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Abstract

In this paper we develop a new approach to sparse principaponent analysis (sparse PCA).
We propose two single-unit and two block optimization fofations of the sparse PCA problem,
aimed at extracting a single sparse dominant principal amapt of a data matrix, or more com-
ponents at once, respectively. While the initial formuas involve nonconvex functions, and are
therefore computationally intractable, we rewrite thertoithe form of an optimization program
involving maximization of a convex function on a compact Séte dimension of the search space
is decreased enormously if the data matrix has many morecavariables) than rows. We then
propose and analyze a simple gradient method suited foagle it appears that our algorithm
has best convergence properties in the case when eithebjbetioe function or the feasible set
are strongly convex, which is the case with our single-umitrfulations and can be enforced in
the block case. Finally, we demonstrate numerically on @seindom and gene expression test
problems that our approach outperforms existing algorsthoth in quality of the obtained solution
and in computational speed.

Keywords: sparse PCA, power method, gradient ascent, strongly cazatsxblock algorithms

1. Introduction

Principal component analys{®CA) is a well established tool for making sense of high disienal
data by reducing it to a smaller dimension. It has applicativirtually in all areas of science—
machine learning, image processing, engineering, genet@irocomputing, chemistry, meteorol-
ogy, control theory, computer networks—to name just a fewkes® large data sets are encountered.
Itis important that having reduced dimension, the esdastimracteristics of the data are retained. If
A € RP*™is a matrix encoding samples of, variables, withm being large, PCA aims at finding a
few linear combinations of these variables, caltemcipal componentswhich point in orthogonal
directions explaining as much of the variance in the dataoasiple. If the variables contained in
the columns ofd are centered, then the classical PCA can be written in tefriiescaledsample
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covariance matrix, = AT A as follows:

Find z* = arg max 27 %z. Q)
2T2<1

Extracting one component amounts to computing the domieigetnvector o (or, equiva-
lently, dominant right singular vector od). Full PCA involves the computation of the singular
value decomposition (SVD) aofi. Principal components are, in general, combinations ofhall
input variables, i.e. thading vectorz* is not expected to have many zero coefficients. In most
applications, however, the original variables have caegpaysical meaning and PCA then appears
especially interpretable if the extracted components angoosed only from a small number of the
original variables. In the case of gene expression datansance, each variable represents the
expression level of a particular gene. A good analysis toobfological interpretation should be
capable to highlight “simple” structures in the genome-udiires expected to involve a few genes
only—that explain a significant amount of the specific biataf processes encoded in the data.
Components that are linear combinations of a small numbeairadbles are, quite naturally, usually
easier to interpret. Itis clear, however, that with thisiiddal goal, some of the explained variance
has to be sacrificed. The objectivespfarse principal component analyggparse PCA) is to find a
reasonablérade-off between these conflicting goals. One would like to expégimuchvariability
in the data as possible, using components constructeddsoiewvariables as possible. This is the
classical trade-off betweesiatistical fidelityandinterpretability.

For about a decade, sparse PCA has been a topic of activeatesetistorically, the first sug-
gested approaches were based on ad-hoc methods involvstgpooessing of the components
obtained from classical PCA. For example, Jolliffe (1996hsider using various rotation tech-
niques to find sparse loading vectors in the subspace isgghbfi PCA. Cadima and Jolliffe (1995)
proposed to simply set to zero the PCA loadings which are solake value smaller than some
threshold constant.

In recent years, more involved approaches have been puarfdrw approaches that consider
the conflicting goals of explaining variability and achisygirepresentation sparsity simultaneously.
These methods usually cast the sparse PCA problem in thedfamoptimization program, aiming
at maximizing explained variance penalized for the numib@oo-zero loadings. For instance, the
SCOTLASS algorithm proposed by Jolliffe et al. (2003) airhsnaximizing the Rayleigh quotient
of the covariance matrix of the data under éhenorm based Lasso penalty (Tibshirani (1996)). Zou
et al. (2006) formulate sparse PCA as a regression-typeaiiion problem and impose the Lasso
penalty on the regression coefficients. d’Aspremont e8I07) in theirDSPCA algorithm exploit
convex optimization tools to solve a convex relaxation efsparse PCA problem. Shen and Huang
(2008) adapt the singular value decomposition (SVD) to aamfow-rank matrix approximations
of the data matrix under various sparsity-inducing peesltGreedy methods, which are typical for
combinatorial problems, have been investigated by Mogaiawdet al. (2006). Finally, d’Aspremont
et al. (2008) proposed a greedy heuristic accompanied vaéntdicate of optimality.

In many applications, several components need to be idahtifihe traditional approach con-
sists of incorporating an existing single-unit algorithma deflation scheme, and computing the
desired number of components sequentially (see, e.g.pddhsont et al. (2007)). In the case of
Rayleigh quotient maximization it is well-known that contipg several components at once instead
of computing them one-by-one by deflation with the classpmaler method might present better
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convergence whenever the largest eigenvalues of the yimderhatrix are close to each other (see,
e.g., Parlett (1980)). Therefore, block approaches forsgp@CA are expected to be more efficient
on ill-posed problems.

