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1. Introduction. Finite deformations of materials composed of long, strong fibers
bonded together with a weaker matrix material can be studied by using the theory of
ideal fiber-reinforced materials. This theory, which is the subject of a recent book by
Spencer [1], is based on the idealizations that the fibers are continuously distributed
and inextensible and that the composite is incompressible in bulk. In plane deformations
of such materials [2], the kinematic constraint conditions are sufficiently restrictive, so
that stress-strain relations often play only a minor role. For this reason, it is relatively
easy to solve problems that would be intractible if the material were isotropic [3-10].
The relation of solutions from the idealized theory to solutions for slightly extensible
materials is understood fairly well [11, 12], Most of the existing work on plane deforma-
tions is discussed in a recent review article [13].

In the present paper we discuss deformations of cylindrical bodies with fibers lying
in cross-sectional planes. The fibers may be curved, but they have the same distribution
on each cross-section. The body is stretched or compressed in the axial direction and then
subjected to a further plane deformation. The axial stretching causes the cross-section
to change shape. The theory of superposed plane deformations is not essentially different
from the theory that applies when there is no stretching [2], if the stretched state is used
as the reference state. Consequently, our main object is to determine the state of deforma-
tion produced by axial stretching.

Because of the cross-sectional distortion produced by stretching in the axial direction,
it may or may not be possible to accomplish this stretching by means of a simple tensile
stress alone, depending on the arrangement of fibers on each cross-section. For some
arrangements, axial stretching necessarily requires shearing parallel to the fiber direction.
With any reasonable assumption about the stress response, this implies that the stress
in the stretched state is not merely an axial tension.

We approach the problem of determining the cross-sectional distortion by an inverse
method in which it is not necessary to specify the stress response in advance. We deter-
mine the fiber arrangements that will allow axial stretching Avith no shearing parallel
to the fibers. We show that the kinematical condition of no shearing can be satisfied only
if the fibers and their orthogonal trajectories form a Hcncky-Prandtl net when the
body is undeformcd (Sec. 6).

* Received March 13, 1973. The work described in this paper was carried out under grant GP-28881
from the National Science Foundation to Brown University.
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Fortunately, these cases include all that are likely to be of any practical importance.
When the fibers are initially straight and parallel, or when they lie on concentric circles,
or in any case in which the fibers lie along parallel curves, the fibers and their orthogonal
trajectories do form a Hencky-Prandtl net. The deformation produced by axial stretching
for all cases with initially parallel fibers is determined in Sec. 7, and for cases involving
straight but non-parallel fibers in Sec. 8. The general Hencky-Prandtl net is discussed
in Sec. 9.

Because our main results are purely kinematical, discussion of stress response is
deferred until Sec. 10. We consider only elastic stress response, as an illustration. The
stress equilibrium equations are not used until Sec. 11. We use them to show that if the
shearing stress is zero whenever there is no shearing, then stretching with no shearing
can indeed be supported by axial tension alone. In Sec. 12 we briefly verify that problems
of superposed plane deformation do reduce to ordinary plane problems if the stretched
state is used as the reference state.

2. Fibers and normal lines. We consider a cylindrical body of arbitrary, uniform
cross-section, with its axis in the Z-direction of a rectangular Cartesian coordinate
system X, Y, Z. We suppose that the body is stretched (or compressed) to X times its
initial length in the axial direction and subjected to a plane deformation as well. The
particle initially at X moves to a place x(X) given in Cartesian coordinates by a mapping
of the form

x = x(X, F), y = y(X, Y), z = XZ. (2.1)

1'he body is reinforced with inextensible fibers, which are treated as continuously
distributed. Through each point of the body there is a material curve that we call a fiber.
The fibers lie in cross-sectional planes and have the same arrangement on each cross-
section. In the undeformed body this arrangement is specified by giving the angle d0(X, Y)
between the fiber direction at the point X and some fixed direction. After the deformation,
the fibers on a given cross-section form a new family of plane curves, and the fiber angle
at x is denoted d(x, y).

