
GENERALIZED PLAN RECOGNITION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Henry A. Kautz

James F. Allen

Department of Computer Science

University of Rochester

Rochester, New York 14627

ABSTRACT

This pa
r

er outlines a new theory of plan recognition that
is significant y more powerful than previous approaches. Con-
current actions. shared steps between actions, and disjunctive
information are all handled. The theory allows one to draw
conclusions based on the class of possible plans being per-
formed, rather than having to prematurely commit to a single
interpretation. The theory employs circumscription to
transform a first-order theory of action into an action taxonomy.
which can be used to logically deduce the complex action(s) an
agent is performing.

1. Introduction

A central issue in Artificial Intelligence is the representa-
tion of actions and plans. One of the major modes of reasoning
about actions is called plan recognition, in which a set of
observed or described actions is explained by constructing a
plan that contains them. Such techni
are-as, including story understanding, a

ues are useful *in many
iscourse modelmg, stra-

tegic planning and modeling naive psycholo y. In story under-
standing, for example, the plans of the c aracters must be i
recognized from the described actions in order to answer ques-
tions based on the story. In strategic planning, the planyer may
need to recognize the plans of another agent m order to rnteract
(co-operatively or competitively) with that agent.

Unlike planning, which often can be viewed as purely
hypothetical reasoning (i.e. if I did A. then P would be true),
plan recognition models must be able to represent actual events
that have happened as well as proposing hypothetical explana-
tions of actions. In addition. plan recognition inherently
involves more uncertainty than in planning. Whereas. in plan-
ning, one is interested in finding any plan that achieves the
desired goal. in
the particular p an that another agent is P

lan recognition. one must attempt to recognize
erforming. Previous

plan recognition models. as we shall see, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ave been unable to
deal with this form of uncertainty in any significant way.

A truly useful plan reco
P
nition system must. besides being

well-defined. be able to hand e various forms of uncertainty. In
particular, often a given set of observed Fctions may not
uniquely identify a particular plan. yet many important conclu-
sions can still be drawn and predictions about hture actions
can still be made.

For example, if we observe a person in a house picking up
the car keys, we should be able to infer that they are goin
leave the house to go to the car. even though we cannot te I f

to
if

they plan to drive somewhere, or simply to put the car in the
garage. On the basis of this information. we might ask the per-
son to take the garbage out when they leave. To accomplish
this. 3 system cannot wait until a single plan is uniquely
identified before drawing any conclusions, On the other hand. a
plan recognizer should not prematurely jump to conclusions
either. We do not want to handle the above example by simolv L - __
This work was supported in part by the Air Force Systems Command,
Rome Air Development Center, Griffiss Air Force Base, and the Air
Force Office of Scientific Research, under Contract No. F30602-85-C-
0008. and the National Science Foundation under grant DCR- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8502481.

inferring that the person is going to put the car into the garage
when there is no evidence to support this interpretation over
the one involving driving to the store.

In addition, a useful plan recognizer in many contexts can-
not make simplistic assumptions about the temporal ordering of
the observations either. In story understanding, for example, the
actions might not be described in the actual order that they
occurred. In many domains, we must also allow actions lo occur
simultaneously with each other, or allow the temporal ordering
not to be known at all, Finally, we must allow the possibility
that an action may be executed as part of two independent
plans. We might for example, make enough pasta one night in
order to prepare two separate meals over the next two days.

None of the previous models of plan recognition can han-
dle more than a few of these situations in any general way. Part
of the problem is that none of the frameworks have used a rich
enough temporal model to support reasoning about temporally
complex situations. But even if we were able to extend each
framework with a general temporal reasoning facility. there
would still be problems that remain. Let us consider three of
the major approaches briefly, and discuss these other problems.

The explanation-based approaches, outlined formally by
[Cha85] all attempt to explain a set of observations by finding a
set of assum
with this is iR

tions that entails the observations. The problem
at there may be many such sets of assumptions

that will have this property, and the theory says nothing as to
how to select amon
framework (e.g. f

them, In practice, systems based on this
[Wi 831) will over-commit, and select the first

explanation found, even though it is not uni
the observations. In addition. they are not a

uely identified by
& le to handle dis-

junctive information.