In this paper we consider two single-unit (Section 2.1 arg) and two block formulations
(Section 2.3 and 2.4) of sparse PCA, aimed at extractingparse principal components, with
m = 1 in the former case angd > m > 1 in the latter. Each of these two groups comes in two
variants, depending on the type of penalty we use to enfqraesisy—either’; or ¢, (cardinality)?
Although we assume a direct access to the data mdtrikese formulations also hold when only
the covariance matriX is available, provided that a factorization of the fofim= A” A is identified
(e.g., by eigenvalue decomposition or by Cholesky decortipo}k

While our basic formulations involve maximization ohanconveXunction on a space of di-
mension involvingn, we constructeformulationsthat cast the problem into the form of maximiza-
tion of a convexfunction on the unit Euclidean sphere R¥ (in the m = 1 case) or theStiefel
manifolc? in R?*™ (in them > 1 case). The advantage of the reformulation becomes apparent
when trying to solve problems with many variables$ p), since we manage to avoid searching
a space of large dimensidnAt the same time, due to the convexity of the new cost functien
are able to propose arahalyzethe iteration-complexity of a simple gradient-type schemgich
appears to be well suited for problems of this form. In patéic we study (Section 3) a first-order
method for solving an optimization problem of the form

J* = max f(z), (P)
where @ is a compact subset of a finite-dimensional vector spacefdadtonvex. It appears that
our method has best theoretical convergence properties eitieer f or O are strongly convex,
which is the case in the single unit case (unit ball is strproginvex) and can be enforced in the
block case by adding a strongly convex regularizing terninédbjective function, constant on the
feasible set. We do not, however, prove any results conugthie quality of the obtained solution.
Even the goal of obtaining a local maximizer is in generaltiair@able, and we must be content
with convergence to a stationary point.

In the particular case whe@ is the unit Euclidean ball ilR? and f(z) = =7 Cx for somep x p
symmetric positive definite matrik’, our gradient scheme specializes to fplasver methogdwhich
aims at maximizing th&®ayleigh quotient

T
Rlz) = !t Cx

Ty

and thus at computing the largest eigenvalue, and the pomdig eigenvector, af'.

By applying our general gradient scheme to our sparse P@Amelations of the form (P), we
obtain algorithms (Section 4) with per-iteration compiataal costO(npm).

1. Our single-unit cardinality-penalized formulationdentical to that of d’Aspremont et al. (2008).

2. Stiefel manifold is the set of rectangular matrices witthonormal columns.

3. Note that in the case > n, it is recommended to factor the covariance matrifas AT A with A € R™*", such
that the dimensiop in the reformulations equals at most
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We demonstrate on random Gaussian (Section 5.1) and geressin data related to breast
cancer (Section 5.2) that our methods are very efficientactme. While achieving a balance be-
tween the explained variance and sparsity which is the same superior to the existing methods,
they are faster, often converging before some of the otigeri#hms manage to initialize. Addition-
ally, in the case of gene expression data our approach seeextradct components with strongest
biological content.

Notation. For convenience of the reader, and at the expense of redeydsome of the less
standard notation below is also introduced at the apprigppéace in the text where it is used.
Parameters: < p < n are actual values of dimensions of spaces used in the papbe definitions
below, we use these actual values (hep andm) if the corresponding object we define is used in
the text exclusively with them; otherwise we make use of tmaihy variables: (representing or
n in the text) and (representingn, p or n in the text).

Given a vectory € R”, its i*" coordinate is denoted hy. With a slight abuse of notation, the
same notationy; is used for the'® column of a matrixy’ € R**!, andy;; is the element of” at
position (7, j).

By E we refer to a finite-dimensional vector spa&&; is its conjugate space, i.e. the space of
all linear functionals orE. By (s,z) we denote the action af € E* onz € E. For a self-adjoint
positive definite linear operat@r : E — E* we define a pair of norms dii andE* as follows

Iz %" (Gz,2)V2, zeE,

)
Isll. £ (s,G71s)1/2, seE*,

Although the theory in Section 3 is developed in this gensg#ling, the sparse PCA applications
considered in this paper require either the chdice= E* = R? (see Section 3.3 and problems
(8) and (14) in Section 2) cE = E* = RP*™ (see Section 3.4 and problems (18) and (22) in
Section 2). In both cases we will |&t be the corresponding identity operator for which we obtain

1/2
y) = Zwiyi, ||| = (z,2)Y/? = <Zaz > = ||z|]2, =,y € RP,and

1/2
(X, V) =TrXTY, | X] =(X,X)"/* = wa =|X|p, XY eRP™

Thus in the vector setting we work with tISMndard Euclidean norrand in the matrix setting
with the Frobenius norm The symbolIr denotes the trace of its argument.

Furthermore, for: € R"™ we write ||z|; = >, |2 (¢1 norm) and by||z||o (¢y “norm”) we
refer to the number of nonzero coefficientscardinality, of z. By SP we refer to the space of all
p x p symmetric matricesS” (resp.S” ) refers to the positive semidefinite (resp. definite) cone.
Eigenvalues of matri¥” are denoted by; (Y), largest eigenvalue bymax(Y'). Analogous notation
with the symbolo refers to singular values.