The orthogonal trajectories of the fibers on a given cross-section are called normal
lines. Let a and n be unit vectors tangential to the fiber and the normal line at x. These
vectors can be expressed as functions of the fiber angle 6 at x. If we take the ^--direction
to be the direction 6 = 0 (which is not always convenient), then in terms of constant
base vectors i, j, k in the coordinate directions, we have

a(0) = i cos 9 + j sin 6 (2.2)

and
n(0) = — i sin 6 + j cos 6. (2.3)

The same functions of 0, evaluated at 0„(X, F), give unit vectors along the fibers and
normal lines in the undeformed body. For abbreviation, we denote these by a0 and n„ .
We note that the derivatives of a and n with respect to 6 are

a'(0) = n (6), n'(0) = -a(0). (2.4)

The gradient with respect to initial position X is denoted by V0 and the gradient
with respect to x is V. The radii of curvature of fibers and normal lines after the deforma-
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tion, ra and r„ , are defined by

1 /r. = a-VO, 1/r, = n-Vfl. (2.5)

Similarly, the initial radii of curvature are given by

lA\>o = ao'Vo^o j 1/^no = n0 • Vo^o • (2.6)

Directional derivatives in the fiber and normal directions generally do not commute.
Instead, we find that

(n• V)(a• V) - (a-V)(n-V) = [(n-V)a - (a-V)n]-V. (2.7)

By using (2.4) and (2.5) to simplify the right-hand member, we obtain

(n-V)(a-V) - (a-V)(n-V) = (n,/r. + a,/r.)-V. (2.8)

The initial fields satisfy the same commutation relation.

3. Constraints. Material line elements of length ds in the fiber, normal, and axial
directions before the deformation are carried by the deformation x(X) onto elements
with lengths and directions defined by

(a0*V0)x(X) ds, (n0-V0)x(X) ds, (k„-V0)x(X) ds, (3.1)

respectively. These directions and lengths are restricted by certain kinematical con-
straints imposed on admissible deformations.

Because we consider generalized plane deformations, the initially axial element is
still in the axial direction and of length X ds after the deformation. Hence,

(ko-Vo)x(X) = Xk. (3.2)

The element initially in the fiber direction a0 still lies along a fiber after the deforma-
tion, and is thus in the direction a. Because we treat fibers as inextensible, its length is
still ds. Thus,

(a0-Vo)x(X) = a. (3.3)

The element initially in the normal direction does not necessarily lie in the normal
direction after the deformation, but it is in the plane of a and n. Its component in the
n-direction is determined by a further constraint. We treat the composite as incom-
pressible in bulk, so the parallelepiped spanned by the elements (3.1) must have the
volume (ds)3. This implies that the element initially in the normal direction has the
component ds/\ in the n-direction after the deformation:

(n0-Vo)x(X) = X_1(n + «a). (3.4)

The coefficient k represents the amount of shear parallel to the fiber direction, measured
with respect to the stretched state.

Since there is a one-to-one correspondence between initial position X and final
position x, we can treat quantities associated with a given particle as functions of
either x or X, as convenience dictates. By using (3.2) to (3.4) and the chain rule, we find
that derivatives with respect to the two sets of variables are related by

ao-Vo = a-V, n0-V0 = X-1(n + »ca)-V, k0-V0 = Xk-V- (3.5)
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4. Compatibility conditions. The constraints (3.2)-(3.4) restrict the deformations
x(X) that can be considered. Because of these constraints, the functions 8(x, y) and
k(x, y) that specify the fiber angle and amount of shear cannot be specified arbitrarily
or independently. To obtain compatibility conditions on these variables, i.e., integra-
bility conditions for the system of equations (3.2) to (3.4), we eliminate x(X) from (3.3)
and (3.4) by cross-differentiation. In doing this, we use the commutator (2.8), written
for the initial fields. We obtain