The approaches based on parsing (e.g. [H&32, Sid81])
view actions as sequences of subactions and essentially model
this knowledge as a context-free rule in an “action rammar” .
The rimitive (i.e. non-decomposable) actions in the B ramework
are tR e terminal symbols in the grammar. The observations are
then treated as input to the parser and it attempts to derive a
parse tree to explain the observations. A system based on this
model would suffer from the problem of over-commitment
unless it generates the set of possible explanations (i.e. ail possi-
ble parses). While some interesting temporal aspects in com-
bining plans can be handled by usin more powerful grammars
such as shuffle grammars, each in ividual tf
modelled as a sequence of actions.

plan can only be

plan must be observed --
In addition, every step of a

vation.
there is no capabili

It is not clear how more tempor 2
for partial obser-

ly complex plans
could be modelled, such as those involving simultaneous
actions, or how a single action could be viewed as being part of
multiple plans.

The final approach to be discussed is based on the concept
of “likely” inference (e.g. [All83, Po184]). In these systems a set
of rules is used of the form: “If one observes act A, then it may
be that it is part of act B”. Such rules outline a search space of
actions that produces plans that include the observations. In
practice, the control of this search is hidden in a set of heuris-
tics and thus is hard to define precisely. It is also difficult to

32 / SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

attach a semantics to such rules as the one above. This rule
does not mean that if we observe A. then it is probable that B
IS being executed. or even that it is possible that B is being exe-
cuted. The rule is valid even in situations where it is impossible
for B to be in execution. These issues are decided enttrely by
the heuristics. As such, it is hard to make precise claims as to
the power of this formalism.

In this pa er we outline a new theory of plan recognition
that is signi canrly more powerful that these previous K
Jpproaches in that it can handle many of the above issues in an
intuitively satisfjing way. Furthermore. there dre no restrictions
on the temporal relatronships between the observations.
Another important result is that the implicit assumptions that

clt and precisely del!ned w&in a I!rrnai theory of action.
appear to underly all Ian reco nition recesses are made expli-

Given these assumptions and a specific body of knowledge
about the possible actions and plans to be considered. this
theory will give us the strongest set of conclusions that can be
made given a set of observations. As such, this work lays a firm
base for future work in plan recognition.

Several
a

roblems often associated with plan recognition
are not consi ered in the current approach. however. In artic-
ular, beyond some sim

R
le simplicity assumptions, the P rame-

work does not distinguis between a priori likely and non-likely
plans. Each logically
tions, is treated equa ly within the theory. It also can only P

ossible explanation, given the assump-

recognize plans that are constructed out of the initial library of
actions defined for a particular domain. As a result, novel
situations that arise from a combination of existing plans may
be recognized, but other situations that require generalization
techniques, or reasoning by analogy cannot be recognized.

2. A New View of Plan Recognition

It is not necessary to abandon logic, or to enter the depths
of probabilistic inference, in order to handle the problematic
cases of plan recognition described above. Instead, we propose
that plan recognition be viewed as ordinary deductive inference.
based on a set of observations, an action taxonomy, and one or
more simplicity constraints,

An action taxonomy is an exhaustive description of the
ways in which actions can be performed, and the ways in which
any action can be used as step of a more complex action.
Because the taxonomy is complete, one can infer the disjunc-
tion of the set of possible plans which contain the observations,
and then reason by cases to reduce this disjunction.

An action taxonomy is obtained by applying two closed-
world assumptions to an axiomatization of an action hierarchy.
The first assumption states that the known ways of performing
an action are the only ways of performing that action. The
assumption is actually a bit more general, in that it states the
known wczys of specializing an action are the only ways. Each
time an abstract action is specialized. more is known ,tbout how
to perform it. For example, because the action type “throw”
\peciaiizes the action type “transfer location” , we can think of
throwing as a way to transfer location

The second assumption states that .lli actions are purpose-
fu!, and that all the possible reasons tr performing an action
ire known. This assumption is realized by stating that if Jn
Liction A occurs. and P is the set of more complex actions in
:thich 4 occurs s a substep. then home member of P also
occurs,

These assumptions can be stated using McCarthy’s cir-
cumscription scheme. The action hierarchy IS transformed by
first circumscribing the ways of specializing an act, and then cir-
cumscribing the ways of usmg an act. The precise formulation
of this operation is described m section 6 below.

