
GENERALIZED POLYNOMIAL IDENTITIES
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BY
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1. Let R be an associative ring and let jx} = \xx,x2, • •• j be an infinite
set of noncommutative indeterminates. The now classical approach to the
theory of polynomial identities of a ring P was to consider identical rela-
tions in P of the form p[x] = 0, where p[x] = ^ a(>)x¿1x¿2 • • • x¿n is a poly-
nomial in the Xj with coefficients a(l) which are integers or belong to a com-
mutative field P over which P is an algebra. The main result in the theory
of these identities is due to Kaplansky (e.g. [3, Theorem 1, Chapter X,
p. 226]) which states that a primitive ring satisfying a polynomial identity
of degree d is a finite-dimensional algebra over its center, and its dimen-
sion is  ^ [d/2]2.

The purpose of the present paper is to extend this result to a more gen-
eral type of polynomial relation. The generalized polynomial relations to
be dealt with are of the form:

P[x] = Y,aií*ha¡i*h • • ■ a'k^ikaik+i = °>

where the it, are monomials in the indeterminates x¡ and the elements
a¡x G P appear both as coefficients and between the monomials tt;. More
precisely, one considers a ring P which is an algebra over a field P, and
P[x] are the elements of the free product of the ring P and the free associ-
ative ring F[xx,X2, •••]. Thus P[x] = 0 is an identical relation in P if for
every substitution x, = r¡, P[r] = 0.

This type of identical relation has been first studied by A. R. Richardson
[6] who determined the quadratic relation for quaternions, and later by
D. E. Littlewood [5] who has considered the identical relation for matrix
rings over the quaternions. In particular, they have shown that the qua-
ternions satisfy the identity

(xi)2 - (ix)2 + (xj)2 - (jx)2 + (xk)2 - (kx)2 = 0

where i,j,k are the quaternion basis.
For a matrix ring F„ over a commutative field P, one easily obtains the

relation: exxxxexxx¿exx — enx2exixxen = 0, or a relation of the form
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(T,eiJxleJi) *2 - X^djX^ji = 0.

The last relation is valid in Pn since ^jßijXeji is the trace of x and belongs
to the center; furthermore, if D is a central simple algebra of dimension
n2 over its center C, then D<8>CP = Fn, where P is a maximal commutative
subfield of D, and by expressing the orthogonal basis etj of P„ as linear
combinations of elements of D, one can obtain quadratic generalized poly-
nomial identities which hold in D. Another generalized polynomial relation
will be given later. Thus the extension of the above quoted results of
Kaplansky fails to hold.

Nevertheless, the following is shown: A primitive ring P satisfies a non-
trivial (generalized) polynomial identity if and only if R is a dense ring of
linear transformations of a space VD over a division ring D, and the dimen-
sion of D over its center C is bounded. The bound depends on the degree of
the polynomial relation P[x] = 0 and the number of the C-independent ele-
ments of P appearing in P[x],

In particular, if P is a division ring then R = D and the existence of a
generalized polynomial relation is equivalent to the finiteness over the center.

A second generalization of polynomial identities was given by Drazin
[2] and this is the idea of a pivotal monomial. A pivotal monomial of a
ring P is a monomial ir(x) = x¡t •• • xik such that for every substitution
x, = r¿, the element ir (r) belongs to the left ideal generated by all mono-
mials a(r), where a(x) = x¡ ■ ■ ■ x¡ is such that either q > k, or else, q ^ k
but some i„ 5¿ jh for A ̂  q. A primitive ring P was proved to possess a
pivotal monomial if and only if P = Dn, D a division ring.

Defining a generalized pivotal monomial with respect to a given finite
set of elements Oi,a2, • • -,aT, as a monomial ir(x) = ai1Xj1a¡¡¿Kj2 ■ ■ ■ xjkaik+l such
that for every substitution x¡ = r¿ the element ir(r) belongs to the left ideal
generated by all a(r), where the a(x) are generalized monomials including
the a¡ with evident restrictions—we show that possessing such a pivotal
monomial is a necessary and sufficient condition for a primitive ring to
possess a left minimal ideal.

The generalization of this result in [l] obtained by assuming that ir(r)
is only left quasi-regular modulo the left ideal generated by the <r(r) works
in the present case as well.

2. A lemma. The main result depends heavily on the following lemma,
which is interesting by itself; but, surprisingly, on first observation, it
seems to be hardly related to the purpose of the present paper—yet it is
of fundamental importance.

Lemma 1. Let V, U be two vector spaces over a field F and let Tu • • •, T, be
F-linear independent transformations of Vinto U; then for any finite-dimensional
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subspace U0 of U, either there exists v E V such that Txv, • • •, TTv are linearly
independent modulo U0, or there exists S = ^,a¡Ti ^ 0 of finite rank. Further-
more, S can be chosen so that

dimSV<dim<y0+ C+   ) - 1.

Proof. Let S~= |I>;T,| 7,E F\ cHomF( V, U) be the space of linear
transformations generated by the T¡. If there is no uGV such that Txv,
• • •, TTv are linearly independent modulo U0 then J7~ and U0 have the
property:

(a) For each u E V there exists 0 ^ T = £y¡T¡ E S such that Tv E U0.
Indeed, since the set {T¡v ) are linearly dependent modulo U0 we have
^TiT^E U0 for some yiEF. Assuming property (a) to be valid we pro-
ceed to prove our lemma by induction on r = dim J5^. If dim J^= 1 then
J^= PTi, and by assumption it follows readily that TyVQ U0 as required.

