few 
top-level acts as possible are occurring. ~2s each observation is 
received, the system chains up both the abstraction and decom- 
position hierarchies. until a top-level action is reached. The 
intermediate steps may include many disjunctive statements. 
The action hierarchy is used as a control graph to direct and 
limit this disjunctive reasoning. After more than one observa- 
tion arrives, the s stem will hake derived two or more (elisten- 
tially instantiated r constants which refer to top-level actions. 
The simplicity assum 
that some subsets of tit 

tion is applied, by adding a statement 
ese constants must be equal. Exclusive- 

or reasoning now pro agates down the hierarchy. deriving a 
more restrictive s’et o P assertions about the to -level acts and 
their subacts. If an inconsistency is detected. ti en the number 
of top-level acts is incremented. and the system backtracks to 
the point at which the simplicity assumption was applied. 

This description of the implementation is admittedly 
sketchy. Many more details, including how the temporal con- 
straint propagation system integrates with the forward-chaining 
reasoner, will appear in a forthcoming technical report. 

8. Future Work 

Future work involves completing the theoretical founda- 
tion. and building a test implementation. 

The theoretical work includes a formal specification of the 
form of the action taxonomy so that its circumscription can 
always be effectively computed. Theorems guaranteeing the 
consistency and intuitive correctness of the circumscription will 
be completed. 

More complex temporal interactions between simultane- 
ously occurring actions ~111 be investigated. We will show how 
the framework handles more complicated examples involving 
step-sharing and observations received out of temporal order 
(e. 
a s ightly more sophisticated simplicity constraint. Rather than Y 

. mystery stories). It will probably be necessary to develop 

stating that as few top-level actions occur as possible. it is more 
realistic to state that as few top-level actions as possible are 
occurring at any one time. In addition. observations of non- 
occurrences of events (e. 

B 
. the agent did not boil water) are an 

important source of in ormation in plan recognition. Non- 
Occurrences integrate nicely into our framework. 

Many of the subsystems that are used b) the plan recog- 
nizer (such as a temporal reasoner [Al183a], And a lisp-based 

theorem rover which handles equality [All84a]) have been 
develope 1 in previous work at Rochester. and construction of 
the complete implementation is under way. 
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