The simplicity constraints become important when we
need to recognize a plan which integrates several observations.
The top of the action taxonomy contains actions which are
done for their own s,ake. rather than as steps of more complex
actions. When several actions are observed, it is often a good

heuristic to assume that the observations are all part of the
same top level act. rather than each being a step of an indepen-
dent top level act. lhe simplicity constraint which we will use
asserts that as few top level actions occur as

P
ossible. The sim-

plicity constraint can be represented by a ormula of second-
order logic which is similar to the circumscription formula. In
any parttcular case the constraint is instanttated as a first-order
formula which asserts “there are no more than n top level acts”.
which n is a particular constant choosen to be as small as possi-
ble, and still allow the instantiated constraint to be consistent
with the observations and taxonomy.

While one can imagine man other heuristic rules for
choosing between interpretations o r a set of observed actions,
the few given here cover a reat many common cases. and seem
to capture the “obvious” in erences one might make. More fine B
grained plan recognition tasks (such as strategic planning)
would probably require some sort of quantitative reasoning.

3. Representing Action

The scheme just described requires a representation of
action that includes:

--the ability to assert that an action actually occurred at a time:

--a specialization hierarchy:

--a decomposition (substep) hierarchy.

Action instances are individuals which occur in the world.
and are classified by action types. The example domain is the
world of cooking, which includes a very rich action hierarchy,
as well as a token bit of block stacking. (See figure 1.) The
broad arrows indicate that one action type is a speciahzatton of
another action type, whereas the thin arrows indicates the
decomposition of an action into subactions. We will see how to
represent this information in logic presently. The diagram does
not indicate other conditions and constraints which are also part
of an action decomposition. Instances of action types are also
not shown. We introduce particular instances of actions using
formulas such as

#(E9, makePastaDish)

to mean that E9 is a real action instance of t pe J4akePastaD
ish. (The symbol # is the “occurs” predicate. “, The structure of
a particular action can be specified by a qet of role functions.
In particular, the function T applied to an action Instance
returns the interval of time over which the action instance
occurs. Other roles of an action can also be represented by
functions: e.g.. Agent(E9) could be the agent causing the action.
and Result(E9) could be the particular meal produced b, E9.
(For simplicity we will assume in this paper that all actions ‘ire
performed by the same agent.) To record the observation of the
agent making a pasta dish at time [7. one would assert:

3 e . #(e.makePastaDish) & T(e) = 17

Action types need not ail be conrtants, as they are here:
often it is useful to use functions to construct ty es. such as
Move(x.y). For sim licity. JI the actions used in
in this paper use on P

R t e examples
y constant action tl pes.

i\ction specialization is easy to represent in this scheme.
In the cooking world. the act of making a pasta dish specializes
the act of preparing a meal, which in turn specializes the Ass
of top level acts. Specialization st,ttements are simply
universally-quantified implications. For example. part of the
hierarchy in figure 1 is represented by the following astoms:

[l] v e . #(e, PrepareMeal) II #(e. ropLeveL4ct)

[2] V e . #(e, MakePastaDish) II #(e. PrepareMeal)

[3] V e . #(e, MakeFettuciniMarinara) >
#(e, MakePastaDish)

[4] V e . #(e, MakeFettucini) > #(e, UakeNoodles)

Planning: AUTOMATED REASONING i 33

[5] v e . #(e, MakeSpaghetti) > #(e, MakeNoodles)

[6] tl e . #(e, MakeChickenMarinara) >
#(e, MakeMeatDish)

The first statement, for example, means that any action instance
which is a PrepareMeal is also a TopLevelAct

The decomposition hierarchy is represented by implica-
tions which assert necessary (and erhaps sufficient) conditions
for an action instance to occur. TR is may include the fact that
some number of subactions occur, and that various facts hold at
various times [A1184]. These facts include the preconditions and
effects of the action, as well as various constraints on the tem-
poral relationships of the subactions [Al183a].

