GENERALIZED POLYNOMIAL IDENTITIES AND PIVOTAL MONOMIALS ${ }^{(1)}$

BY
S. A. AMITSUR

1. Let R be an associative ring and let $\{x\}=\left\{x_{1}, x_{2}, \cdots\right\}$ be an infinite set of noncommutative indeterminates. The now classical approach to the theory of polynomial identities of a ring R was to consider identical relations in R of the form $p[x]=0$, where $p[x]=\sum \alpha_{(i)} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$ is a polynomial in the x_{j} with coefficients $\alpha_{(i)}$ which are integers or belong to a commutative field F over which R is an algebra. The main result in the theory of these identities is due to Kaplansky (e.g. [3, Theorem 1, Chapter X, p. 226]) which states that a primitive ring satisfying a polynomial identity of degree d is a finite-dimensional algebra over its center, and its dimension is $\leqq[d / 2]^{2}$.

The purpose of the present paper is to extend this result to a more general type of polynomial relation. The generalized polynomial relations to be dealt with are of the form:

$$
P[x]=\sum a_{i_{1}} \pi_{j_{1}} a_{i_{2}} \pi_{j_{2}} \cdots a_{i_{k}} \pi_{j_{k}} a_{i_{k+1}}=0,
$$

where the π_{j} are monomials in the indeterminates x_{j} and the elements $a_{i_{\lambda}} \in R$ appear both as coefficients and between the monomials π_{j}. More precisely, one considers a ring R which is an algebra over a field F, and $P[x]$ are the elements of the free product of the ring R and the free associative ring $F\left[x_{1}, x_{2}, \cdots\right]$. Thus $P[x]=0$ is an identical relation in R if for every substitution $x_{i}=r_{j}, P[r]=0$.

This type of identical relation has been first studied by A. R. Richardson [6] who determined the quadratic relation for quaternions, and later by D. E. Littlewood [5] who has considered the identical relation for matrix rings over the quaternions. In particular, they have shown that the quaternions satisfy the identity

$$
(x i)^{2}-(i x)^{2}+(x j)^{2}-(j x)^{2}+(x k)^{2}-(k x)^{2}=0
$$

where i, j, k are the quaternion basis.
For a matrix ring F_{n} over a commutative field F, one easily obtains the relation: $e_{11} x_{1} e_{11} x_{2} e_{11}-e_{11} x_{2} e_{11} x_{1} e_{11}=0$, or a relation of the form

[^0]$$
\left(\sum_{i, j} e_{i j} x_{1} e_{j i}\right) x_{2}-x_{2} \sum_{i, j} e_{i j} x_{1} e_{j i}=0 .
$$

The last relation is valid in F_{n} since $\sum_{j i,} e_{i j} x e_{j i}$ is the trace of x and belongs to the center; furthermore, if D is a central simple algebra of dimension n^{2} over its center C, then $D \otimes_{C} F \cong F_{n}$, where F is a maximal commutative subfield of D, and by expressing the orthogonal basis $e_{i j}$ of F_{n} as linear combinations of elements of D, one can obtain quadratic generalized polynomial identities which hold in D. Another generalized polynomial relation will be given later. Thus the extension of the above quoted results of Kaplansky fails to hold.

Nevertheless, the following is shown: A primitive ring R satisfies a nontrivial (generalized) polynomial identity if and only if R is a dense ring of linear transformations of a space V_{D} over a division ring D, and the dimension of D over its center C is bounded. The bound depends on the degree of the polynomial relation $P[x]=0$ and the number of the C-independent elements of R appearing in $P[x]$.

In particular, if R is a division ring then $R=D$ and the existence of a generalized polynomial relation is equivalent to the finiteness over the center.

A second generalization of polynomial identities was given by Drazin [2] and this is the idea of a pivotal monomial. A pivotal monomial of a ring R is a monomial $\pi(x)=x_{i_{1}} \cdots x_{i_{k}}$ such that for every substitution $x_{i}=r_{i}$, the element $\pi(r)$ belongs to the left ideal generated by all monomials $\sigma(r)$, where $\sigma(x)=x_{j_{1}} \cdots x_{j_{q}}$ is such that either $q>k$, or else, $q \leqq k$ but some $i_{h} \neq j_{h}$ for $h \leqq q$. A primitive ring R was proved to possess a pivotal monomial if and only if $R=D_{n}, D$ a division ring.

Defining a generalized pivotal monomial with respect to a given finite set of elements $a_{1}, a_{2}, \cdots, a_{r}$, as a monomial $\pi(x)=a_{i_{1}} x_{j_{1}} a_{i_{2}} x_{j_{2}} \cdots x_{j_{h}} a_{i_{k+1}}$ such that for every substitution $x_{i}=r_{i}$ the element $\pi(r)$ belongs to the left ideal generated by all $\sigma(r)$, where the $\sigma(x)$ are generalized monomials including the a_{i} with evident restrictions-we show that possessing such a pivotal monomial is a necessary and sufficient condition for a primitive ring to possess a left minimal ideal.

The generalization of this result in [1] obtained by assuming that $\pi(r)$ is only left quasi-regular modulo the left ideal generated by the $\sigma(r)$ works in the present case as well.
2. A lemma. The main result depends heavily on the following lemma, which is interesting by itself; but, surprisingly, on first observation, it seems to be hardly related to the purpose of the present paper-yet it is of fundamental importance.

Lemma 1. Let V, U be two vector spaces over a field F and let T_{1}, \cdots, T_{r} be F-linear independent transformations of V into U; then for any finite-dimensional
subspace U_{0} of U, either there exists $v \in V$ such that $T_{1} v, \cdots, T_{r} v$ are linearly independent modulo U_{0}, or there exists $S=\sum \alpha_{i} T_{i} \neq 0$ of finite rank. Furthermore, S can be chosen so that

$$
\operatorname{dim} S V<\operatorname{dim} U_{0}+\binom{\tau+1}{2}-1
$$

Proof. Let $\mathscr{T}=\left\{\sum \gamma_{i} T_{i} \mid \gamma_{i} \in F\right\} \subseteq \operatorname{Hom}_{F}(V, U)$ be the space of linear transformations generated by the T_{i}. If there is no $v \in V$ such that $T_{1} v$, $\cdots, T_{r} v$ are linearly independent modulo U_{0} then \mathscr{T} and U_{0} have the property:
(a) For each $v \in V$ there exists $0 \neq T=\sum \gamma_{i} T_{i} \in \mathscr{T}$ such that $T v \in U_{0}$. Indeed, since the set $\left\{T_{i} v\right\}$ are linearly dependent modulo U_{0} we have $\sum \gamma_{i} T_{i} v \in U_{0}$ for some $\gamma_{i} \in F$. Assuming property (a) to be valid we proceed to prove our lemma by induction on $\tau=\operatorname{dim} \mathscr{F}$. If $\operatorname{dim} \mathscr{T}=1$ then $\mathscr{T}=F T_{1}$, and by assumption it follows readily that $T_{1} V \subseteq U_{0}$ as required.
Let $\operatorname{dim} \mathscr{T}>1$. Choose $v_{0} \neq 0$ arbitrarily in V, and let $0 \neq T_{0} \in \mathscr{T}$ be such that $T_{0} v_{0} \in U_{0}$.

Let $V_{0}=\left\{v \mid v \in V, T_{0} v \in U_{0}\right\}$. Thus $V_{0} \neq 0$ since $v_{0} \in V$. If $V_{0}=V$ then it follows that $T_{0} V \subseteq U_{0}$ and the lemma is proved with $S=T_{0}$.