Let dim J7~> 1. Choose v0 ?í 0 arbitrarily in V, and let 0^T0G-^ be
such that T0i;o E U0.

Let V0={v\vEV, T0vEU0\. Thus V0 * 0 since v0E V. If V0= V
then it follows that T0 V ç Í70 and the lemma is proved with S = T0.

Hence, assume that V0 ̂  V and choose Ui (£ Vo- Let

-^o={T|TE-^", TvyEUo}.

Thus, T0 E -^o and note that the requirement of the lemma implies that
S0*0.

Choose a submodule S/C-^~ which contains _^o and which is a com-
plement of the 1-dimensional module FT0 in S~. Namely, let J^~= PT0 ©5^
and J/^Z) /¡/^>-^o- This is always possible as T0E -^o. hence one com-
pletes the base of _^o by adding T0 and a set of independent elements of
J^to a base of S. j/will then be the linear space generated by this base
with T0 omitted. At this point we note first that dim //< dim J7~, and the
lemma can be applied to Sf-

Let Uy= U0 + Shy, then iUx: F) ^ (I70: F) + {S: F) < ». Now, if for
all nonzero vE V there exists a nonzero S E j/^such that SvE U±, then by
induction it follows that S Vis finite dimensional for some 0 ^ SE Sf and
the lemma is valid. If this is not the case then:

There exists 0 ¿¿wE V which satisfies the condition: "SwE Ux, SES/'
implies S = 0."

On the other hand, it follows by assumption that  Tw EU0^Uy for
some nonzero TE-^. Let  T=aTy+ S0 with aEF and S0E $/. Thus
(a T0 + S0) tv E Uy and this clearly implies,  by the method by which w
was chosen, that a ¿¿ 0. Without loss of generality we may assume that a = 1.

Consider now the element w -\- vx with the above chosen element Vy.
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By assumption, T'(w + vx) E U0 for some T * 0. Let T" = ßT0 + Sx with
Si G y. Thus:

(ßT0 + Sx)(w + vx)-ß(T0 + S0)w = (Sx - ßS0)w + (ßT0 + Sx)vx

is an element of U0. Consequently (Si — ßS0)wE U0 + J7~vx, and since that
Si — ßS0 G Sf it follows from the method by which w has been chosen that
Si - ßS0 = 0. This in turn yields that 0 * T = ßT0 + Si = ß(T0 + S0) and
ß ¿¿ 0. Furthermore, we also have ß~lT'(w + vx) = (T0 + S0)(w + vx) belongs
to l/0 and, hence,

(To + S0)vx = (T0 + S0)(w + vx) - (To + S0)wG U0.

Recalling the way _^o was defined above, we have T0 + S0E -^o- Now
_^o was a submodule of $/, consequently it follows that T0E 5/ which is
a contradiction to the fact that ^ is a complement of FT0 in B^.

Summarizing, we observe that the last case is impossible and thus the
proof that there exists an S of finite rank is completed.

The proof actually yields a bound for the dimension of the module S V
which was proved to be finite-dimensional. Indeed, let p. = (U0: F) and
t= (^:F), and let o(p, r) denote the minimal dimension of such a linear
space SV. Then the preceding proof yields that:

o(p, 1)^m    and    o(ti,T) ^Max[u,o(u + T,T - 1)].

One readily verifies that

/T+Uo(n,r) ^ p. + t + (t - 1) + ■ • • + 2 = p. + I

which shows that

fr+1
dimSV^dimt/0 + (Th-

The preceding lemma can be extended as follows:

Lemma 2. Let W be a cofinite submodule of V, i.e., dim V/W < <*>, and let
J^C Hom( V, U) and U0 be as above. If for every w G W there exists T ^ 0
ire J~such that TwE U0, then there exists O^SG J^such that SV is finite-
dimensional; actually Scan be chosen such that

dimSV^dimUo+T dim(V/W) +(T+   \ - 1.

Proof. Indeed, let vx, •••,»* be a finite set of independent elements of
V such that vt+ W, ■ ■ -,vk+ W are a linearly independent basis of V/W.
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Let U0 = U0 + 3vx + ■ • • 4- 3vk; then dimf70 g dimi/o-f- tA, where k
= dim(V/W).

The conditions of Lemma 1 are now valid with U0. For let v E V. Then
v = axvx + ■ ■ ■ + akvk + w_with some w £ W. By assumption let Tw £ U0,
T ?¿ 0, and hence Tv £ (70 as required and Lemma 1 yields the result.

For further application we wish to extend the fundamental lemma to
the vector spaces over a noncommutative division ring.

Let Í2 be an arbitrary set of operators of two abelian groups V, U. Let
D be a division subring of Hom„(y, U). Then Homa(V,U) can be con-
sidered as a P-space by setting (dT)v = d(Tv) and clearly it commutes
with the elements of Q.

With these notations the proof of Lemma 1, with D replacing P yields
the following generalization.