(n0-V0)a - (a0-V0)X_1(n + *a) = X~'(n + «a)/r„0 + a/ra0 . (4.1)

By using (2.4) here and then separating the resulting equation into components in the
fiber and normal directions, we obtain

ao*Vo(9 k) = X/Va0 -f- K/rno (4.2)

and

Kaf, ■ Vo® = 1/^no • (4.3)

By using (3.5) and (2.5), we can rewrite (4.3) as

n-Vd = n0-VA , or r„ = r„„ . (4.4)

Thus, just as in ordinary plane deformations [2], the radius of curvature of the normal
line through a particle after the deformation is the same as the radius of curvature of
the normal line that passed through it before the deformation.

We can also rewrite (4.2) as either

ao*Vo(^ K) = K^o* Vo^o (4.5)

a-V(0 — A0O — k) = Kn-Vd. (4.6)

In the particularly important cases in which normal lines are initially straight (and thus
straight in any state of deformation), the right-hand member of (4.6) is zero and the
equation can be integrated immediately. In these cases the amount of shear k is equal
to 9 — X60 plus an amount that is constant on each fiber.

5. Simple axial tension. In infinitesimal deformations, with linear equations,
generalized plane strain amounts to the sum of two solutions, axial stretching and a plane
deformation. For the finite deformations that we consider here, solutions cannot be
superposed additively, but we can still break the solution into two parts: first the axial
stretching and then, with the stretched state as reference state, an ordinary plane
deformation. Since problems of plane deformation have been discussed elsewhere, we
concentrate here on the first part of the problem, the determination of the state of
deformation produced by uniform stretching in the axial direction with no tractions
on the lateral surfaces of the body.

This problem, which is trivial for isotropic materials, is not entirely simple in the
present context. The constraint conditions require the cross-section to change shape
when the body is stretched in the axial direction, and for an arbitrary initial field of fiber
directions 60(X, Y), determination of the cross-sectional shape after axial stretching is
no simpler than any other plane problem.
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We do not consider even the stretching problem in all generality, but restrict attention
to cases in which the axial stretching can be accomplished with only a tensile stress azz .
Although we defer discussion of stress response until Sec. 10, it is probably obvious that
under loose assumptions about the stress, the stress components axx , a,,,, , and cxs can
all be zero only if the amount of shear k is zero everywhere. Thus, although we speak
of simple axial tension, our problem is a purely kinematical one. We wish to determine
whether or not there is a state of deformation with k = 0 everywhere, and if so, what it is.

6. Fiber arrangements allowing simple axial tension. We now show that a state of
simple axial tension is possible only if the fibers and normal lines initially form a Hencky-
Prandtl net, and that if they do, they again form another Hcncky-Prandtl net after the
axial stretching.

In deformations with no shearing, i.e. k = 0 everywhere, normal lines behave as
material lines. Conversely, deformations in which all normal lines map onto normal
lines have zero shear everywhere. A line element n0 ds maps onto n ds/\ in the deforma-
tion, and thus remains in the normal direction, as we see from (3.4) with k = 0.

In such cases (3.5) takes the simpler form

a0-V0 = a-V, \n0 • V0 = n-V, k0-V„ = Xk-V, (6.1)

and the compatibility conditions (4.4) and (4.6) then become

a-V(0 - X0O) = 0, n-V(X0 - 0„) = 0. (6.2)

Equivalently,

ra = ra0/X, r„ = r„0 , (6.3)

Let J be a coordinate constant along normal lines and let i) be constant along fibers.
Then from (6.2) we obtain

e - \ea = /(„), \d - e0 = g(0. (6.4)

Let ABCD be a curvilinear region bounded by fibers along AB and CD and by normal
lines along AC and BD. Then, with a little algebra, we find from (6.4) that the angles
9 at the four corners satisfy the relation

9a 9b — 9c 9d , (6.5)

and the same relation is satisfied by the initial angles 9„ at the four corner particles.
When two orthogonal families of curves have the property (6.5), they form a Hencky-

Prandtl net. The geometrical properties of such nets have been investigated thoroughly
in connection with plane plastic deformations (see Prager and Hodge [14], for example).
Thus, we have found that axial stretching can be carried out with no shearing anywhere
only if the fibers and normal lines initially are arranged in a Hencky-Prandtl net.