Hence, assume that $V_{0} \neq V$ and choose $v_{1} \notin V_{0}$. Let

$$
\mathscr{T}_{0}=\left\{T \mid T \in \mathscr{T}, T v_{1} \in U_{0}\right\} .
$$

Thus, $T_{0} \notin \mathscr{T}_{0}$ and note that the requirement of the lemma implies that $\mathscr{T}_{0} \neq 0$.

Choose a submodule $\mathscr{S} \subseteq \mathscr{T}$ which contains \mathscr{T}_{0} and which is a complement of the 1-dimensional module $F T_{0}$ in \mathscr{T}. Namely, let $\mathscr{T}=F T_{0} \oplus \mathscr{S}$ and $\mathscr{T} \supset \mathscr{S} \supseteq \mathscr{T}_{0}$. This is always possible as $T_{0} \notin \mathscr{F}_{0}$, hence one completes the base of \mathscr{T}_{0} by adding T_{0} and a set of independent elements of \mathscr{T} to a base of $\mathscr{T} . \mathscr{S}$ will then be the linear space generated by this base with T_{0} omitted. At this point we note first that $\operatorname{dim} \mathscr{\rho}<\operatorname{dim} \mathscr{T}$, and the lemma can be applied to \mathscr{S}.

Let $U_{1}=U_{0}+\mathscr{T}_{v_{1}}$, then $\left(U_{1}: F\right) \leqq\left(U_{0}: F\right)+(\mathscr{T}: F)<\infty$. Now, if for all nonzero $v \in V$ there exists a nonzero $S \in \mathscr{S}$ such that $S v \in U_{1}$, then by induction it follows that $\bar{S} V$ is finite dimensional for some $0 \neq \bar{S} \in \mathscr{S}$ and the lemma is valid. If this is not the case then:

There exists $0 \neq w \in V$ which satisfies the condition: " $S w \in U_{1}, S \in \mathscr{S}$ implies $S=0$."

On the other hand, it follows by assumption that $T w \in U_{0} \subseteq U_{1}$ for some nonzero $T \in \mathscr{F}$. Let $T=\alpha T_{1}+S_{0}$ with $\alpha \in F$ and $S_{0} \in \mathscr{S}$. Thus ($\left.\alpha T_{0}+S_{0}\right) w \in U_{1}$ and this clearly implies, by the method by which w was chosen, that $\alpha \neq 0$. Without loss of generality we may assume that $\alpha=1$.

Consider now the element $w+v_{1}$ with the above chosen element v_{1}.

By assumption, $T^{\prime}\left(w+v_{1}\right) \in U_{0}$ for some $T^{\prime} \neq 0$. Let $T^{\prime}=\beta T_{0}+S_{1}$ with $S_{1} \in \mathscr{S}$. Thus:

$$
\left(\beta T_{0}+S_{1}\right)\left(w+v_{1}\right)-\beta\left(T_{0}+S_{0}\right) w=\left(S_{1}-\beta S_{0}\right) w+\left(\beta T_{0}+S_{1}\right) v_{1}
$$

is an element of U_{0}. Consequently $\left(S_{1}-\beta S_{0}\right) w \in U_{0}+\mathscr{T}_{1}$, and since that $S_{1}-\beta S_{0} \in \mathscr{S}$ it follows from the method by which w has been chosen that $S_{1}-\beta S_{0}=0$. This in turn yields that $0 \neq T^{\prime}=\beta T_{0}+S_{1}=\beta\left(T_{0}+S_{0}\right)$ and $\beta \neq 0$. Furthermore, we also have $\beta^{-1} T^{\prime}\left(w+v_{1}\right)=\left(T_{0}+S_{0}\right)\left(w+v_{1}\right)$ belongs to U_{0} and, hence,

$$
\left(T_{0}+S_{0}\right) v_{1}=\left(T_{0}+S_{0}\right)\left(w+v_{1}\right)-\left(T_{0}+S_{0}\right) w \in U_{0}
$$

Recalling the way \mathscr{T}_{0} was defined above, we have $T_{0}+S_{0} \in \mathscr{T}_{0}$. Now \mathscr{T}_{0} was a submodule of \mathscr{S}, consequently it follows that $T_{0} \in \mathscr{S}$ which is a contradiction to the fact that \mathscr{S} is a complement of $F T_{0}$ in \mathscr{G}.

Summarizing, we observe that the last case is impossible and thus the proof that there exists an S of finite rank is completed.

The proof actually yields a bound for the dimension of the module $S V$ which was proved to be finite-dimensional. Indeed, let $\mu=\left(U_{0}: F\right)$ and $\tau=(\mathscr{F}: F)$, and let $\sigma(\mu, \tau)$ denote the minimal dimension of such a linear space $S V$. Then the preceding proof yields that:

$$
\sigma(\mu, 1) \leqq \mu \quad \text { and } \quad \sigma(\mu, \tau) \leqq \operatorname{Max}[\mu, \sigma(\mu+\tau, \tau-1)] .
$$

One readily verifies that

$$
\sigma(\mu, \tau) \leqq \mu+\tau+(\tau-1)+\cdots+2=\mu+\binom{\tau+1}{2}-1
$$

which shows that

$$
\operatorname{dim} S V \leqq \operatorname{dim} U_{0}+\binom{\tau+1}{2}-1
$$

The preceding lemma can be extended as follows:
Lemma 2. Let W be a cofinite submodule of V, i.e., $\operatorname{dim} V / W<\infty$, and let $\mathscr{T} \subseteq \operatorname{Hom}(V, U)$ and U_{0} be as above. If for every $w \in W$ there exists $T \neq 0$ in \mathscr{T} such that $T w \in U_{0}$, then there exists $0 \neq S \in \mathscr{T}$ such that $S V$ is finitedimensional; actually S can be chosen such that

$$
\operatorname{dim} S V \leqq \operatorname{dim} U_{0}+\tau \operatorname{dim}(V / W)+\binom{\tau+1}{2}-1
$$

Proof. Indeed, let v_{1}, \cdots, v_{k} be a finite set of independent elements of V such that $v_{1}+W, \cdots, v_{k}+W$ are a linearly independent basis of V / W.

Let $\bar{U}_{0}=U_{0}+\mathscr{G} v_{1}+\cdots+\mathscr{G} v_{k} ;$ then $\operatorname{dim} \bar{U}_{0} \leqq \operatorname{dim} U_{0}+\tau k$, where k $=\operatorname{dim}(V / W)$.
The conditions of Lemma 1 are now valid with \bar{U}_{0}. For let $v \in V$. Then $v=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}+w$ with some $w \in W$. By assumption let $T w \in U_{0}$, $T \neq 0$, and hence $T v \in \bar{U}_{0}$ as required and Lemma 1 yields the result.

For further application we wish to extend the fundamental lemma to the vector spaces over a noncommutative division ring.

Let Ω be an arbitrary set of operators of two abelian groups V, U. Let D be a division subring of $\operatorname{Hom}_{\Omega}(V, U)$. Then $\operatorname{Hom}_{\Omega}(V, U)$ can be considered as a D-space by setting $(d T) v=d(T v)$ and clearly it commutes with the elements of Ω.

With these notations the proof of Lemma 1 , with D replacing F yields the following generalization.