Lemma 3. Let U0ç.U and JfQHom(V, U) be two finite-dimensional D-
spaces. If for every 0 ¿¿ vE V there exists 0 ¿¿ TE ^~ such that TvE U0,
then there exists O^SG ^ such that SV generates a finite-dimensional D-
subspace of U, and its dimension is

^(L/0:70 + (T2hl) -1,

where r= (S~:D).

The proof is the same as the proof of Lemma 1 with D replacing P and
noting that the set J^"0 defined in the proof is actually a P-space since U0
is such, and hence one can continue with the proof with choosing the sub-
space j/CIJ^, etc. Note also that for v £ V, J^v is a P-subspace of U and
the rest follows with no additional observations.

We shall apply Lemma 3 in the case V = U in the following form:

Lemma 4. Let D be a division subring of Hom„( V, V) and let Tx, • • -, TT
be linearly left D-independent endomorphisms of V. If V0ÇZ V is finite-
dimensional D-space then either there exist vE V such that Txv, --^T^ are
D-independent modV0, or some (£,diT¡)V generates a D-space of dimension

^ dim V0+ I J - 1.

3. Finite ranked transformations in primitive rings. Let P denote throughout
this paper a primitive ring—considered as a dense ring of linear transforma-
tions of a vector space V over a division ring D, i.e., D = HomÄ( V, V) and
R Q HomD( V, V). Let C be the center of D, and let P be a maximal com-
mutative subfield of D.
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1965] POLYNOMIAL IDENTITIES AND PIVOTAL MONOMIALS 215

Denote by PF(PD, Pc) the subalgebra over P(P, Q of Homz( V, V)(2) gen-
erated by P. For further reference we observe that RF and RD are homo-
morphic images of R®ZF and P®ZP respectively. Then we have:

Lemma 5. The canonical operation of RF, RD on V, turns it into an irre-
ducible ring of linear transformations with the centralizing field F and C,
respectively.

Proof. Consider first the ring RF whose elements are of the form X/;a¿,
r, E R and a, E F. Writing the operations of P and of D on the left of the
elements of V, we have by definition:

(!>.«.) t> = Z/¿(«>ü) = T,aiiriv)<
and if (^rictùv = 0 for all v E V then ^lrial = 0.

Since RF 3 P, one readily verifies that if v j£ 0, Rpv = V* and hence RF is
an irreducible ring of linear transformations. It remains to determine the
centralizer of RF. Let XEHom(V, V) commuting with all elements of RF;
thus X commutes with RQRF and therefore XE D which is the centralizer
of P. Now for aEF, rER, the relation r(Aa) = Xira) = ira)X is valid.
Hence, r(Xa — aX) = 0 which yields that r(X« - aX)v = 0 for all rE R and
vEV. This implies that Xa = aX. But P is a maximal commutative sub-
field of D, hence X E F as required.

A similar proof holds for RD and both are special cases of the following
whose proof is similar:

Lemma 5*. Let KZ)C be a subdivision ring of D; then RK is a dense ring
of linear transformations of V over K*, where K* is the centralizer of K in D.

Lemma 6. (a) Let 0 ¿¿ r, s E R be such that sxr = rxs for all xER; then
s = Xr for some X E C.

(b) Let \a¡\ be a C-base of F; then the elements of RF can be expressed
uniquely in the form ^r,a„ r, E P.

Proof. To prove (a) we consider the endomorphism XEHom(V, V) de-
fined by XiJ^t¡rvt) = ^¡sví, for all t¡ER and v¡E V. This is a well-defined
homomorphism, for if ^t¡rvi = 0, then for all xER we have:

0 = sx^tfVi = ^rxtiSVi = rx(£tiSV¡).

This being true for all xER, and since r ¿¿ 0, it follows that J^^i = 0-
Furthermore, for all xER, Xi^xtfv,) = ^xtiSVi = x^tiSVi = xX(^í¿n;¿),
hence  XEHomÄ(V, V) = D.   Finally,   for   every  dED:

dX&tirVy) = Y,dtisvi = JLUsdVi = XiY.krdVi) = Xid^Urv/) = XaÇ^Urv/).

( ) Z denotes the ring of integers.
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which proves that X is in the center of D, i.e., XEC. It is evident from the
definition that s = Xr, and (a) is proved.

To prove (b) it suffices to show that if ]T^=ir'a' = 0 then all r¿ = 0. If
this is not the case, let k (the number of elements of the last sum) be
minimal; then for all xER-

k-i
0 = r*x £>,«;) - (E,ria¡)xrk = £ foxr, - nxr^ai.

¡=i

This element is of lower length. It follows therefore that rkxr¡ — r¡xrk = 0 for
¿ = l,---,k. Hence, (a) yields that r¡ = X¡rk, X¡E C. Thus, ^r¡o, = /*]£A¿a;.
Now rk ;¿ 0, by the minimality of k, and J^lXia¡ E F which is a field from
which we deduce that ^X¿a, = 0. But the a, are a C-base, hence all X¡ = 0
which is impossible since in particular Xk = 1.

Theorem 7. Let R be a dense ring of linear transformations of VD and let
F be a maximal commutative subfield D. If RF contains a linear transforma-
tion of finite rank over F, then R contains also a linear transformation of
finite rank over D, and (P: Q < °°.