Such an arrangement is sufficient to allow a deformation with no shearing, because
with the compatibility conditions satisfied, the relations (3.2) to (3.4) can be integrated
to yield a deformation x(X). In Sees. 7 and 8 we construct the deformation explicitly
for the special cases in which either normal lines or fibers are initially straight. In Sec. 9
we consider the cases in which neither fibers nor normal lines are straight.
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7. Initially parallel fibers. Because of practical limitations on methods of fabrica-
tion, it will most usually be the case that the fibers lie along curves that are initially
parallel, although not necessarily straight, such as concentric circles. In such cases the
normal lines are initially straight, but not necessarily parallel. Almost all solved problems
in the literature deal with such cases. They are especially simple because the normal lines
must remain straight in every state of deformation, as remarked in Sec. 4.

It is trivial to verify that any net in which one family is composed of straight lines is
a Hencky-Prandtl net. Thus, uniform axial stretching with no shearing is always
kinematically admissible when the fibers are initially parallel. The simplest cases are
those in which the fibers are not only parallel but straight. In these cases, if we take
the X-direction parallel to the fibers, the deformation is

x = X, y = F/X, z = \Z. (7.1)

Both here and in the following examples, we leave aside an arbitrary rigid motion. In
this case the distortion of the cross-section is a simple contraction perpendicular to the
fibers, of an amount sufficient to preserve the volume.

In the more general cases in which fibers arc parallel but curved, we select some
straight normal line and designate the fiber angle on it as 80 = 0. After the axial stretching
deformation, the normal line is still straight, and with no loss of generality we can
designate the fiber angle on it as 8 = 0. Then 8 — \80 is zero on that normal line, and
also on all the fibers that cross it, according to (6.2a). Then, by a repetition of the
argument if necessary, the same is true everywhere if the cross-section is connected:

8 = A0O • (7.2)

As a special case, suppose that fibers initially lie on concentric circles in the region
Ri < R < R2 , 0 < d0 < A, where R and 80 are polar coordinates. There is no incon-
sistency in calling 80 the fiber angle; we simply take the F-direction as the fiber direction
for which the fiber angle is zero. The polar coordinate R is the same as the fiber radius
of curvature, ra0 . Then from (6.3a) and (7.2), we find that in simple axial tension the
particle initially at R, 80 , Z moves to r, 9, z, where

r = R/\, 8 = X80 , z = \Z. (7.3)

With X > 1, the curvilinear block becomes thinner in the radial direction and curls up
more tightly. If X = 2ir/A, the two plane faces initially along 80 = 0 and 8„ = A meet
at 8 = 0 (8 = 2ir), and a tube is formed.

For any case with initially parallel fibers, the body can be regarded as separated into
infinitesimal wedges by the straight normal lines, and each wedge deforms as the finite
wedge in the preceding example did. For an analytical representation of the deformation,
we label each normal line with the fiber angle 8„ on it, and we label each fiber with its
distance 77 from some arbitrarily selected fiber. The net is completely defined when the
radius of curvature ra0 along the fiber r/ = 0 is specified as a function of 80 . If we call
this r0(8o), then because the fibers are parallel, r„0 is given everywhere by

r„ 0 = ro(0o) V- (7.4)

We specify the deformation by expressing both X and x in terms of the parameters
do , v, and Z. Taking note of the; expressions for elements of arc length in the initial
fiber, normal, and axial directions, we write
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dX = a0rQ0 d0o + n0 d?j + k„ dZ. (7.5)