Lemma 3. Let $U_{0} \subseteq U$ and $\mathscr{T} \subseteq \operatorname{Hom}(V, U)$ be two finite-dimensional D. spaces. If for every $0 \neq v \in V$ there exists $0 \neq T \in \mathscr{T}$ such that $T v \in U_{0}$, then there exists $0 \neq S \in \mathscr{T}$ such that $S V$ generates a finite-dimensional D subspace of U, and its dimension is

$$
\leqq\left(U_{0}: D\right)+\binom{\tau+1}{2}-1,
$$

where $\tau=(\mathscr{T}: D)$.
The proof is the same as the proof of Lemma 1 with D replacing F and noting that the set \mathscr{T}_{0} defined in the proof is actually a D-space since U_{0} is such, and hence one can continue with the proof with choosing the subspace $\mathscr{S} \subseteq \mathscr{T}$, etc. Note also that for $v \in V, \mathscr{T} v$ is a D-subspace of U and the rest follows with no additional observations.

We shall apply Lemma 3 in the case $V=U$ in the following form:
Lemma 4. Let D be a division subring of $\operatorname{Hom}_{\Omega}(V, V)$ and let T_{1}, \cdots, T_{r} be linearly left D-independent endomorphisms of V. If $V_{0} \subseteq V$ is finitedimensional D-space then either there exist $v \in V$ such that $T_{1} v, \ldots, T_{7} v$ are D-independent $\bmod V_{0}$, or some $\left(\sum d_{i} T_{i}\right) V$ generates a D-space of dimension

$$
\leqq \operatorname{dim} V_{0}+\binom{\tau+1}{2}-1
$$

3. Finite ranked transformations in primitive rings. Let R denote throughout this paper a primitive ring-considered as a dense ring of linear transformations of a vector space V over a division ring D, i.e., $D=\operatorname{Hom}_{R}(V, V)$ and $R \subseteq \operatorname{Hom}_{D}(V, V)$. Let C be the center of D, and let F be a maximal commutative subfield of D.

Denote by $R_{F}\left(R_{D}, R_{C}\right)$ the subalgebra over $F(D, C)$ of $\operatorname{Hom}_{Z}(V, V)\left({ }^{2}\right)$ generated by R. For further reference we observe that R_{F} and R_{D} are homomorphic images of $R \otimes_{Z} F$ and $R \otimes_{Z} D$ respectively. Then we have:

Lemma 5. The canonical operation of R_{F}, R_{D} on V, turns it into an irreducible ring of linear transformations with the centralizing field F and C, respectively.

Proof. Consider first the ring R_{F} whose elements are of the form $\sum r_{i} \alpha_{i}$, $r_{i} \in R$ and $\alpha_{i} \in F$. Writing the operations of R and of D on the left of the elements of V, we have by definition:

$$
\left(\sum r_{i} \alpha_{i}\right) v=\sum r_{i}\left(\alpha_{i} v\right)=\sum \alpha_{i}\left(r_{i} v\right)
$$

and if $\left(\sum r_{i} \alpha_{i}\right) v=0$ for all $v \in V$ then $\sum r_{i} \alpha_{i}=0$.
Since $R_{F} \supseteq R$, one readily verifies that if $v \neq 0, R_{F} v=V$ and hence R_{F} is an irreducible ring of linear transformations. It remains to determine the centralizer of R_{F}. Let $\lambda \in \operatorname{Hom}(V, V)$ commuting with all elements of R_{F}; thus λ commutes with $R \subseteq R_{F}$ and therefore $\lambda \in D$ which is the centralizer of R. Now for $\alpha \in F, r \in R$, the relation $r(\lambda \alpha)=\lambda(r \alpha)=(r \alpha) \lambda$ is valid. Hence, $r(\lambda \alpha-\alpha \lambda)=0$ which yields that $r(\lambda \alpha-\alpha \lambda) v=0$ for all $r \in R$ and $v \in V$. This implies that $\lambda \alpha=\alpha \lambda$. But F is a maximal commutative subfield of D, hence $\lambda \in F$ as required.

A similar proof holds for R_{D} and both are special cases of the following whose proof is similar:

Lemma 5*. Let $K \supset C$ be a subdivision ring of D; then R_{K} is a dense ring of linear transformations of V over K^{*}, where K^{*} is the centralizer of K in D.

Lemma 6. (a) Let $0 \neq r, s \in R$ be such that $s x r=r x s$ for all $x \in R$; then $s=\lambda r$ for some $\lambda \in C$.
(b) Let $\left\{\alpha_{i}\right\}$ be a C-base of F; then the elements of R_{F} can be expressed uniquely in the form $\sum r_{i} \alpha_{i}, r_{i} \in R$.

Proof. To prove (a) we consider the endomorphism $\lambda \in \operatorname{Hom}(V, V)$ defined by $\lambda\left(\sum t_{i} r v_{i}\right)=\sum t_{i} s v_{i}$, for all $t_{i} \in R$ and $v_{i} \in V$. This is a well-defined homomorphism, for if $\sum t_{i} r v_{i}=0$, then for all $x \in R$ we have:

$$
0=s x \sum t_{i} r v_{i}=\sum r x t_{i} s v_{i}=r x\left(\sum t_{i} s v_{i}\right) .
$$

This being true for all $x \in R$, and since $r \neq 0$, it follows that $\sum t_{i} s v_{i}=0$. Furthermore, for all $x \in R, \lambda\left(\sum x t_{i} r v_{i}\right)=\sum x t_{i} s v_{i}=x \sum t_{i} s v_{i}=x \lambda\left(\sum t_{i} r v_{i}\right)$, hence $\lambda \in \operatorname{Hom}_{R}(V, V)=D$. Finally, for every $d \in D$:

$$
d \lambda\left(\sum t_{i} r v_{i}\right)=\sum d t_{i} s v_{i}=\sum t_{i} s d v_{i}=\lambda\left(\sum t_{i} r d v_{i}\right)=\lambda\left(d \sum t_{i} v_{i}\right)=\lambda d\left(\sum t_{i} r v_{i}\right)
$$

(${ }^{2}$) Z denotes the ring of integers.
which proves that λ is in the center of D, i.e., $\lambda \in C$. It is evident from the definition that $s=\lambda r$, and (a) is proved.

To prove (b) it suffices to show that if $\sum_{i=1}^{k} r_{i} \alpha_{i}=0$ then all $r_{i}=0$. If this is not the case, let k (the number of elements of the last sum) be minimal; then for all $x \in R$:

$$
0=r_{k} x\left(\sum r_{i} \alpha_{i}\right)-\left(\sum r_{i} \alpha_{i}\right) x r_{k}=\sum_{i=1}^{k-1}\left(r_{k} x r_{i}-r_{i} x r_{k}\right) \alpha_{i}
$$

This element is of lower length. It follows therefore that $r_{k} x r_{i}-r_{i} x r_{k}=0$ for $i=1, \cdots, k$. Hence, (a) yields that $r_{i}=\lambda_{i} r_{k}, \lambda_{i} \in C$. Thus, $\sum r_{i} \alpha_{i}=r_{k} \sum \lambda_{i} \alpha_{i}$. Now $r_{k} \neq 0$, by the minimality of k, and $\sum \lambda_{i} \alpha_{i} \in F$ which is a field from which we deduce that $\sum \lambda_{i} \alpha_{i}=0$. But the α_{i} are a C-base, hence all $\lambda_{i}=0$ which is impossible since in particular $\lambda_{k}=1$.

Theorem 7. Let R be a dense ring of linear transformations of V_{D} and let F be a maximal commutative subfield D. If R_{F} contains a linear transformation of finite rank over F, then R contains also a linear transformation of finite rank over D, and ($D: C$) $<\infty$.