Proof. It follows by Lemma 5 that RF is a dense ring of linear transforma-
tions. Let TERF such that (TV: P) < =o and let T = 2*-i^«i with r¡ER
and ja,} a C-base of P. Among all T with this property we choose T with
* minimal. We note that for x E P, irkxT - Txrh) Vç (r*x) TV+ TV. TV
is of finite dimension and so is rkxTV since the latter is an P-homomorphic
image of TV, where the homomorphism is obtained by the mapping Tv
—>rkxTv. Consequently, rkxT — Txrk = ^irkxr¡ — rixrk)ai is of lower length,
hence rkxri = r,xrk for all x E R- It follows from (a) of the preceding lemma
that r¡ = rkX¡ with X, E C and, hence, T = rk^X¡a¡ = rka with aE F. Since
T 5¿ 0, we have also rt^0 and a j¿ 0.

Consequently, TV = rkaV = rkV as a_1 exists in P. Now rkV is as well
a P-space since rkR commutes with the elements of D. Hence » > irkV: F)
= irkV:D)iD:F) which yields that both irkV:D) < œ and (P:P) < ».
The finiteness of the first proves the first part of the theorem and the
finiteness of (P: P) yields (e.g. [3, Chapter VII, Theorem 9.1, p. 175])
that (P: Q < »  and since F is maximal we also have (P: C) = (P:P)2.

A bound for (P: Q can be obtained as follows:
Let T = ^*=ir¿a, be such that iTV: F) = m, then the preceding proof

shows that either TV = rAVor there exists V = £ría¿ of lower length and
iT'V:F) zz 2m. Continuing this way we get an rER such that (rV:P)
^2*_1rei. Hence from the relation (rV: F) = (rV: D)(D: F), and (D: Q
= (P: P)2 it follows that:

Corollary 8. // T = 2>,a„ and (TV: F) = m then (D: Q zi 22*"2/re2
= 4*"1ret2.
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A special case of Theorem 7 is of interest:

Corollary 8*. Let D be a division algebra with a center C. Let F be a
maximal subfield of F, then D& CF is a primitive ring acting on D and it
contains finite ranked transformations if and only if (D: O < °°.

Proof. D can be considered also as a vector space over which D acts by
multiplication on the left. Its centralizer is its anti-isomorphic ring D* of
all right multiplication. Now P<8>CP can be identified withP<8>cP* = DF
by Lemma 6. The rest is the application of Theorem 7.

4. Polynomial identities. We can turn now to the main object of the paper.
Let j x j = j Xu x2, • • ■ \ be an infinite set of noncommutative indetermi-

nates, P a primitive ring which is a dense ring of linear transformations on
a space VD, and D the centralizing division ring having C as its center and
let F be a maximal commutative subfield. If P is a division ring, we take
VD = R and the elements of R operate by left multiplication and the
centralizer is to be taken D* the ring of all right multiplications.

Clearly, the center of P is an integral domain contained in C (and might
be the zero element only), but for our purpose we assume, and as it will be
seen, without loss of generality, that this center is the field C itself so that
R = Rc is also a C-algebra.

Let R(x) be the C-universal product of R and the free ring C[x] with the
x's commuting with the elements of C. Recall that in our case R(x) can be
characterized uniquely up to isomorphism by the property that:

Every C-homomorphism <j>: R—>S into a C-algebra S and a mapping
yp'.Xi—>s, have a unique extension to a homomorphism 0:P(x)—>S. An ex-
tension, in the sense that 4>\R = <f>, <p(x¡) = s¿. The construction of R(x)
can be obtained as follows:

Let X be the C-module generated by the x¿ and let Y(l) = Y¿ ® • • • ® Y¡k
where Y, is either R or X and the product is taken with respect to C. Let
Y = £,Y(¡) be the direct sum taken over all possible (i) (and all k). We
turn Y into an associative ring by defining multiplication: y^yo) = y«
® y(ß for all y(l) G Y(¡), yw G Yw and extending it linearly to all Y. Let AT
be the two-sided ideal of Y generated by the elements

{rx ® r2 - rxr2; rlt r2 G P |

and by the elements y ® 1 — y, 1 ® y — y for y G Y, if P contains a unit 1.
P(x) is defined to be the quotient ring Y/N. Every homomorphism

0: P —> S and a mapping ^: at,—»s, is extended to Y by setting 3>(yi® • • • <8 yt)
= 0(yi)0(j2) •••#(}'*) where <*>(y,) is the 0-image of y¡ if VjGÄ, and if y,
™2*c¡Xj<E.X then (t>(yj) =^c¿s¿ and since Ker$3JV, it follows that *
induces the homomorphism <j> of R(x).
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Though it is not difficult to show that R(x) is the universal product of
P and C[x], it is sufficient for our purpose to use only the above construc-
tion of P(x) and the property of the existence of the extension.

Henceforth, let {rx j be a C-base of P and we shall always set rx = 1 even
if P does not contain a unit.

Lemma'9. The polynomials p[x]£ R(x) can be written in the form

i*) P[x] = H<x.nkxJkxJk^rik_2 ■ ■ ■ xnrio,

where aU] £ C and r¿. is one of the C-base jrA( (or r, = 1)(3).

The proof is evident if it is shown that every yx ® • • • ® yk £ Y(l) has
its representation mod N, and this is trivial since every y¿ is a linear com-
bination of the xx's if it belongs to X and a linear combination of the rx's
if it belongs to P(3).

