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The subject of this article is a unified Hamiltonian approach 
to the theory of nonlinear interactions among waves and particles. 
The unifying feature of the approach is a generalization of the 
concept of "ponderomotive force". The formulation can be said to 
retain the conceptual simplicity of the familiar ponderomotive-
potential method [1-3], but to remove the approximations [kj. 
The essence of the approach is to replace the usual method of 
time-averaging by the performance of a canonical transformation. 
The transformation is designed to eliminate the terms in the 
Hamiltonian of a particle which are linear in the wave potentials, 
replacing them with bilinear terms at combination frequencies. 
the new entity (the "oscillation center") thus has no first order 
jittering motion. The transformation formalism leads to explicit 
expressions for the required nonlinear currents, which can be 
decomposed into the current of oscillation centers and the "po­
larization" corrections [k]. The oscillation-center representa­
tion is thus quite analogous to the more familiar guiding-center 
representation in strong magnetic fields. 

Such an approach has previously been applied to the theory 
of induced scattering of waves by resonant particles [5]. The 
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useful extension of this point of view to other nonlinear processes 
is advocated here. We shall demonstrate the oscillation-center 
approach by deriving a compact general formula for the three-wave 
coupling coefficient in collisionless plasma. We wish here to 
emphasize ideas rather than the details of the formalism [6j. 
Accordingly, our subsequent discussion will be fairly schematic. 

We consider a collisionless, nonuniform and possibly relativ-
istic plasma, confined by spatially inhomogeneous electric and 
magnetic fields. We treat the linear normal modes of the config­
uration as fully electromagnetic, assuming that their eigenfre-
quencies are nearly real. We interpret the confinement as due 
to the adiabatic invariants of each particle, and shall implicitly 
assume the existence of the action-angle variables (l, S) asso­
ciated with the unperturbed Hamiltonian H (l). Accordingly, we 
separate all the plasma particles into two categories: the vast 
majority which comprise the nonresonant particles, and the small 
subset of "resonant" particles which satisfy [7,8] 

u> ~ i -dH /Si «= I -dg/dt . (1) 
a -a o' — -e -1 » ' 

In Eq. (1), w denotes the real part of tie eigenfrequency for 
normal mode a , and the vector £ represents a set of three 
integers. We wish to concentrate on the nonresonant particles in 
this article, and so we decompose (in some mathematically smooth 
way) the unperturbed phase-space distribution function in the 
form 

f0(£>E> = *„(£*) + C 5 ^ ' ( 2 ) 

where f represents the nonresonant distribution. 
We choose to work with conjugate variables (r,p_), where r 

denotes the Cartesian position vector in physical space. The 
unperturbed Hamiltonian for a plasma particle can be written 
H
0(£'E) = e V l ) + y £ c " e A^£'J + m 2 c ' ) (3) 



Adopting the radiation gauge «' = 0 , we consider a set of 
three perturbing normal modes, 

A'(x,t) = £ Afi(x)e a + c.c. , (k) 
a=l 

whose (positive) frequencies satisfy the resonant matching 
condition u>, = ux + au . A small frequency mismatch £tu « u> 
can be taken into account in the usual way [9j- Representative 
components of the perturbed Hamiltonian are 

-icu t 
H; = - e/c f^(.i)-dHo(T,2) e a , (5) 

H^ = e > ' i ^(r) Ajfr)^ dH 0(r, E) e 3 , ( 6 ) 

H Q"= - e 5/c 5 A^r) ^(r) A*(r) : 3 d d H 0(r, E) , (7) 
where the primes refer to the order in the perturbation, the 
subscripts identify the time dependence, and d = d/o£ . Let 
us devise a canonical transformation to eliminate H', i.e., all 
first-order terms in the perturbed Hamiltonian: 

(r,p,H) -* (R,P,K) , (3) 
K = H 0 + K" + ••• . (9) 

Such a transformation corresponds to simple Hamilton-Jacobi 
perturbation theory. If the particle were in resonance with 
any of the three primary modes, then a two-time-scale refinement 
of the transformation [5,10] would be required. The forces 
derivable from the oscillation-center Hamiltonian K" may be 
viewed as generalized ponderomotive forces. Bote, however, that 
we have not ordered frequencies and averaged over time. We have 
simply performed a canonical transformation. 

The perturbative generating function for the transformation, 
S(r,P,t) , is determined by the equations [5J 

D t = 3/dt + [ ,H 0] - (11) 



The resul tant Hamiltonian K"(r ,p, t ) i s then a sum of H" and 

a known bi l inear functional [5] of f i rs t -order quanti t ies . The 

nonresonant phase-space distribution function can now be de­

composed in the form 

f ( r , £ , t ) = F ( r , £ , t ) + A(r ,£ , t ) , ( l?) 