Proof. It follows by Lemma 5 that R_{F} is a dense ring of linear transformations. Let $T \in R_{F}$ such that ($T V: F$) $<\infty$ and let $T=\sum_{i=1}^{k} r_{i} \alpha_{i}$ with $r_{i} \in R$ and $\left\{\alpha_{i}\right\}$ a C-base of F. Among all T with this property we choose T with k minimal. We note that for $x \in R,\left(r_{k} x T-T x r_{k}\right) V \subseteq\left(r_{k} x\right) T V+T V . T V$ is of finite dimension and so is $r_{k} x T V$ since the latter is an F-homomorphic image of $T V$, where the homomorphism is obtained by the mapping $T v$ $\rightarrow r_{k} x T v$. Consequently, $r_{k} x T-T x r_{k}=\sum\left(r_{k} x r_{i}-r_{i} x r_{k}\right) \alpha_{i}$ is of lower length, hence $r_{k} x r_{i}=r_{i} x r_{k}$ for all $x \in R$. It follows from (a) of the preceding lemma that $r_{i}=r_{k} \lambda_{i}$ with $\lambda_{i} \in C$ and, hence, $T=r_{k} \sum \lambda_{i} \alpha_{i}=r_{k} \alpha$ with $\alpha \in F$. Since $T \neq 0$, we have also $r_{k} \neq 0$ and $\alpha \neq 0$.

Consequently, $T V=r_{k} \alpha V=r_{k} V$ as α^{-1} exists in F. Now $r_{k} V$ is as well a D-space since $r_{k} R$ commutes with the elements of D. Hence $\infty>\left(r_{k} V: F\right)$ $=\left(r_{k} V: D\right)(D: F)$ which yields that both $\left(r_{k} V: D\right)<\infty$ and $(D: F)<\infty$. The finiteness of the first proves the first part of the theorem and the finiteness of ($D: F$) yields (e.g. [3, Chapter VII, Theorem 9.1, p. 175]) that $(D: C)<\infty$ and since F is maximal we also have $(D: C)=(D: F)^{2}$.

A bound for ($D: C$) can be obtained as follows:
Let $T=\sum_{i=1}^{k} r_{i} \alpha_{i}$ be such that ($T V: F$) $=m$, then the preceding proof shows that either $T V=r_{k} V$ or there exists $T^{\prime}=\sum r_{i}^{\prime} \alpha_{i}$ of lower length and ($\left.T^{\prime} V: F\right) \leqq 2 m$. Continuing this way we get an $r \in R$ such that ($r V: F$) $\leqq 2^{k-1} m$. Hence from the relation $(r V: F)=(r V: D)(D: F)$, and $(D: C)$ $=(D: F)^{2}$ it follows that:

Corollary 8. If $T=\sum_{1}^{k} r_{i} \alpha_{i}$, and ($\left.T V: F\right)=m$ then $(D: C) \leqq 2^{2 k-2} m^{2}$ $=4^{k-1} m^{2}$.

A special case of Theorem 7 is of interest:
Corollary 8*. Let D be a division algebra with a center C. Let F be a maximal subfield of F, then $D \otimes_{c} F$ is a primitive ring acting on D and it contains finite ranked transformations if and only if $(D: C)<\infty$.

Proof. D can be considered also as a vector space over which D acts by multiplication on the left. Its centralizer is its anti-isomorphic ring D^{*} of all right multiplication. Now $D \otimes_{C} F$ can be identified with $D \otimes_{C} F^{*}=D_{F}$ by Lemma 6. The rest is the application of Theorem 7.
4. Polynomial identities. We can turn now to the main object of the paper.

Let $\{x\}=\left\{x_{1}, x_{2}, \cdots\right\}$ be an infinite set of noncommutative indeterminates, R a primitive ring which is a dense ring of linear transformations on a space V_{D}, and D the centralizing division ring having C as its center and let F be a maximal commutative subfield. If R is a division ring, we take $V_{D}=R$ and the elements of R operate by left multiplication and the centralizer is to be taken D^{*} the ring of all right multiplications.

Clearly, the center of R is an integral domain contained in C (and might be the zero element only), but for our purpose we assume, and as it will be seen, without loss of generality, that this center is the field C itself so that $R=R_{C}$ is also a C-algebra.

Let $R\langle x\rangle$ be the C-universal product of R and the free ring $C[x]$ with the x 's commuting with the elements of C. Recall that in our case $R\langle x\rangle$ can be characterized uniquely up to isomorphism by the property that:

Every C-homomorphism $\phi: R \rightarrow S$ into a C-algebra S and a mapping $\psi: x_{i} \rightarrow s_{i}$ have a unique extension to a homomorphism $\bar{\phi}: R\langle x\rangle \rightarrow S$. An extension, in the sense that $\bar{\phi} \mid R=\phi, \bar{\phi}\left(x_{i}\right)=s_{i}$. The construction of $R\langle x\rangle$ can be obtained as follows:

Let X be the C-module generated by the x_{i} and let $Y_{(i)}=Y_{i_{1}} \otimes \cdots \otimes Y_{i_{k}}$ where Y_{i} is either R or X and the product is taken with respect to C. Let $Y=\sum Y_{(i)}$ be the direct sum taken over all possible (i) (and all k). We turn Y into an associative ring by defining multiplication: $y_{(i)} y_{(i)}=y_{(i)}$ $\otimes y_{(j)}$ for all $y_{(i)} \in Y_{(i)}, y_{(i)} \in Y_{(j)}$ and extending it linearly to all Y. Let N be the two-sided ideal of Y generated by the elements

$$
\left\{r_{1} \otimes r_{2}-r_{1} r_{2} ; r_{1}, r_{2} \in R\right\}
$$

and by the elements $y \otimes 1-y, 1 \otimes y-y$ for $y \in Y$, if R contains a unit 1 .
$R\langle x\rangle$ is defined to be the quotient ring Y / N. Every homomorphism $\bar{\phi}: R \rightarrow S$ and a mapping $\psi: x_{i} \rightarrow s_{i}$ is extended to Y by setting $\Phi\left(y_{1} \otimes \cdots \otimes y_{k}\right)$ $=\phi\left(y_{1}\right) \phi\left(y_{2}\right) \cdots \phi\left(y_{k}\right)$ where $\phi\left(y_{j}\right)$ is the ϕ-image of y_{j} if $y_{j} \in R$, and if y_{j} $=\sum c_{i} x_{i} \in X$ then $\phi\left(y_{j}\right)=\sum c_{i} s_{i}$ and since $\operatorname{Ker} \Phi \supseteq N$, it follows that Φ induces the homomorphism $\bar{\phi}$ of $R\langle x\rangle$.

Though it is not difficult to show that $R\langle x\rangle$ is the universal product of R and $C[x]$, it is sufficient for our purpose to use only the above construction of $R\langle x\rangle$ and the property of the existence of the extension.

Henceforth, let $\left\{r_{\lambda}\right\}$ be a C-base of R and we shall always set $r_{1}=1$ even if R does not contain a unit.

Lemma 9. The polynomials $p[x] \in R\langle x\rangle$ can be written in the form

$$
\begin{equation*}
p[x]=\sum \alpha_{i} r_{i_{k}} x_{j_{k}} x_{j_{k-1}} r_{i_{k-2}} \cdots x_{j_{1}} r_{i_{0}}, \tag{*}
\end{equation*}
$$

where $\alpha_{(i)} \in C$ and $r_{i j}$ is one of the C-base $\left\{r_{\lambda}\right\}\left(\right.$ or $\left.r_{i j}=1\right)\left({ }^{3}\right)$.
The proof is evident if it is shown that every $y_{1} \otimes \ldots \otimes y_{k} \in Y_{(i)}$ has its representation $\bmod N$, and this is trivial since every y_{i} is a linear combination of the x_{λ} 's if it belongs to X and a linear combination of the r_{λ} 's if it belongs to $R\left({ }^{3}\right)$.