At this point we do not raise the question of uniqueness, but clearly we
may always assume that in the representation (*) of p[x] for any two terms
with two nonzero coefficients a(¡),a'{¡), we have (ik,jk,ik-i,jk-i, •• -,iiJi,io)
^ ii'hji, i'h-uj'h-i, • • -, i[,j[, i'o) since one can sum all similar terms into a
single term. When the representation (*) of p[x] satisfies this condition,
we shall say that it is a standard form of p[x].

Each term r^x^ • • • x¡ r¡ is referred to as a monomial and k is called
its degree. The degree of a standard form is the maximal degree of its
monomials (which appear with a nonzero coefficient).

Definition. A polynomial p[x]£P(x) is said to be a polynomial rela-
tion^) of R, if p[x] is not trivially zero and if p[x] = 0 hold identically in
P; in other words, for every homomorphism <b: R(x)—>R, <b(p) = 0.

We shall also say that p = 0 is a polynomial identity in P.
Our main theorem is:

Theorem 10. A primitive ring R satisfies a polynomial identity if and only
if it is isomorphic with a dense ring of linear transformations over a division
ring D which is finite over its center, and R contains a linear transformation
of finite rank.

Proof. If P is as above, let e £ P be a primitive idempotent; then eRe & D
[3, p. 77]. If (D: C) < co, then D satisfies a standard identity [yx,y2, •■-,ytl]
= T, ±yijy¿a • ■ • yik (eg-, for A > (D: Q [3, p. 227]). Hence, P satisfies the
polynomial identity

£ ± ex^ex^ex^ ■ ■ ■ exihe = 0.

O The case that R does not contain a unit should not cause any misunderstanding as 1 always
appears in one of the form x\, Ix, rl which have an obvious meaning.

( ) We shall refer to these generalized polynomial relations as the polynomial relations
throughout this paper.
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To prove the converse, assume that R satisfies a polynomial relation
p[x] = 0 and that R acting on VD either does not contain a linear trans-
formation of finite rank or (P: C) = ».

First note that we may assume that p[x] is linear in each of its indeter-
minatesx,. Indeed, suppose p[x] given in a standard form which is of degree
^ 2 in xx; then, as in the usual linearization process, one chooses x¡ which
doesnotappearinp[x]andthenp[xi + x;,x2, • • •] — p[xi,x2, • • •] — p[x¡,x2, ■■•]
= p[xi,Xj,x2, •■•] is again a polynomial which is not trivially zero, and
which holds identically in P. Furthermore, it is of lower degree both in
Xi and Xj and of the same degree in the other indeterminates. Continuing
this way one obtains a multilinear identity. So henceforth we assume that
p[x] is multilinear.

We turn to the ring RF, whose definition was given in the beginning of
the section, and consider it as acting on VD. The elements of RF are of the
form 52 d,a„ di ER,aiEF (Lemma 6), and the elements of P commute with
all the elements of P; hence one readily verifies that any multilinear identity
which holds in P, holds also in RF.

Let the standard form of the multilinear polynomial p be:

( *) P M = £ «(.>r,i*,/,2 • • • »WV       "<* G C-
Consider the finite set of the r/s which appear in (*) in monomials with

a nonzero coefficient. Without loss of generality we may assume that these
are rx = l,r2, •••,/■,. As linear transformations they are also independent
over P. Indeed, if £r¿X¿ = 0, X,E F, then X¿ = ^c^a^c^E C for a C-base
{ax\ of P; hence £(£r¡c,-.)a;-= 0. Consequently, it follows by Lemma 6
that]Tr,c,. = 0, but the r/s are C-independent, which implies that all c, = 0.
Thus also all X, = 0.

We proceed with the proof by showing first:

Lemma 11. Let rx,---,rT be C-independent elements in the primitive ring
R. If R does not contain a finite ranked transformation, then for every integer
h, there exists vx, ■ • -,vhEV such that the set jr¡(;;¡ are rh D-independent
vectors in V.

Proof. We apply the fundamental Lemma 4 to the following situation:
Let J5^= ¡£r¿0¡¡ be the r- dimensional linear subspace of RF generated by
the r/s. Let V0 = 0; then it follows by Lemma 4 that there exist v0E V
such   that   ryV0, r2v0, ■ ■ ■, rrv0   are  P-linearly independent.   Put    V0 = ^v0.

Applying again Lemma 4 with W0 = V0 we obtain Vy E V such that {r¡vx}
are linearly independent modulo V0. Thus all r¿Vy, r¡v0 are linearly indepen-
dent. Continuing this way with Vy — J^v0 + S^vx,etc., • • -, we obtain vx,
v2,---,vh such that all r¡Vj are P-linearly independent.

We return to the proof of the theorem. Assume that R does not contain
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a finite ranked transformation; then it follows by Theorem 7 that RF also
does not have a finite ranked transformation and we proceed to obtain a
contradiction by applying the preceding lemma to RF (and P replacing D)
and choosing h too large.