For the level of analysis in the present pa et, we do not
need to distinguish the minimal necessary set o P conditions for
an action to occur, from a larger set which may include facts
which could be deduced from the components of the act. It is
also convenient to eliminate some existentially quantified vari-
ables by introducing a function S(i,e) which names the i-th
subaction (if any) of action e. (The actual numbers are not
important; any constant symbols can be used.) For example,
the makePastaDish action is decomposed as follows:

PI v e . #(e, MakePastaDish) 1
3 tn . #(S(l.e), MakeNoodles) &

Boil) &
MakeSauce) &
Object(S(2.e))= Result(S(1.e)) &
hold(noodle(Result(S(1,e)). tn) &
overlap(T(S(l,e)), tn) &
during(T(S(2,e)), tn)

This states that every instance of MakePastaDish consists of (at
least) three steps: making noodles, boiling them. and making a
sauce. The result of making noodles is an object which is
(naturally) of type noodle, for some period of time which fol-
lows on the heels of the making. (Presumably the noodles
cease being noodles after they are eaten.) Furthermore. the
boiling action must occur while the noodles are, in fact, noo-
dles. A complete decomposition of MskePastaDish would con-
tain other facts, such that result of the MakeSauce act must be
combined at some point with the noodles. after they are boiled.

The constraint that all the subactions of an action occur
during the time of the action is expressed for all acts by the
axiom:

[S] t/ i,e . during(T(S(i.e)), T(e))

It is important to note that a decomposable action can still be
further specialized. For example, the action type MakeFettu-
ciniMa.rinara specializes MakePastaDish and adds additional
constraints on the above definition. In particular, the type of
noodles made in step 1 must be fettucini, while the sauce made
in step 3 must be marinara sauce.

A final component of the action hierarchy are axioms
which state action-type disjointedness. Such axioms are
expressed with the connective “not and”, written as V:

[9] t/ e , #(e,MakeFettuciniAlfredo)
V #(e,MakeFettuciniMarinara)

This simply says that a particular action cannot be borh an
instance of making fettucini Alfred0 and an instance of making
fettucini Marinara Disjointedness axioms can be compactly
represented and used in resolution-based inference using tech-
niques adapted from [Ten86].

- . .

TopLevelAct

PreDareMeal StackBlocks

Rnil
WI..

MakeNoodles

MakeChicken

r

MakeFettucini
MakeMarinara

Figure 1: Action Hierarchy

34 / SCIENCE

4. Creating the Taxonomy

The assumptions necessary for plan recognition can now
be specified more precisely by considenng the full action
hierarchy presented m Ii

t!
ure 1. Let KBl be the set of axioms

schematically represente by the graph, including the axioms
mentioned above. KBl will be transformed into a taxonomy by
appl in the completeness assumptions discussed above. The
resu t 0 the first assum r$

i
tion (all ways of specializin an action

are known) is the data ase KB2, which includes s 1 of KBL,

together with statements which assert specialization complete-
ness. These include the following, where the symbol @ 1s the
connective ‘*exclusive or”.

[lo] t/ e . #(e,

[ll] V e . #(e.
e, MakePastaDish) @
e, MakeMeatDish)

[12] V e . #(e, MakePastaDish) 1
e, MakeFettucini Marinara) @

I
e. MakeFettuciniAifredo) @

e. ~/lakeSpagh~rtiC,lrbon~lr~)

[13] v e . #(e. MakeMeatDish) 1
e. :MakeChicken~l;rrinara) $
e. ~~ilakeChickenPrirnavera)

[14] t/ e . #(e, MakeNoodles) 3
e. MakeFettucini) @
I e. MakeSpaghetti)

These state that eve
7

top level action is either a case of
preparing a meal. or 0 stacking blocks: that every meal
preparation is either a case of making a pasta dish or making a
meat dish; and so on, all the way down to particular, basic
types of meals. Not all actions, of course, are specializations of
TopLevelAct For example, axiom [14] states that every Mak-
eNoodles can be further classified as a MakeFettucini or as a
MakeSpaghetti, but it is not the case that any MakeNoodles can
be classified as a TopLeveIAct.