At this point we do not raise the question of uniqueness, but clearly we may always assume that in the representation $\left(^{*}\right)$ of $p[x]$ for any two terms with two nonzero coefficients $\alpha_{(i)}, \alpha_{(i)}^{\prime}$, we have ($i_{k}, j_{k}, i_{k-1}, j_{k-1}, \cdots, i_{1}, j_{1}, i_{0}$) $\neq\left(i_{h}^{\prime}, j_{h}^{\prime}, i_{h-1}^{\prime}, j_{h-1}^{\prime}, \cdots, i_{1}^{\prime}, j_{1}^{\prime}, i_{0}^{\prime}\right)$ since one can sum all similar terms into a single term. When the representation (*) of $p[x]$ satisfies this condition, we shall say that it is a standard form of $p[x]$.

Each term $r_{i k} x_{j_{k}} \cdots x_{j_{1}} r_{i_{0}}$ is referred to as a monomial and k is called its degree. The degree of a standard form is the maximal degree of its monomials (which appear with a nonzero coefficient).

Definition. A polynomial $p[x] \in R\langle x\rangle$ is said to be a polynomial relation $\left(^{4}\right)$ of R, if $p[x]$ is not trivially zero and if $p[x]=0$ hold identically in R; in other words, for every homomorphism $\phi: R\langle x\rangle \rightarrow R, \phi(p)=0$.

We shall also say that $p=0$ is a polynomial identity in R.
Our main theorem is:
Theorem 10. A primitive ring R satisfies a polynomial identity if and only if it is isomorphic with a dense ring of linear transformations over a division ring D which is finite over its center, and R contains a linear transformation of finite rank.

Proof. If R is as above, let $e \in R$ be a primitive idempotent; then $e R e \cong D$ [3, p. 77]. If ($D: C$) < , then D satisfies a standard identity $\left[y_{1}, y_{2}, \cdots, y_{h}\right.$] $=\sum \pm y_{i_{1}} y_{i_{2}} \cdots y_{i_{k}}$ (e.g., for $h>(D: C)[3$, p. 227]). Hence, R satisfies the polynomial identity

$$
\sum \pm e x_{i_{1}} e x_{i_{2}} e x_{i_{3}} \cdots e x_{i_{h}} e=0
$$

[^1]To prove the converse, assume that R satisfies a polynomial relation $p[x]=0$ and that R acting on V_{D} either does not contain a linear transformation of finite rank or ($D: C$) $=\infty$.
First note that we may assume that $p[x]$ is linear in each of its indeterminates x_{i}. Indeed, suppose $p[x]$ given in a standard form which is of degree $\geqq 2$ in x_{1}; then, as in the usual linearization process, one chooses x_{j} which does not appear in $p[x]$ and then $p\left[x_{1}+x_{j}, x_{2}, \cdots\right]-p\left[x_{1}, x_{2}, \cdots\right]-p\left[x_{j}, x_{2}, \cdots\right]$ $=\bar{p}\left[x_{1}, x_{j}, x_{2}, \cdots\right]$ is again a polynomial which is not trivially zero, and which holds identically in R. Furthermore, it is of lower degree both in x_{1} and x_{j} and of the same degree in the other indeterminates. Continuing this way one obtains a multilinear identity. So henceforth we assume that $p[x]$ is multilinear.

We turn to the ring R_{F}, whose definition was given in the beginning of the section, and consider it as acting on V_{D}. The elements of R_{F} are of the form $\sum d_{i} \alpha_{i}, d_{i} \in R, \alpha_{i} \in F$ (Lemma 6), and the elements of F commute with all the elements of R; hence one readily verifies that any multilinear identity which holds in R, holds also in R_{F}.
Let the standard form of the multilinear polynomial p be:

$$
\begin{equation*}
p[x]=\sum \alpha_{(i)} r_{i_{1}} x_{j_{1}} r_{j_{2}} \cdots r_{i_{1}} x_{j_{1}} r_{i_{0}}, \quad \alpha_{(i)} \in C . \tag{}
\end{equation*}
$$

Consider the finite set of the r_{i} 's which appear in (*) in monomials with a nonzero coefficient. Without loss of generality we may assume that these are $r_{1}=1, r_{2}, \cdots, r_{r}$. As linear transformations they are also independent over F. Indeed, if $\sum r_{i} \lambda_{i}=0, \lambda_{i} \in F$, then $\lambda_{i}=\sum c_{i j} \alpha_{j}, c_{i j} \in C$ for a C-base $\left\{\alpha_{\lambda}\right\}$ of F; hence $\sum\left(\sum r_{i} c_{i j}\right) \alpha_{j}=0$. Consequently, it follows by Lemma 6 that $\sum r_{i} c_{i_{j}}=0$, but the r_{i}^{\prime} s are C-independent, which implies that all $c_{i_{j}}=0$. Thus also all $\lambda_{i}=0$.
We proceed with the proof by showing first:
Lemma 11. Let r_{1}, \cdots, r_{r} be C-independent elements in the primitive ring R. If R does not contain a finite ranked transformation, then for every integer h, there exists $v_{1}, \cdots, v_{h} \in V$ such that the set $\left\{r_{i} v_{j}\right\}$ are th D-independent vectors in V.

Proof. We apply the fundamental Lemma 4 to the following situation: Let $\mathscr{T}=\left\{\sum_{i} \beta_{i}\right\}$ be the τ-dimensional linear subspace of R_{F} generated by the r_{i} 's. Let $V_{0}=0$; then it follows by Lemma 4 that there exist $v_{0} \in V$ such that $r_{1} v_{0}, r_{2} v_{0}, \cdots, r_{r} v_{0}$ are F-linearly independent. Put $V_{0}=\mathscr{V _ { v }} v_{0}$.
Applying again Lemma 4 with $W_{0}=V_{0}$ we obtain $v_{1} \in V$ such that $\left\{r_{i} v_{1}\right\}$ are linearly independent modulo V_{0}. Thus all $r_{i} v_{1}, r_{j} v_{0}$ are linearly independent. Continuing this way with $V_{1}=\mathscr{T} v_{0}+\mathscr{G} v_{1}$, etc., \cdots, we obtain v_{1}, v_{2}, \cdots, v_{h} such that all $r_{i} v_{j}$ are F-linearly independent.
We return to the proof of the theorem. Assume that R does not contain
a finite ranked transformation; then it follows by Theorem 7 that R_{F} also does not have a finite ranked transformation and we proceed to obtain a contradiction by applying the preceding lemma to R_{F} (and F replacing D) and choosing h too large.
Indeed, without loss of generality we may assume that the standard form $p[x]$ given in $\left(^{*}\right)$ is such that

$$
\begin{equation*}
p[x]=\sum \beta_{\nu} r_{\nu} x_{k} r_{i_{k-1}} x_{k-1} r_{i_{k-2}} \cdots r_{i_{1}} x_{1} r_{i_{0}}+\cdots \tag{}
\end{equation*}
$$

and at least one $\beta_{v} \neq 0$, and the terms appearing after the plus sign either contain a different $r_{i_{h}}$ or contain a permutation of the indeterminates x_{1}, \cdots, x_{k}.
Since R_{F} is a dense ring of linear transformations of V_{F}, and the $r_{i} v_{j}$ are linearly independent, there are well-defined k elements d_{j} of R_{F} satisfying for each $j=1, \cdots, k$:

$$
d_{j}\left(r_{i_{j-1}} v_{j-1}\right)=v_{j} \quad \text { and } \quad d_{j}\left(r_{\lambda} v_{\mu}\right)=0 \text { elsewhere. }
$$