By using (2.4) and (7.4) we find that the right-hand member of (7.5) is indeed a perfect
differential, and we obtain

X = f a(a)r0(a) da + n(0o)r; + k0Z. (7.6)

To express the final position x in terms of the same parameters, we first combine
(3.2) to (3.4) (with k = 0) as

dx = ara0 dd0 + X~'n drj + Xk dZ. (7.7)

With a and n the functions of 0 defined in (2.2) and (2.3), 0 given in terms of 9„ by (7.2),
and ra0 given by (7.4), then the right-hand member of (7.7) is a perfect differential,
and integration gives

x = f a(\a)r0(a) da + X_1n(Xfl0)»? + XkZ. (7.8)
Jo

8. Initially straight fibers. Cases in which fibers are initially straight but not
parallel are equally simple. From (6.4a) we find that with d0 constant along each fiber,
9 is also constant along each fiber. Thus, in simple axial tension the fibers remain straight.
We can define the fiber angles 90 and 9 to be zero on some arbitrarily selected fiber; then
X0 — 0O is zero not only on that fiber but also on all normal lines crossing it, according
to (6.4b). Then by extension, the same is true everywhere if the cross-section is connected:

9 = 6J\. (8.1)

As an example, consider a curvilinear block like that described in Sec. 7, but with
fibers now radial, lying along the lines 0O = constant. The normal radius of curvature r„0
is the same as the polar radius R. As in any generalized plane deformation, this radius
of curvature is conserved in an axial stretching deformation. Thus, the particle initially
at R, 9n , Z moves to r, 9, z, where

r = R, 6 = 0O/X, s = \Z. (8.2)

For the general case of fibers that are initially straight but not parallel, each infinites-
imal wedge bounded by fibers deforms as the finite wedge in the preceding example did.
To describe the deformation analytically, let each fiber be labelled with the fiber angle
90 on it, and let each normal line be labelled with a value £ equal to its distance from
an arbitrarily chosen normal line £ = 0. This distance is unambiguously defined because
the normal lines are parallel curves when the fibers are straight. Let r0(90) be the radius
of curvature rn0 of the normal line £ = 0. Specification of this function defines the net
under consideration. Because the normal lines are parallel, r„0 is then given everywhere by

r„o = r0(60) + (8.3)

The initial position X is expressed in terms of the parameters £, 90 , and Z by inte-
grating the expression

dX = a(d0) di + n(0o)r„o(£, 0O) d90 + k0 dZ. (8.4)



260 A. C. PIPKIN

With (2.4) and (8.3), we obtain

= a(0„)£ + [ n(a)r0(a) da + k„Z, (8.5)
J 0

X

apart from a rigid-body motion.
To obtain a similar expression for the final position x in terms of the same parameters,

we first combine (3.2) to (3.4) as

dx = a(0) + X_1n(0)r„o(', 0o) dd0 + Xk dZ. (8.6)

Then, by using (2.4), (8.1), and (8.3) here, we obtain

x = a(0„/A)£ + X"1 [ n(a/x)r0(a) da + XkZ. (8.7)
J 0

9. General Hencky-Prandtl net. For the sake of completeness we consider the
unusual cases in which the fibers and normal lines form a Hencky-Prandtl net with fibers
neither straight nor parallel. In the undeformed body we label some fiber as jj = 0 and
some normal line as £ = 0. The fiber angle at the point A where they intersect is desig-
nated as zero: d0A = 0. The normal line through any point B on the fiber -q = 0 is labelled
with a value £ equal to the fiber angle at B, £ = 0,)B . Similarly, fibers are labelled with
values 7] by taking rj to be the fiber angle at the point C where the fiber intersects the
normal line £ = 0. Then at the point D where the normal line £ and fiber -q intersect,
according to (6.5) the fiber angle is

0o = £ + v- (9.1)

If we still designate the fiber angle at the particle A as zero after the deformation, then
from (6.4) and (9.1), after a little manipulation, we obtain

e = X£ + r,/\. (9.2)

To express the initial position X in terms of £, rj, and Z, we integrate the expression

dX = a(0o)rao + n(0o)rnO d-q + k„ dZ. (9.3)

The integrability conditions are found to be

drn„/d£ = ra0 , dra0/dr) = — r„0 . (9.4)

Although it is not feasible to give explicit expressions for the radii of curvature, the
relations (9.4) express well-known [14] facts about the radii of a Hencky-Prandtl net.