Indeed, without loss of generality we may assume that the standard
formpfx] given in (*) is such that

(**) p[x] = £/?,r,x*riè_1ac*_iJ7t_2 • • • r^r^ + ■■■

and at least one ß„ ^ 0, and the terms appearing after the plus sign either
contain a different rik or contain  a  permutation  of the  indeterminates
%u • • ■> xk-

Since RF is a dense ring of linear transformations of Vf, and the r¡Vj are
linearly independent, there are well-defined k elements d¡ of RF satisfying
for each j — 1, • • -,k:

dj(rij-ivj-ù = vj   and    d,(rxüM) = 0 elsewhere.

If h ^ k this leads to a contradiction. Indeed consider the element
p[dx, ■ • -,dk]v0. Clearly, all monomials amrikxjk • ■ ■ r^x^r^ when substituted
in x¡ = d¡ and are acted on by v0 will yield the zero unless it is one of
the first terms appearing in (**); that is, r¡t= r¡t, 1 ^ t ^ k — 1 and xJf
= xt, and if it is one of these terms it yields ß,rvvh. Consequently p[dj]v0
— X ß,r,Vk and since one of the ß, ^ 0 and r,vk are all linearly independ-
ent we obtain p[dj]vo¿¿0 which implies that p[d;]?í0 in contradiction
with the fact that p[x] = 0 holds identically in RF as well as in P. This con-
cludes the proof of the theorem.

The preceding proof, modified a little, together with Lemma 4 and Cor-
ollary 8, yields actually a bound for (D:C).

Indeed, let p[x] = 0 given in the standard form (**). Note that the
linearization process does not increase the total degree and the number
of C-independent elements among the elements of R which appear in the
original polynomial before linearization.

Consider again the P-module 5^= \^Lriai\ generated by the r¡, i= 1,
2, ...,t. As above we have, either: (I) a vector v0EV such that \r¡v0} are
linearly independent, or (II) some T = ^Ji=lairi has finite rank and then
its rank is, by Lemma 4,

Consequently, in this case Corollary 8 implies that

<—((' r)-o*
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Continuing as in the preceding proof we obtain: (I) vx £ V such that 3v0
+ 3vx is of dimension 2t, or else (II) some T£ 3 of finite rank, and
again by Lemma 4 its rank is

(here 3v0 is taken for W0 of Lemma 4) and by Corollary 8,

Generally, we obtain that either

~^'1^(T)-']'
or V contains vectors t>0, vx, ■ ■ -,vk such that r¡Vj are all P independent. But,
modifying the above proof following the proof of Theorem 1 of [l] we shall
show that this is possible only if A ̂  [A/2] where k is the degree of p[x]
and [A/2] is the greatest integer in k/2.

Indeed, let A > [A/2]. One observes that the space 3v0® 3vx ® ■■ ■
® 3vn is isomorphic with the tensor product 3 c<> U where U is a C-
vector space of dimension A + 1 and can be taken to be U = ^ Cv¡. Fur-
thermore, U can be identified with rxU. For our purpose we may identify
3 &) Î7 withX ^vi- Let P be the linear transformation given by Ev¿ = vi+x
for i + 1 è h and Ev¡ = 0 if i + 1 ¿ A.

Since Pf is dense in Hom(VV, VF) we can determine A elements dx, ■ ■ -,dk
in RF such that for all v £ U:

lfj=2l, then d^^v) = ElSEh'lv and for j = 21 + 1; then dj^^v)
= E'+lSEh~'v, and in both cases d¡(r^v) = 0 for all r„ ^ r¡._,; and -S is given
by Su/, = v¡¡ and zero otherwise.

Consider now p[dx,d2,---,dk]v0 and as in the preceding proof we show
that, since A > [A/2] = m:

P[dj]v0 = £,ß„r„EmSE"-m.PSP^1 ■ PSP* • SEhv0.

The other terms yield the zero, since either they contain a term of the
form ESElS with t> h which is zero since Eh+1 = 0, or else the dj will act
on an rßv with u ¿¿ ¿y_i¿ Now the sum

ZßS„Em(SEhSEh.SEh)v0 = 2>„r,P% = £ftr.i>. * 0

since one ß^O and all r„vm are linearly independent. Consequently,
p[dy]i>o 5e 0 which contradicts the assumption that p = 0 holds in P.

Thus either we get as far as A = [A/2] or we obtain a linear transforma-
tion of finite rank. We have:
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Corollary 12. A primitive ring R satisfying a nontrivial identity p = 0
of degree k which includes t C-independent elements (including 1), is iso-
morphic with a dense ring of linear transformations over a division ring D
containing a finite ranked transformation and (5)

(D:C)s,-.(rr)_1+rrj]r.
Note that for t = 1, which includes the case of a polynomial identity in
the old sense, i.e., with coefficients in C, we get Levitzky's bound of [fc/2]2.

We obtain an interesting consequence for division rings.

Theorem 13. A division ring D satisfies a polynomial identity if and only
if it is finite-dimensional over its center C, and then the bound is as given in
Corollary 12.

This is an immediate consequence of applying Theorem 10 and Corollary
12 to P = D, V = D and P acts on V by left multiplication. Here the
centralizer of P is D*, the ring of right multiplications, which is anti-
isomorphic with P; and thus (P*: Q = (P: O < ».