If $h \geqq k$ this leads to a contradiction. Indeed consider the element $p\left[d_{1}, \cdots, d_{k}\right] v_{0}$. Clearly, all monomials $\alpha_{(i)} r_{l_{k}} x_{j_{k}} \cdots r_{l_{1}} x_{j_{1}} r_{0}$ when substituted in $x_{i}=d_{i}$ and are acted on by v_{0} will yield the zero unless it is one of the first terms appearing in $\left(^{* *}\right)$; that is, $r_{l_{t}}=r_{i_{t}}, 1 \leqq t \leqq k-1$ and $x_{j_{t}}$ $=x_{t}$, and if it is one of these terms it yields $\beta_{v} r_{v} v_{k}$. Consequently $p\left[d_{j}\right] v_{0}$ $=\sum \beta_{v} r_{\nu} v_{k}$ and since one of the $\beta_{v} \neq 0$ and $r_{v} v_{k}$ are all linearly independent we obtain $p\left[d_{j}\right] v_{0} \neq 0$ which implies that $p\left[d_{j}\right] \neq 0$ in contradiction with the fact that $p[x]=0$ holds identically in R_{F} as well as in R. This concludes the proof of the theorem.

The preceding proof, modified a little, together with Lemma 4 and Corollary 8 , yields actually a bound for ($D: C$).

Indeed, let $p[x]=0$ given in the standard form $\left(^{* *}\right)$. Note that the linearization process does not increase the total degree and the number of C-independent elements among the elements of R which appear in the original polynomial before linearization.

Consider again the F-module $\mathscr{T}=\left\{\sum r_{i} \alpha_{i}\right\}$ generated by the $r_{i}, i=1$, $2, \cdots, \tau$. As above we have, either: (I) a vector $v_{0} \in V$ such that $\left\{r_{i} v_{0}\right\}$ are linearly independent, or (II) some $T=\sum_{i=1}^{i} \alpha_{i} r_{i}$ has finite rank and then its rank is, by Lemma 4,

$$
\leqq\binom{\tau+1}{2}-1
$$

Consequently, in this case Corollary 8 implies that

$$
(D: C) \leqq 4^{r-1}\left[\binom{\tau+1}{2}-1\right]^{2}
$$

Continuing as in the preceding proof we obtain: (I) $v_{1} \in V$ such that $\mathscr{G} v_{0}$ $+\mathscr{G} v_{1}$ is of dimension 2τ, or else (II) some $T \in \mathscr{F}$ of finite rank, and again by Lemma 4 its rank is

$$
\leqq \tau+\binom{\tau+1}{2}-1
$$

(here \mathscr{T}_{0} is taken for W_{0} of Lemma 4) and by Corollary 8,

$$
(D: C) \leqq 4^{\tau^{\tau-1}}\left[\tau+\binom{\tau+1}{2}-1\right]^{2} .
$$

Generally, we obtain that etther

$$
(D: C) \leqq 4^{\tau-1}\left[h \tau+\binom{\tau+1}{2}-1\right]^{2}
$$

or V contains vectors $v_{0}, v_{1}, \ldots, v_{h}$ such that $r_{i} v_{j}$ are all F independent. But, modifying the above proof following the proof of Theorem 1 of [1] we shall show that this is possible only if $h \leqq[k / 2]$ where k is the degree of $p[x]$ and $[k / 2]$ is the greatest integer in $k / 2$.
Indeed, let $h>[k / 2]$. One observes that the space $\mathscr{F} v_{0} \oplus \mathscr{\mathscr { V }} v_{1} \oplus \cdots$ $\oplus \mathscr{G} V_{h}$ is isomorphic with the tensor product $\mathscr{F} \otimes U$ where U is a C vector space of dimension $h+1$ and can be taken to be $U=\sum C v_{i}$. Furthermore, U can be identified with $r_{1} U$. For our purpose we may identify $\mathscr{G} \otimes U$ with $\sum \mathscr{G} v_{i}$. Let E be the linear transformation given by $E v_{i}=v_{i+1}$ for $i+1 \leqq h$ and $E v_{i}=0$ if $i+1 \geqq h$.

Since R_{F} is dense in $\operatorname{Hom}\left(V_{F}, V_{F}\right)$ we can determine k elements d_{1}, \cdots, d_{k} in R_{F} such that for all $u \in U$:
If $j=2 l$, then $d_{j}\left(r_{i_{j-1}} v\right)=E^{l} S E^{h-l} v$ and for $j=2 l+1$; then $d_{j}\left(r_{i_{j-1}} v\right)$ $=E^{l+1} S E^{h-l} v$, and in both cases $d_{j}\left(r_{\mu} v\right)=0$ for all $r_{\mu} \neq r_{i_{j-1}}$; and S is given by $S v_{h}=v_{0}$ and zero otherwise.
Consider now $p\left[d_{1}, d_{2}, \cdots, d_{k}\right] v_{0}$ and as in the preceding proof we show that, since $h>[k / 2]=\boldsymbol{m}$:

$$
p\left[d_{j}\right] v_{0}=\sum \beta_{v} r_{v} E^{m} S E^{h-m} \cdots \cdot E S E^{h-1} \cdot E S E^{h} \cdot S E^{h} v_{0} .
$$

The other terms yield the zero, since either they contain a term of the form ESE S with $t>h$ which is zero since $E^{h+1}=0$, or else the d_{j} will act on an $r_{\mu} v$ with $\mu \neq i_{j-1}$. Now the sum

$$
\sum \beta_{v} r_{v} E^{m}\left(S E^{h} S E^{h} \cdots \cdot S E^{h}\right) v_{0}=\sum \beta_{v} r_{v} E^{m_{v_{0}}}=\sum \beta_{v} r_{v} v_{m} \neq 0
$$

since one $\beta_{\nu} \neq 0$ and all $r_{t} v_{m}$ are linearly independent. Consequently, $p\left[d_{j}\right] v_{0} \neq 0$ which contradicts the assumption that $p=0$ holds in R.

Thus either we get as far as $h=[k / 2]$ or we obtain a linear transformation of finite rank. We have:

Corollary 12. A primitive ring R satisfying a nontrivial identity $p=0$ of degree k which includes τC-independent elements (including 1), is isomorphic with a dense ring of linear transformations over a division ring D containing a finite ranked transformation and (${ }^{5}$)

$$
(D: C) \leqq 4^{\tau-1}\left(\binom{\tau+1}{2}-1+\tau\left[\begin{array}{c}
k \\
2
\end{array}\right]\right)^{2}
$$

Note that for $\tau=1$, which includes the case of a polynomial identity in the old sense, i.e., with coefficients in C, we get Levitzky's bound of $[k / 2]^{2}$.

We obtain an interesting consequence for division rings.
Theorem 13. A division ring D satisfies a polynomial identity if and only if it is finite-dimensional over its center C, and then the bound is as given in Corollary 12.

This is an immediate consequence of applying Theorem 10 and Corollary 12 to $R=D, V=D$ and R acts on V by left multiplication. Here the centralizer of R is D^{*}, the ring of right multiplications, which is antiisomorphic with D; and thus ($D^{*}: C$) $=(D: C)<\infty$.