The second assumption asserts that the given decomposi-
tions are the only decom ositions. KB2 is transformed to the
final taxonomy KB3, whit rl includes all of KB2, as well as:

[15] V e . #(e, MakeNoodles) >
3 a . #(a, MakePastaDish) & e = S(l,a)

[16] V e . #(e, MakeMarinara) 1
3 a. #(a, MakeFettuciniMarinara) & e = V

#(a, MakeChickenMarinara) & e =

[17] V e . #(e, MakeFettucini) >
3 a.

\

#(a, MakeFettuciniMarinara) & e = S(l,a] V

#(a, MakeFettuciniAlfredo) & e = S(1.a) i

Axiom [15] states that whenever an instance of MakeNoodles
occurs, then it must be the case that some instance of MakePas-
&Dish occurs. Furthermore, the MakeNoodles act which is
required as a substep of the MakePastaDish is in fact the given
instance of MakeNoodles, Cases like this, where an action can
on1 be used in one possible su
hi $I level of action abstraction. P

er-action, usually occur at a
t is more common for many

uses for an action to occur in the taxonomy. The given hierar-
chy has two distinct uses for the action MakeMarinara, and this
is captured in axiom [16]. From the fact that the agent is mak-
ing Marinara sauce, one is justified in concluding that an action
instance will occur which is either of type MakeFettuciniMari-
nara or of type MakeChickenMarinara.

All these transformations can easily be performed
automatically given an action taxonomy of the form described

in the previous section. The formal basis for these transforma-
tions is described in section 6.

5. Recognition Examples

We-are now ready to work through some examples of plan
recognition using the cooking taxonomy. In the steps that- fol-
low, existentially-quantified variables will be replaced by tresh
constants. Constants introduced for observed action inst‘ances
begin with E. and those for deduced action instances being with
K. Simple cases typical of standard
accounted for. In this section, we s R

Ian recognmon are easrly
all consider an extended

example demonstrating some more problematic cases.

Let the first observation be disjunctive: the agent is
observed to be either making fettucini or making spaghetti. but
we cannot tell which. This is still enough information to make
predictions about future actions. The observation is:

[18] #(El, MakeFettucini) V #(El. MakeSpaghetti)

The abstraction axioms let us infer up the hierarchy:’

[19] #(El, MakeNoodles) abstraction axioms [-+I. [5]

[20] #(KOl, MakePastaDish) decomposition axiom [15],
and extstential instantiation

[21] #(KOl, PrepareMeal) abstraction axiom [2]

[22] #(KOl, TopLevelAct) abstraction axiom [l]

Statement [20
the future: a lo

together with [7] lets us make a prediction about
il will occur:

[23] #(S(2,KOl), boil) 8c
Object(S(2,KOl)) = ResuIt(El) &
after(T(S(2,KOl)),T(El))

Thus even thou
P
h the particular plan the agent is performing

cannot be exact y identified, specific predictions about future
activities can still be made.

The previous step showed how one could reason from a
disjunctive observation u

4
the abstraction hierarchy to a non-

disjunctive conclusion. ith the next observation, we see that
omg a up -the decomposition hierarchy from a non-disjunctive
ierarchy can lead to a disjunctive conclusion. Suppose the

next observation is:

[24] #(E3, MakeMarinara)

Applying axiom (161, which was created by the second com-
pleteness assumption, leads to the conclusion:

(251 # K02, MakeFettuciniMarinara) V

I K02, MakeChickenMarinara)

The abstraction hierarchy can again be used to collapse this dis-
junction:

[26] #(K02, MakePastaDish) V #(K02, MakeMeatDish)

[27] R (K02, PrepareMeal)

[28] #(K02, TopLevelAct)

At this point the simplicity constraint comes into play. The
strongest form of the constraint, that there is only one top level
action in progress, is tried first:

[29] V el,e2 . #(el. TopLevelAct) &
#(eZ, TopLevelAct) > el =e2

Together with [22] and [28]. this implies:

(301 KOl = K02

Substitution of equals yields:

[31] #(K02, MakePastaDish)

One of the disjointedness sAiorns t‘rom the original action
hierarchy is:

Planning: AUTOMATED REASONING / 35

[32] V e . #(e. MakePastaDish) C #(e. ,&Iake\leatDjsh)