F = fQ + F" + • • • , t. = A' + A" + - • • , (13) 

where F denotes the solution of the Vlasov equation for oscilla­
tion centers, and A represents the difference between F ani} 

f at the same phase point (r,£) . Again., we have explicit 
formulas for A' and A" in terms of S, H and f [5]. 

Let us apply these ideas to calculate the slow evolution of 
the aiiplitudes of the interacting normal modes. Our concern is 
therefore with coupled equations of the form 

D(<oa + id/olO-E^x) = (Via>a)j;(x) , (I1*) 

where D(u>) denotes the linear dispersion operator (assumed 
nearly Hermitian), and j" represents the nonlinear current 
source at frequency u> due to the beating of the other two 
modes. Hetaining only the nonresonant terms in Eq^l1*).. we write 

D'(oa + id/dt)-^ = (Wl«oa)3; , (1?) 

•.(here D' denotes the Hermitian part of D . Since ui is a 
linear eigenfrequency, we have 

D'(a> + id/dt)-E -»ioB'(a> )/eto -dE /dt . (16) 

Now, the total energy of wave a can be written 

\ = K / 4 , r ) J d ? X ^'"E'K^^a'^a • ( 1 7 ) 

Combining relations (15) to (17), we thus obtain the action 
evolution equation 

a)'1 dW /dt = -2 Im IdPx c"1 A*-J" . (18) 
a a j —8. —a 

where the symbol d denotes the evolution due to nonresonant 
currents. 



We shall proceed to evaluate the right-hand side of Eq.(l8) 
using the oscillation-center transformation. The physical cur­
rent density £(x,t) of nonresonant particles can be written 

£(x,t) = e J d 5 r Jd 3p 6(x - r) f(r,p,t) aH(r,E,t) . (19) 
Invoking the decomposition (12) of f , we can break up the 
second-order contributions to Eq.(19) in the form 

J; * £3 + £4$ > (2°) 
where 

J" . e j d 5 r f d 5 p 6(x - r ) Fj SaQ , (21) 

and 

«Jj • e fd 3r f d 5p S(x - r) 

x ( f ^ + A^cMj + A^cH£ + ^3*0) - < 2 2> 

We rewrite the currents (21) and (22) using our generating-
function fonsulas, and substitute the results into Eq.(lS). A 
crucial sequence in the subsequent manipulations is the following: 

- jd5x c" 1 A*-J" = + I d 5r I d 5p H'* F" 

. + j d 5r J d'p S 5 * [^,fo] 

= + f d 3r f d V f 0 rs5*,K^'] . (23) 

Judicious manipulation and partial integration lead finally to 
the following compact and general formula: 



ja 5x c"1 A*-3^ = Jd 3r Jd 5p f r(r, E) 

X !«»•* {SX ,uf] + [S 2 ,Hg*] + £s5*,Hj] 

+ [S5*,[S1 ,Hg ]] + [Sj ,[S5*,Hg]] 

+ [S1 ,[S2 , H p ] + [S 2 ,[S 1 ,H^*]])\ 

IfiU) 

This expression is to be inserted into Eq.(l8). 
Formula (24) is manifestly symmetric under interchange of 

the subscripts (1, 2, J ). This symmetry implies conservation 
of action in the three-wave process (the Manley-Rowe relations 
fllj). We have presented here the essence of a purely cl-ssical 
and quite general proof of that conservation law. It is a con­
sequence of the static nature of the equilibrium, and of sep­
arating out the dissipation to resonant particles. For purely 
electrostatic modes, a formula essentially equivalent to Eq. (2^) 
has been derived by Laval and Pellat [9j- Only the triple Poisson 
bracket terms involving H 1 survive in the electrostatic limit. 

In the limiting case of a uniform, nonrelativistic, mag­
netized plasma, the expression (2k) can be shown to reduce to 
the following: 
C" 1*3-1"%,CD 3) = m~2 Jd3v ?0(\,vz) 

x | ( i^-dSj ) (D tdS 2 )-(DtdS3*) 

+ ( % - ^ s
2 * ̂ t^S^'^t^l } 

+ (-^3^S5*) (D tds x )-(DtdS2 ) 
+ ngdSj'-fi^^D^Sg) x dSx + (1 **S)]\ , 

J(25) 



where, in this equation only, we have defined a » d/dv . Ihe 
generating function S can now be written explicitly as an in­
finite sum over Bessel functions [5]. Formula (25) was recently 
derived by Larsson [12] using different notation and a different 
method. 
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