In all preceding results we have assumed that R is a C-algebra and then
one verifies by Lemma 6 that RF= R®CF. In the general case, the center
of P is only an integral domain contained in C. Nevertheless, if p = 0
holds in P then the linearization process of p yields a multilinear relation
which will hold also in Pc and Pp. This shows that there was no loss of
generality by assuming that P was a C-algebra, since we can start from Rc.

5. Applications. In this section we apply the preceding result to obtain
some information on the structure of the ring R(x). We assume, hence-
forth, that P is a primitive ring that either does not contain a minimal
left ideal or else its commuting ring is not finite over the center. These
conditions mean by the Structure Theorem [3, p. 75] that the result of the
preceding section holds for P.

A simple application is:

Corollary 14. The representation of p[x]ER(x) in the standard form
(*) of Lemma 9 is unique.

Indeed, it suffices to show that the monomials rikxJkrlk x- ■ ■ Xjj-io are C-
independent. If this is not the case then some linear combination of them
will yield a polynomial p[x] of standard form (*) which is not trivially
zero by definition but for which p = 0 in R(x). Hence, it is evident that

( ) As one considers only the r„ appearing in the same place, in the monomials of (**)
one can replace r by the number of independent elements in the same place of the monomials,
and a bound for this is the number of nonzero monomials in (**).
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under all homomorphisms <b: R(x)—>R, (¡>(p) =0, i.e., p = 0 holds in P.
But the proof of the main theorem shows that with our assumption about
P this is impossible.

In the next theorem we consider only division rings D and our next object
is to show that:

Theorem 15. D(x) is a ring without zero divisors imbeddable in a division
ring; furthermore, if D is ordered then D(x) can be imbedded in an ordered
division ring.

Proof. We consider first the case that D is infinite over its center. There
are different methods to prove that D(x) has no zero divisors. We present
here a method which is a simple application of the main theorem.

Suppose p[x], q[x] are nonzero elements in D(x) and pq = 0 in D(x).
Then for every homomorphism <p: P(x)—>D, <b(pq) = <t>(p)<t>(q) = 0. Since
<b(p), (f>(q) belong to a division ring it follows that either <p(p) = 0 or <j>(q) =; 0.
Choose now Xj which does not appear inp[x] and q[x] then we have also <j>(px¡q)
= Ofor all <f>. Consequently, the polynomial relation p[x]x;c/[x] = 0 holds in D,
this leads to a contradiction if we can prove that p[x]x;C/[x] is not trivially
zero in D(x). Indeed let p[x] = arikxjkrik_x •• • *>1r¡0+ ••• and q[x] = ßrlkxJh
■ ■ ■ Xj.r¡Q + - « - and let the monomials written be of maximal degree; then
one readily verifies that px¡q will contain the monomial aßrikXjk • • • r^x^
X fihXihl ■••r¡0 once and only once, and hence px¡q ^ 0.

To prove the imbeddability, we follow a method of imbedding rings with-
out zero divisors due to M. Rabin who used it to prove the following general
result (unpublished) (6) :

"A ring without zero divisors which is a subring of a complete product of
division rings is imbeddable in a division ring; furthermore, if the division
rings of the product are ordered then the ring can be imbedded in an ordered
division ring."

His proof goes as follows:
Let S = Il Da be the complete product of division rings Da, where a

ranges over a set P That is: S = j / ), the ring of all functions /, such that
/ (a) G Da. Let RÇ.S be a subring without zero divisors.

To each 0 * /G P let /, = {a\ a G I,f(a) * 0}. The sets /, form a base-
filter (7) in I. Indeed, IflD If2D ••• f) P/t2 h\--h an^i smce P is without
zero divisors, /i/2 • • • fk ¿¿ 0. Finally, lf¿¿0, as otherwise for all a El,
f(a) =0 which means that /= 0, and this case was excluded. Let P be.

i6) Quoted and proved by a different method in A. Robinson, A note on embedding problems,
Fund. Math. 50 (1962), 461.

( ) For basic facts on filters, see e.g., N. Bourbaki, Topologie générale, Vol. Ill, Hermann,
Paris, 1961; Ch. I, §6, p. 63.
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any ultrafilter containing all the sets If, then the set of all functions, ft E S
such that ja|ft(a) =0}EP, form a maximal two-sided ideal in S. The
quotient ring of S modulo this ideal (known as an ultraproduct of the P„)
which will be denoted by LT Da/F, is a division ring. Indeed, if f ¿é 0 (mod P)
then define g by g (a) = f(a)'1 when f (a) ¿¿0 and zero otherwise. The set
j a | / (a) = 0} (£ P; hence, since F is an ultrafilter, it follows that its comple-
ment belongs to the filter P from which it is readily seen that gf = 1 (mod P),
since \a\(gf)(a) = 1} = {a|/(a) ^OJEP  Thus, g = f'1 in  IlP./P.

This ultraproduct has the required properties, and the imbedding P
—> YlDa—> riPa/P is a monomorphism. Furthermore, if all Da are ordered,
then so is the ultraproduct ÍI Da/F. The order is obtained by setting / < g
if [a\ f(a) <g(a)\ E F. The proof is immediate and we shall not produce
it here.