The final position x of the same particle is obtained by using (3.2)-(3.4), from which
we obtain

dx = a(0)raO + X_1n(0)r„o dr] + Xk dZ. (9.5)

With (2.4) and (9.2), the integrability conditions again reduce to the conditions (9.4).

10. Stress response. If the structure of the material is symmetric under reflections
in planes Z = constant, then in generalized plane deformations there can be no shearing
stress on such planes. Consequently, just as in ordinary plane deformations [2], the
stress tensor has the form
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6 = Taa — P(I — aa) + >S(an + na) + »S:!kk. (10.1)

Here we use dyadic notation; for example, an is the tensor with Cartesian components
a,n,- . I is the unit tensor, with components 5,,- .

T is the tension in the fiber direction. Since this stress component can do no work in
any kinematically admissible deformation, it represents a reaction to the constraint
of inextensibility. Similarly, P is the pressure that appears as the reaction to the con-
straint of volume incompressibility. The aa component is subtracted away from it for
convenience, so that T can represent the total tensile stress in the fiber direction. The
reactions T and P cannot be specified by constitutive equations.

S is the shearing stress in the fiber direction, and S3 is a normal stress difference:

S = a •<! • n, S3 = k-d-k — n-d-n. (10.2)

Both of these components are to be specified in terms of the deformation or deformation
history by constitutive equations. Since the deformation with respect to the local axes
a, n, and k is completely specified by the stretch X and the amount of shear k, S and S3
are functions of these variables in the case of elastic response, and functionals of the
histories of X and k in viscoelastic or plastic response.

For illustration, let us suppose that the material response is elastic, so that S and S3
are ordinary functions of k and X. The one further assumption that will be needed in
order to show that simple axial tension is the same thing as stretching with no shear is
that the shearing stress vanishes whenever the shear is zero:

5(0, X) = 0. (10.3)
Although it is not needed in the present paper, for further applications we mention

a relation between S and S3 that must hold when the material is elastic. To derive this
relation we use the elastic strain energy per unit volume W, which depends only on k
and X in deformations of the kind considered here. To find expressions for the stresses
in terms of W, we consider incremental deformations of a material element that was
initially a unit cube with fibers parallel to one of its edges. In the deformed state, the
faces on which S3 acts have areas 1/X, and the faces parallel to the fiber direction, on
which S acts, have areas X. When k and X change, the tensile force acts through a distance
d\, and the shearing force acts through a distance d(«/X). Other forces acting on the
element make cancelling contributions to the work. Hence, on setting the change of
stored energy equal to the work done, we obtain

dW = (XS) d(*/X) + (S3/\) d\. (10.4)
From this relation we obtain

S = dW/dK, S3 = X dW/d\ + k dW/dK. (10.5)

The relation between S and S3 is then obtained by eliminating W:

dS3/di< = S + X dS/d\ + k dS/dn. (10.6)

The relations (10.5) can, of course, be derived from the more elaborate three-dimensional
form of the constitutive equation, given by Spencer [1] (see also Pipkin [13]).

11. Stress equilibrium. If we assume that material properties are independent of
the axial coordinate Z, then on using (10.1) in the stress equation of equilibrium,
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V-(J = 0, we obtain an equation of exactly the same form as for ordinary plane deforma-
tions [2], On separating this into components in the fiber, normal, and axial directions,
we obtain

a-VT + (P + T)/rn = 2S/ra - n VS, (11.1)

n-VP - (P + T)/r. = 2S/r„ + a-V5, (11.2)
and dP/dz = 0. If the deformation and thus also the shearing stress 5 are known, these
are two first-order equations in characteristic form, determining the variation of T along
fibers and the variation of P along normal lines.