Statements [30]. [31]. and [6] let us deduce:

[33] 1#(K02. MakeMeatDish)

[34] 1##KOO, MakeChickenMarinara)

Finally. [34] and [25] let us conclude that only one plan. which
contains both observations, is occurring:

[35] xf(KO2, MakeFettuciniMarinara)

Tern
ples. as 51

oral constraints did not play a role in these exam-
ey do in more complicated cases. For example,

observations need not be received in the order in which the
observed events occurred, or actions might be observed in an
order where the violation of temporal constraints can ~IOW the
system to reject hypotheses. For example, if a Boil act at an
unknown time were input, the system would assume that it was
the boil act of the (already deduced) MakePastaDish act. If the
Boil were constrained to occur before the initial MakeNoodles,
then the strong simplicity constraint (and all deductions based
upon it) would have to withdrawn, and two distinct top level
actions postulated.

Different top level actions (or any actions, in fact) fan
share subactions, if such sharing is permitted by the particular
domain axioms. For example, sup ose every Prepare&Meal
action begins with GotoKitchen, and J: e agent is constrained to
remain in the kitchen for the duration of the act. If the agent is
observed performing two different instances of PrepareMeal.
and is further observed to remain in the kitchen for an interval
which intersects the time of both actions. then we can deduce
that both PrepareMeal actions share the same initial step. This
example shows the importance of including obsenations that
certain states hold over an interval. Without the fact that the
agent remained in the kitchen. one could not conclude that the
two PrepareMeal actions share a step. since it would be possible
that the agent left the kitchen and then returned.

6. Closing the Action Hierarchy

Our formulation of plan recognition is based on an ex ii-
citiy asserting that the action hierarch
the “plan library”) is complete. Whi e the transformation of r

(also commonly ca Ied P

the hierarchy into a taxonomy can be automated. some details
of the process are not obvious. It is not correct to simply apply
predicate completion, in the style of [Cla78]. For example.
even if action A is the only act which is stated to contain act B
as a substep, it may not be correct to add the statement

v e . #(e.B) > 3 el . #(el.A)

if there is some act C which either speci;ilires or generalires B.
and is USed in an action other than A. Ior e\,~llple. in our
action hierarchy. he only expfrcll mention of MakeSauce
appears in the decomposition of JlahcP:titaI>rsh. But the tax-
onomy should not contain the statement

v e . #(e. MakeSauce) 2
3 a . #(a, MakePastrlDish) & e = S(3.a)

because a particular instance ot MakeSauce ma) a k0 he an
instance of MakeMarinara. and occur in the decomposition of
the action MakeChickenMarinara. Only the weaker statement

v e . #(e, MakeSauce) 1
3 a . [#(a MakePastaDish) & e= S(3,a)] V

[#(a, MakeChickenMarinara) & e = ‘$3-a)]

is justified. It would be correct. however. to infer from an
observation of MakeSauce which is known not to be an
instance of MakeMarinara that MakePastaDish 0ccui-s

We would like, therefore, a clear understanding of the
semantics of closing the hierarchy. McCarthy’s notion of
minimal entailment and circumscription [McC85] provides a
semantic and proof-theoretic model of the process. The imple-

.-;6 i SCIENCE

mentation described in section 7 can be viewed as an efficient
means for performing the sanctioned inferences.

There is not space here to fully explain how and why the
circumscription works; more details ap
liarity with the technical vocabulary o P

ear in [Kau85]. A fami-
circumscription is prob-

ably needed to make complete sense of the rest of this section.
Roughly, circumscribing a predicate minimizes its extension.
Predicates whose extensions are allowed to change during the
minimization are said to vary. All other predicates are are
called parameters to the circumscription. In anthropomorphic
terms, the circumscribed predicate is trying to shrink. but is
constrained by the parameters. who can choose to take on any
values allowed by the original axiomatization. For example.
circumscribing the predicate p in the theory:

v x . p(x) = q(x)

where q acts as a parameter does nothing because q can
“force” the extension of p to be arbitrarily large. On the other
hand, if
cumscribe El

varies during the circumscription, then the cir-
theory entails that the extension of p is empty.