This basic result can be applied to our case as follows:
Let I = \<t>) be the set of all homomorphisms <b: D(x) —>D, then con-

sider the product Dl = { /| /: / —> D}. This is a product of division rings and
P(x) can be imbedded in D1 in the natural way by setting p[x](</>)
= </>(p[x]) for all homomorphisms <¡>EI- This is a monomorphism of D(x)
into D1 since p[x](<¿>) = 0 for all <¡> means that p = 0 holds in D, but no
such nonzero relation exists in D unless p = 0 in P(x). The rest follows
now immediately by the above-quoted result.

To conclude the proof of Theorem 15 for arbitrary division rings we
note that our result will follow from the simple fact that any division ring
can be embedded in a division ring which is infinite over its center, and an
ordered finite-dimensional division ring (which is necessarily commutative)
can be embedded in an ordered noncommutative division ring (which is
necessarily infinite over its center). We shall prove here only the first fact:

Let £i, £2, • • • be an infinite sequence of commutative indeterminates and
consider the ring P = P(£) of all rational functions in the £,'s: namely,
the quotient ring of the polynomial ring P[£i,£2, •■•■]. Let 6 be the deriva-
tion of D and let it be extended to P(£) = P which can be written sym-
bolically as £ü.i&-i(d/d£,-), and where we denote £0 = 1. Consider now
the ring E[ô] of all differential polynomials in 5 with multiplication defined
by the relation: oa = ao + a'. The ring P[ô] is a Euclidean ring [7] and
thus a principal right and left ideal ring; hence it satisfies the Ore condition
and can be imbedded in a quotient ring E(ô). It remains to show that E(5)
is infinite over its center.

Indeed, note first that the £„ ¿ > 0, do not belong to the center as ô£,
= &Ä + li-i- Now, £o,£i, ••• are linearly independent over the center. If
it is not so, let £?_o&9¡ = 0 be a linear dependence relation with q¿ E center
of P and q„^0 of minimal re. Then since bqi = qfi as elements of the
center, we get:
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n n-\

o = íiXítfi) = (Eí¿?¡)* + Eíí-i9¡ = Z Mi+i
1 = 1 1=0

which is a linear dependence of lower length. Contradiction.

6. Pivotal monomials. (We turn now to the extension of the notion of a
pivotal monomial [2].)

Let P be a primitive ring with a unit 1 and a center C which is a field.
Let rx = l,r2, • • -,rT be a finite set of C-independent elements in P.

A monomial ir(x) will stand for a monomial of the form

nx) = rikXikrik-Xxik-\ " ' " r'iac«i'V

The complement P„ of ir will by definition include all monomials o(x)
= rn¡xm¡ ■ ■ ■ r^x^r^ for which I > k, or A ̂  A but then some ;', ^m, (t g Q,
or, i, ¡¿n, for í < / (!).

Definition. ir(x) is a pivotal monomial of P if for every substitution
x¡ = dit ir(d) belongs to the left ideal generated by all a(d), <r£ Pr.

Following the proof of [l, Theorem 4] in collaboration with the proof
of Theorem 11, we show that:

Theorem 16. A necessary and sufficient condition that a primitive ring
possesses a minimal left ideal is that it possesses a (left) pivotal monomial.

Proof. In one direction the proof is trivial. Indeed, if Re is a minimal
left ideal then eRe is a division ring and, therefore, exeye £ Reyexe for all
x,y in P, i.e., exeye is a pivotal monomial.

To prove the converse, we shall show that the existence of a pivotal
monomial yields the fact that R is a dense ring of linear transformations
of a space VD, D a division ring and P contains a finite ranked transforma-
tion. This yields by the Structure Theorem [3, p. 75] that R possesses a
minimal left ideal.

To achieve this we follow the proof of Theorem 10 with the use of
Lemma 11. The situation we are dealing with in this proof is as follows:
Let P be a dense ring of linear transformations of a space VD, D the cen-
tralizer ring of P. As in the proof of Theorem 10 we consider here the ring
Po as a subring of Hom(V, V). The set rx, ■ ■■,rT are also P-independent
and one verifies this by the same method as in the proof of Theorem 10
(where they were shown to be P-independent). From Lemma 11, we obtain
that either: (1) RD contains a finite ranked transformation of the form
Zr,d„ d,£ D, or else: (2) for every integral A, VD contains a set of vectors
^0,^1, •••,Oh such that \r¡Vj\ are linearly P-independent in V.

In the first case, we repeat the proof of Theorem 7 to show that P con-
tains a finite ranked transformation. Indeed, if for arbitrary x £ R consider
(rkxT - Txrk) V = £fcí (rkxri - nx^Vc rkxTV+ TV  which   generate a
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finite-dimensional P-subspace of V, and note that d¡ commute with the
elements of R (as do the a/s in the proof of Theorem 7). The rest follows in
this case as in the above-mentioned proof.

In the second case, choose ft > k and use a substitution similar to the
one used by Drazin (e.g., the proof of [l, Theorem 4]). Namely, we choose
dj E R determined by the relation:

djir¡,-xv'-u = u- and zero otherwise,

where ¿„ and j, are those which appear in the monomial w only. These dj are
well defined since h > k, and a contradiction is obtained by comparing
w(d) v0 = rikvk pi 0 and o(d)v0 = 0 for all o E P„ which is impossible since
w(d) E£P<r(d). Consequently, the second case cannot happen and thus
the proof that R contains a finite ranked transformation and, hence, a
minimal left ideal, is completed.
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