In Sees. 5 through 9 we discussed the possibility of states of purely tensile stress in
the axial direction. The discussion was in fact entirely kinematical; we considered
deformations with k = 0 everywhere. Under the assumption (10.3), 5 is zero everywhere
in such deformations. Then (11.1) and (11.2) are satisfied by T = P = 0, and the corre-
sponding surface tractions on the lateral surfaces of the body are zero. Thus, the deforma-
tions with k = 0 everywhere can indeed be supported by a purely axial tension,

= &3(0, X).
As an example, let us consider the curvilinear block with fibers along concentric

circles, described in Sec. 7, and let us suppose that X = 2t/A so that stretching in the
axial direction causes the block to curl into a tubular shape with its plane faces in contact
with one another, as previously described. Suppose now that these faces are bonded
together, to form a tube permanently.

When the extending forces are removed after bonding the faces together, the tube
retains the same shape but the stress distribution in it is no longer simply a tensile stress
in the axial direction. Indeed, since the axial tension has the form

a = -P(r, 6) + 53(0, X), (11.3)

the condition of no tractions on the ends implies that <7zz = 0 everywhere, and thus that

P(r, 6) = S3(0, X)[H(r - r.) - H(r - r2)]. (11.4)

Here H is the Heaviside unit step function. The step functions take into account the
fact that P must be discontinuous at the inner and outer boundaries rx and r2 , because
the conditions of no tractions on these boundaries imply that P = 0 at rx — and r2 +.

From (11.2), with S = 0, ra = r, and n-V = —d/dr, we obtain

T = -P - r dP/dr. (11.5)
Then using (11.4) here, we obtain

T = 5,(0, X)[r2 S(r — r2) — n 5(r — r,)] — P. (11.6)
Thus at interior points, the stress reduces to

d = -P(I - kk), (11.7)
so that the in-plane components amount to an isotropic pressure. From (11.6) we see
that this pressure is contained by a finite tensile force in the outermost sheet of fibers
equal to Pr2 per unit of length in the axial direction. In the innermost sheet of fibers
there is a compressive force of magnitude Pr, . This suggests that failure by delamination
may occur at the inner boundary if the inner fibers are not supported against buckling.

The physical interpretation of stress concentration layers like those in (11.6), taking
into account small but finite fiber extensibility, has been discussed elsewhere [11-13],
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12. Superposed plane deformations. We now briefly verify that the equations
governing plane deformations superposed on simple axial tension have exactly the same
forms as for ordinary plane deformations (with X = 1), if the state of simple axial tension
is used as the reference state. So far as the equilibrium equations are concerned, there is
nothing to verify since they do not involve the reference configuration. For the kine-
matical relations, we label quantities evaluated in the simple tensile state with the
subscript unity, so that, for example, the quantities without subscripts in (6.1) to (6.3)
have the subscript unity in the new notation. Then by using (6.1) in (3.5) we obtain

arVi = a-V, • Vi = (n + *a) • V, k,-Vi = k-V. (12.1)

Similarly, by using (6.2) or (6.3) in the compatibility conditions (4.4) and (4.6), we
obtain

a-V(0 — 0i — k) = Kn-VO, r„ = rnl . (12.2)

Thus, X is eliminated when the stretched state is used as reference.
It follows that in cases admitting simple axial tension, the solution of any plane

problem can be interpreted as the solution of a generalized plane-strain problem, merely
by accounting for the parametric dependence of the shearing stress S on the parameter X.
Of course, the relation of the initial (unstretched) state to the reference (stretched) state
depends on the amount of stretch. This relation is given parametrically by (7.6) and
(7.8) for all cases involving initially parallel fibers, which include all previously-published
solutions.
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