As demonstrated above, the first assum
known ways of specializing an action are a I the ways. Let us P

tion states that the

call all action types which are not further specialized basrc.

Then another wa) of putting the assumption is to sav that the
“occurs” predicate. #. holds of an insr,ance and an’ abstract

action type only if it h lo, because # holds of that instance
and a basic action type which specializes the abstract type. So
what we want is to circumscribe that
non-basic action ty

P
es. This can be one by adding a predicate a

art of # which applies to

which is true of al basic action instances, and to let this
cate act as a parameter during the circumscription of #. f

redi-
n our

example domain. the following two statements. which we will
call \I/. define such a predicate.

Let + = (tr x basic(\) I=
r = MakeFettuciniMarinara V
\= Boil V . . . ,

V e,r #b&c(e.t) = #(e.\) & basic(x))

KBl is the set of axioms which make up the original action
hierarchy. KB2 is then defined to be the circumscription of #
relative to KBl together with \L. where all other predicates
(including #basic) act as pammeters.

KB2 = Circumscribe(KB1 ir \L. #)

Interestingly. the process works even if there are manv levels of
abstraction hierarchy above the level of basic actions. ‘Note that
basic actions (such as MakeFettuciniMarinara) may be decom-
posable. even though they are not further specialized.

The second assum
occurs only as part o P

tion states that any non-top-level action
the decomposition of some top-level

action. Therefore we want to circumscribe that part of #
which applies to non-to -level actions. This can be done by
adding a predicate to K fl 2 which is true of all top-level action
instances. and circumscribin
added above must be allowe a’

again. The predicate #basic
to vary in the circumscription.

Let @ = (V e . #topleveI(e) > #(e,TopLevelAct))

KB3 = Circumscribe(KB2 U @. #‘, #basic)

As before, the process can percolate though many levels of the
action decomposition hierarchy. Note that the concepts basic
action and top-level action are not antonyms; for example, the
type MakeFettuciniMarinara is basic (not speciahzable). yet any
instance of it is also an instance of TopLeveiAct

Circumscription cannot be used to express the simplicity
constramt. Instead, one must minimize the cardinality of the
extension of #, after the observations are recorded. [Kau85]
describes the cardinality-minimization operator, which is simi-
lar, but more powerful than. the circumscription operator.

7. Implementation Considerations

The formal theory described here has given a precise
semantics to the plan recognition reasonin process by specify-
ing a set of axioms from which all desire t
derived deductively. Although no

conclusions may be
universally-applicable

methods are known for automating circumscription. b .
f7

placing
reasonable restrictions on the form of the action ierarchy
axioms. we can devise a special-purpose algorithm for comput-
ing the circumscriptions. As a result. in theory we could simply
run a general purpose theorem proker gilen the resulting
axioms to prove any particular (valid) conclusion. In practice.
since we often don’t have a specific questlon to ask beyond

“what is the agent’s goal?” or “what will happen next?“, it is
considerably more usetil to design a specialized forward chain-
in

f
reasoning process that essentially embodies a particular

in erence strategy over these axioms.

We are in the process of constructing such a specialized
reasoner. The algorithm divides into two components: the
preprocessing stage and the forward-chaining stage. The
preprocessing stage is done once for any given domain. The
two corn

E
leteness assumptions from in the previous section are

realized y circumscribing the action hierarchy. The result of
the circumscri

R
tion can be viewed as an enormously long logi-

cal formula. ut is quite compactly represented bl a graph
structure.

The forward-chaining stage be ins when obsenations are
received. This stage incorporates tl e assumption that ;1s few
top-level acts as possible are occurring. ~2s each observation is
received, the system chains up both the abstraction and decom-
position hierarchies. until a top-level action is reached. The
intermediate steps may include many disjunctive statements.
The action hierarchy is used as a control graph to direct and
limit this disjunctive reasoning. After more than one observa-
tion arrives, the s stem will hake derived two or more (elisten-
tially instantiated r constants which refer to top-level actions.
The simplicity assum
that some subsets of tit

tion is applied, by adding a statement
ese constants must be equal. Exclusive-

or reasoning now pro agates down the hierarchy. deriving a
more restrictive s’et o P assertions about the to -level acts and
their subacts. If an inconsistency is detected. ti en the number
of top-level acts is incremented. and the system backtracks to
the point at which the simplicity assumption was applied.