In all preceding results we have assumed that R is a C-algebra and then one verifies by Lemma 6 that $R_{F}=R \otimes_{C} F$. In the general case, the center of R is only an integral domain contained in C. Nevertheless, if $p=0$ holds in R then the linearization process of p yields a multilinear relation which will hold also in R_{C} and R_{F}. This shows that there was no loss of generality by assuming that R was a C-algebra, since we can start from R_{C}.
5. Applications. In this section we apply the preceding result to obtain some information on the structure of the ring $R\langle x\rangle$. We assume, henceforth, that R is a primitive ring that either does not contain a minimal left ideal or else its commuting ring is not finite over the center. These conditions mean by the Structure Theorem [3, p. 75] that the result of the preceding section holds for R.

A simple application is:
Corollary 14. The representation of $p[x] \in R\langle x\rangle$ in the standard form (*) of Lemma 9 is unique. *

Indeed, it suffices to show that the monomials $r_{i_{k}} x_{j_{k}} r_{i_{k-1}} \cdots x_{i_{1}} r_{i_{0}}$ are C independent. If this is not the case then some linear combination of them will yield a polynomial $p[x]$ of standard form (*) which is not trivially zero by definition but for which $p=0$ in $R\langle x\rangle$. Hence, it is evident that

[^2]under all homomorphisms $\phi: R\langle x\rangle \rightarrow R, \phi(p)=0$, i.e., $p=0$ holds in R. But the proof of the main theorem shows that with our assumption about R this is impossible.

In the next theorem we consider only division rings D and our next object is to show that:

Theorem 15. $D\langle x\rangle$ is a ring without zero divisors imbeddable in a division ring; furthermore, if D is ordered then $D\langle x\rangle$ can be imbedded in an ordered division ring.

Proof. We consider first the case that D is infinite over its center. There are different methods to prove that $D\langle x\rangle$ has no zero divisors. We present here a method which is a simple application of the main theorem.

Suppose $p[x], q[x]$ are nonzero elements in $D\langle x\rangle$ and $p q=0$ in $D\langle x\rangle$. Then for every homomorphism $\phi: D(x\rangle \rightarrow D, \phi(p q)=\phi(p) \phi(q)=0$. Since $\phi(p), \phi(q)$ belong to a division ring it follows that either $\phi(p)=0$ or $\phi(q)=0$. Choose now x_{j} which does not appear in $p[x]$ and $q[x]$ then we have also $\phi\left(p x_{j} q\right)$ $=0$ for all ϕ. Consequently, the polynomial relation $p[x] x_{j} q[x]=0$ holds in D, this leads to a contradiction if we can prove that $p\left[x \mid x_{j} q[x]\right.$ is not trivially zero in $D\langle x\rangle$. Indeed let $p[x]=\alpha r_{i_{k}} x_{j_{k}} r_{i_{k-1}} \cdots x_{j_{1}} r_{i_{0}}+\cdots$ and $q[x]=\beta r_{i_{h}} x_{j_{h}}$ $\cdots x_{j_{1}} r_{i_{0}}+\cdots$ and let the monomials written be of maximal degree; then one readily verifies that $p x_{j} q$ will contain the monomial $\alpha \beta r_{i_{k}} x_{j_{k}} \cdots r_{i_{0}} x_{j_{h}}$ $\times r_{i_{h}} x_{i_{h-1}} \cdots r_{i_{0}}$ once and only once, and hence $p x_{j} q \neq 0$.

To prove the imbeddability, we follow a method of imbedding rings without zero divisors due to M. Rabin who used it to prove the following general result (unpublished) ${ }^{6}$):
"A ring without zero divisors which is a subring of a complete product of division rings is imbeddable in a division ring; furthermore, if the division rings of the product are ordered then the ring can be imbedded in an ordered division ring."

His proof goes as follows:
Let $S=\Pi D_{\alpha}$ be the complete product of division rings D_{α}, where α ranges over a set I. That is: $S=\{f\}$, the ring of all functions f, such that $f(\alpha) \in D_{\alpha}$. Let $R \subseteq S$ be a subring without zero divisors.

To each $0 \neq f \in R$ let $I_{f}=\{\alpha \mid \alpha \in I, f(\alpha) \neq 0\}$. The sets I_{f} form a basefilter $\left({ }^{7}\right)$ in I. Indeed, $I_{f_{1}} \cap I_{f_{2}} \cap \cdots \cap I_{f_{k}} \supseteq I_{f_{1} \cdots f_{k}}$ and since R is without zero divisors, $f_{1} f_{2} \cdots f_{k} \neq 0$. Finally, $I_{f} \neq \emptyset$, as otherwise for all $\alpha \in I$, $f(\alpha)=0$ which means that $f=0$, and this case was excluded. Let F be.

[^3]any ultrafilter containing all the sets I_{f}; then the set of all functions, $h \in S$ such that $\{\alpha \mid h(\alpha)=0\} \in F$, form a maximal two-sided ideal in S. The quotient ring of S modulo this ideal (known as an ultraproduct of the D_{α}) which will be denoted by $\Pi D_{\alpha} / F$, is a division ring. Indeed, if $f \not \equiv 0(\bmod F)$ then define g by $g(\alpha)=f(\alpha)^{-1}$ when $f(\alpha) \neq 0$ and zero otherwise. The set $\{\alpha \mid f(\alpha)=0\} \notin F$; hence, since F is an ultrafilter, it follows that its complement belongs to the filter F from which it is readily seen that $g f \equiv 1(\bmod F)$, since $\{\alpha \mid(g f)(\alpha)=1\}=\{\alpha \mid f(\alpha) \neq 0\} \in F$. Thus, $g=f^{-1}$ in $\Pi D_{\alpha} / F$.

This ultraproduct has the required properties, and the imbedding R $\rightarrow \Pi D_{\alpha} \rightarrow \Pi D_{\alpha} / F$ is a monomorphism. Furthermore, if all D_{α} are ordered, then so is the ultraproduct $\Pi D_{\alpha} / F$. The order is obtained by setting $f<g$ if $\{\alpha \mid f(\alpha)<g(\alpha)\} \in F$. The proof is immediate and we shall not produce it here.

This basic result can be applied to our case as follows:
Let $I=\{\phi\}$ be the set of all homomorphisms $\phi: D\langle x\rangle \rightarrow D$, then consider the product $D^{I}=\{f \mid f: I \rightarrow D\}$. This is a product of division rings and $D\langle x\rangle$ can be imbedded in D^{I} in the natural way by setting $p[x](\phi)$ $=\phi(p[x])$ for all homomorphisms $\phi \in I$. This is a monomorphism of $D\langle x\rangle$ into D^{I} since $p[x](\phi)=0$ for all ϕ means that $p=0$ holds in D, but no such nonzero relation exists in D unless $p=0$ in $D\langle x\rangle$. The rest follows now immediately by the above-quoted result.

To conclude the proof of Theorem 15 for arbitrary division rings we note that our result will follow from the simple fact that any division ring can be embedded in a division ring which is infinite over its center, and an ordered finite-dimensional division ring (which is necessarily commutative) can be embedded in an ordered noncommutative division ring (which is necessarily infinite over its center). We shall prove here only the first fact:
Let ξ_{1}, ξ_{2}, \cdots be an infinite sequence of commutative indeterminates and consider the ring $E=D(\xi)$ of all rational functions in the ξ_{i} 's: namely, the quotient ring of the polynomial ring $D\left[\xi_{1}, \xi_{2}, \cdots\right]$. Let δ be the derivation of D and let it be extended to $D(\xi)=E$ which can be written symbolically as $\sum_{i=1}^{\infty} \xi_{i-1}\left(\partial / \partial \xi_{i}\right)$, and where we denote $\xi_{0}=1$. Consider now the ring $E[\delta]$ of all differential polynomials in δ with multiplication defined by the relation: $\delta a=a \delta+a^{\prime}$. The ring $E[\delta]$ is a Euclidean ring [7] and thus a principal right and left ideal ring; hence it satisfies the Öre condition and can be imbedded in a quotient ring $E(\delta)$. It remains to show that $E(\delta)$ is infinite over its center.