This description of the implementation is admittedly
sketchy. Many more details, including how the temporal con-
straint propagation system integrates with the forward-chaining
reasoner, will appear in a forthcoming technical report.

8. Future Work

Future work involves completing the theoretical founda-
tion. and building a test implementation.

The theoretical work includes a formal specification of the
form of the action taxonomy so that its circumscription can
always be effectively computed. Theorems guaranteeing the
consistency and intuitive correctness of the circumscription will
be completed.

More complex temporal interactions between simultane-
ously occurring actions ~111 be investigated. We will show how
the framework handles more complicated examples involving
step-sharing and observations received out of temporal order
(e.
a s ightly more sophisticated simplicity constraint. Rather than Y

. mystery stories). It will probably be necessary to develop

stating that as few top-level actions occur as possible. it is more
realistic to state that as few top-level actions as possible are
occurring at any one time. In addition. observations of non-
occurrences of events (e.

B
. the agent did not boil water) are an

important source of in ormation in plan recognition. Non-
Occurrences integrate nicely into our framework.

Many of the subsystems that are used b) the plan recog-
nizer (such as a temporal reasoner [Al183a], And a lisp-based

theorem rover which handles equality [All84a]) have been
develope 1 in previous work at Rochester. and construction of
the complete implementation is under way.

References

A1183.

All83a.

Al184.

Cha85.

Cla78.

Hut-82.

Kau85.

McC85

Pol84.

Sid81.

Ten86.

Wi183.

Al184a.

James F. Allen, “Recognizing Intentions from Natural
Langua e Utterances.”

%
m Compulatlonal hfodeis of Discourse,

ed. M. rady. MITP. 1983.
James F. Allen, “hlaintaining Knowicdge Atwut Temporal
Intervals.” Comruutlicullons ot the AC.lf. no. 26, PP. 832-843.
tiov 1983.

, . .

James F. Allen, ” I obdrds a Gencrdl I heor) of i\ctlon 2nd
Time,” ArriJiciul Inrcllrge,lce. vol. 23, no. 2. pp. 123-154. Jul>
1984.

Eugene Charniak and Drew McDermott. lrzlroducfion lo

Arfrjcial Inlelligcncc: Addison Wesley. Reading, .Mfi. 1985.

K.L. Clark, “Negauon as Failure,” in Logic and Darabuses.

ed. J. Minker. Plenum Press. New York. 1978.

Karen Huff and Victor Lesser, “KNOWLEDGE-BASED
COMMAND UNDERSTANDING: An Example for the
Software Development Environment” Technical Report 82-
6. Computer and Information Sciences University of Mas-
sachusetts at Amherst. Amherst, MA, 1982.

Henry A. Kautz. “Toward a Theory of Plan Recognition,”
T’R162. Department of Computer Science. University of
Rochester, July, 1985.

John McCarthy, “Applications of Circumscription to Formal-
izing Common Sense Knowledge.” in Proceedings ram the

ir Non-Monofonic Reasoning Workshop, AAAI. Ott 19 5.

Martha E. Pollack, “Generating Expert Answers Throunh
Goal Inference,” PhD Thesis Propod. Department of Coti-

P
uter Science, University of Pennsylvania, August 1983,
anuary 1984. DRAFI’

Candace L. Sidner and David J. Israel, “Recognizing
Intended Meaning and Speakers’ Plans,” IJCAI. 1981.

Josh D. Tenenburg. “Reasonin
sion of Clausal Form.” TR 1 $

Using Exclusion: An Exten-
7, De

P
artment of Computer

Science, University of Rochester, Jan 986.

Robert Wilensky, Planning and Understanding, Addison-
Wesley, Reading, MA, 1983.

James F. Allen. Mark Giuliano. and Alan M. Fnsch, “The
HORNE Reasoning System.” TR 126 Revised, Computer
Science Department, University of Rochester, Sept 1984.

Planning: AUTOMATED REASONING i 3'