Indeed, note first that the $\xi_{i}, i>0$, do not belong to the center as $\delta \xi_{i}$ $=\xi_{i} \delta+\xi_{i-1}$. Now, ξ_{0}, ξ_{1}, \cdots are linearly independent over the center. If it is not so, let $\sum_{i=0}^{n} \xi_{i} q_{i}=0$ be a linear dependence relation with $q_{i} \in$ center of E and $q_{n} \neq 0$ of minimal n. Then since $\delta q_{i}=q_{i} \delta$ as elements of the center, we get:

$$
0=\delta\left(\sum \xi_{i} q_{i}\right)=\left(\sum \xi_{i} q_{i}\right) \delta+\sum_{i=1}^{n} \xi_{i-1} q_{i}=\sum_{i=0}^{n-1} \xi_{i} q_{i+1}
$$

which is a linear dependence of lower length. Contradiction.
6. Pivotal monomials. (We turn now to the extension of the notion of a pivotal monomial [2].)

Let R be a primitive ring with a unit 1 and a center C which is a field. Let $r_{1}=1, r_{2}, \cdots, r_{r}$ be a finite set of C-independent elements in R.

A monomial $\pi(x)$ will stand for a monomial of the form

$$
\pi(x)=r_{i_{k}} x_{j_{k}} r_{i_{k-1}} x_{j_{k-1}} \cdots r_{i_{1}} x_{i_{1}} r_{i_{0}}
$$

The complement P_{π} of π will by definition include all monomials $\sigma(x)$ $=r_{n_{l}} x_{m_{l}} \cdots r_{n_{1}} x_{m_{1}} r_{n_{0}}$ for which $l>k$, or $h \leqq k$ but then some $j_{t} \neq m_{t}(t \leqq l)$, or, $i_{t} \neq n_{t}$ for $t<l(!)$.

Definition. $\pi(x)$ is a pivotal monomial of R if for every substitution $x_{i}=d_{i}, \pi(d)$ belongs to the left ideal generated by all $\sigma(d), \sigma \in P_{\pi}$.

Following the proof of [1, Theorem 4] in collaboration with the proof of Theorem 11, we show that:

Theorem 16. A necessary and sufficient condition that a primitive ring possesses a minimal left ideal is that it possesses a (left) pivotal monomial.

Proof. In one direction the proof is trivial. Indeed, if $R e$ is a minimal left ideal then $e R e$ is a division ring and, therefore, exeye \in Reyexe for all x, y in R, i.e., exeye is a pivotal monomial.

To prove the converse, we shall show that the existence of a pivotal monomial yields the fact that R is a dense ring of linear transformations of a space V_{D}, D a division ring and R contains a finite ranked transformation. This yields by the Structure Theorem [3, p. 75] that R possesses a minimal left ideal.

To achieve this we follow the proof of Theorem 10 with the use of Lemma 11. The situation we are dealing with in this proof is as follows: Let R be a dense ring of linear transformations of a space V_{D}, D the centralizer ring of R. As in the proof of Theorem 10 we consider here the ring R_{D} as a subring of $\operatorname{Hom}(V, V)$. The set r_{1}, \cdots, r_{r} are also D-independent and one verifies this by the same method as in the proof of Theorem 10 (where they were shown to be F-independert). From Lemma 11, we obtain that either: (1) R_{D} contains a finite ranked transformation of the form $\sum r_{i} d_{i}, d_{i} \in D$, or else: (2) for every integral h, V_{D} contains a set of vectors $v_{0}, v_{1}, \cdots, v_{h}$ such that $\left\{r_{i} v_{j}\right\}$ are linearly D-independent in V.

In the first case, we repeat the proof of Theorem 7 to show that R contains a finite ranked transformation. Indeed, if for arbitrary $x \in R$ consider $\left(r_{k} x T-T x r_{k}\right) V=\sum_{i=1}^{k-1}\left(r_{k} x r_{i}-r_{i} x r_{k}\right) d_{i} V \subseteq r_{k} x T V+T V$ which generate a
finite-dimensional D-subspace of V, and note that d_{i} commute with the elements of R (as do the α_{i} 's in the proof of Theorem 7). The rest follows in this case as in the above-mentioned proof.

In the second case, choose $h>k$ and use a substitution similar to the one used by Drazin (e.g., the proof of [1, Theorem 4]). Namely, we choose $d_{j} \in R$ determined by the relation:

$$
d_{j}\left(r_{i_{\nu-1}} v_{\nu-1}\right)=v_{\nu} \text { and zero otherwise, }
$$

where i_{ν} and j_{ν} are those which appear in the monomial π only. These d_{j} are well defined since $h>k$, and a contradiction is obtained by comparing $\pi(d) v_{0}=r_{i_{h}} v_{k} \neq 0$ and $\sigma(d) v_{0}=0$ for all $\sigma \in P_{\pi}$ which is impossible since $\pi(d) \in \sum R \sigma(d)$. Consequently, the second case cannot happen and thus the proof that R contains a finite ranked transformation and, hence, a minimal left ideal, is completed.

Bibliography

1. S. A. Amitsur, Rings with pivotal monomials, Proc. Amer. Math. Soc. 9 (1958), 635-642.
2. M. P. Drazin, A generalization of polynomial identities in rings, Proc. Amer. Math. Soc. 8 (1958), 352-361.
3. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ. Vol. 37, Amer. Math. Soc., Providence, R. I., 1956.
4. J. Levitzki, A theorem on polynomial identities, Proc. Amer. Math. Soc. 1 (1950), 76-80.
5. D. E. Littlewood, Identical relations satisfied in an algebra, Proc. London Math. Soc. (2) 32 (1931), 312-320.
6. A. R. Richardson, Equations over a division algebra, Messenger of Math. 57 (1928), 1-6.
7. O. Öre, Theory of non-commutative polynomials, Ann. of Math. (2) 34 (1933), 480-508.

Hebrew University, Jerusalem, Israel

[^0]: Received by the editors August 1, 1963.
 $\left({ }^{1}\right)$ The research reported in this document has been sponsored by the Air Force Office of Scientific Research, OAR, through the European Office, Aerospace Research, United States Air Force.

[^1]: (3) The case that R does not contain a unit should not cause any misunderstanding as 1 always appears in one of the form $x 1,1 x, r 1$ which have an obvious meaning.
 $\left.{ }^{(}{ }^{4}\right)$ We shall refer to these generalized polynomial relations as the polynomial relations throughout this paper.

[^2]: (${ }^{5}$) As one considers only the r_{μ} appearing in the same place, in the monomials of (**) one can replace r by the number of independent elements in the same place of the monomials, and a bound for this is the number of nonzero monomials in (${ }^{* *}$).

[^3]: (${ }^{6}$) Quoted and proved by a different method in A. Robinson, A note on embedding problems, Fund. Math. 50 (1962), 461.
 $\left.{ }^{7}\right)$ For basic facts on filters, see e.g., N. Bourbaki, Topologie genérale, Vol. III, Hermann, Paris, 1961; Ch. I, §6, p. 63.