By B¥ = {y € RF | yTy < 1} (resp. S* = {y € R¥ | yTy = 1}) we refer to the unit
Euclidean ball (resp. sphere) R*. If we write B andS, then these are the corresponding objects
in E. The space of x m matrices with unit-norm columns will be denoted by

[S"]™ = {Y € R™™ | Diag(YTY) = I,,,},

4
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whereDiag(-) represents the diagonal matrix obtained by extracting thgomal of the argument.
Stiefel manifolds the set of rectangular matrices of fixed size with orthoradrcolumns:

SP={Y e R |YTY =1I,}.

Fort € R we will further writesign(t) for the sign of the argument arg = max{0, ¢}.

2. Some formulations of the sparse PCA problem

In this section we propose four formulations of the sparsé\ p@blem, all in the form of the
general optimization framework (P). The first two deal witle tsingle-unit sparse PCA problem
and the remaining two are their generalizations to the biade.

2.1 Single-unit sparse PCA vigli-penalty

Let us consider the optimization problem
def
du,(7) = max VTR — 92|y, (3

with sparsity-controlling parameter > 0 and sample covariance matdix= A” A.

The solutionz*(y) of (3) in the casey = 0 is equal to the right singular vector corresponding
to omax(A), the largest singular value of. It is the first principal component of the data matAx
The optimal value of the problem is thus equal to

be, (0) = (>\maX(ATA))1/2 = omax(4).

Note that there is no reason to expect this vector to be sp@nse¢he other hand, for large enough
~, we will necessarily have*(y) = 0, obtaining maximal sparsity. Indeed, since

N |Az|lz e >, ziaill2 - > |zilllaill2

m = <max =————=
A0 lz[in =0 lz|a #0030z

= mZ.aX||az‘||2 = [lai|2,

we get||Az||2 —v||z|l1 < 0 for all nonzero vectors whenevery is chosen to be strictly bigger than
||ai=||2. From now on we will assume that

v < llai|2. (4)

Note that there is a trade-off between the valde*(v)||» and the sparsity of the solutiari(~).
The penalty parameteris introduced to “continuously” interpolate between the sxtreme cases
described above, with values in the interj@l||a;-||2). It depends on the particular application
whether sparsity is valued more than the explained varjatodce versa, and to what extent. Due
to these considerations, we will consider the solution pft¢3oe a sparse principal component of
A.

Reformulation. The reader will observe that the objective function in (3)asconvex, nor con-
cave, and that the feasible set is of a high dimensign«f n. It turns out that these shortcomings
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are overcome by considering the following reformulation:

be, (v) = max [|Az[l2 — v|zx
zeB"

_ TAz — S
gg%)gsrgé%}gx z ’7||ZH1 ( )
n
_ (T )
=y ) a(aa) —lal
n
- T
g vz > [%l(loel ), ©)

wherez; = sign(aiTw)Ei. In view of (4), there is some < B for which a;fpx > ~. Fixing
suchz, solving the inner maximization problem ferand then translating back tg we obtain the
closed-form solution

_ sign(a] )llaf =] — 1]y

zi =z () = , t=1,...,n. (7)
VEilladz] -2
Problem (6) can therefore be written in the form
2 _ T 2
¢, (7) = max > [la; 2| =A% ®)

Note that the objective function is differentiable and amgvand hence all local and global maxima
must lie on the boundary, i.e., on the unit Euclidean spiireAlso, in the case whep < n,
formulation (8) requires to search a space of a much loweedgion than the initial problem (3).

Sparsity. In view of (7), an optimal solution:* of (8) defines a sparsity pattern of the vectbr
In fact, the coefficients of* indexed by

Z={illajz"| >~} ©)

are active while all others must be zero. Geometricallyivaghdices correspond to the defining
hyperplanes of the polytope
D={zxcRP||a] x| <1}

that are (strictly) crossed by the line joining the origirdahe pointz*/~. Note that it is possible
to say something about the sparsity of the solution evenowtitthe knowledge af*:

v 2 HaZH2 = z;k(’y) =0, t=1...,n (10)

2.2 Single-unit sparse PCA via cardinality penalty
Instead of the/;-penalization, d’Aspremont et al. (2008) consider the falation

def
dto(7) = max 273z — 1 | 2llo, (11)
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which directly penalizes the number of nonzero componeamiiinality) of the vectok.
Reformulation. The reasoning of the previous section suggests the refationl

_ T A2
P4, (7) = max max(z” Az)" —7l|zlo, (12)

where the maximization with respectiao= 5™ for a fixedz € BP has the closed form solution
. _ sign((af ©)* — y)]+al=
=z (v) =

Vi sign((af )2 = 1) (af 2)?

In analogy with the/; case, this derivation assumes that

, 1=1,...,n. (13)

v < a3

so that there is: € B" such thata! r)> — v > 0. Otherwisez* = 0 is optimal. Formula (13) is
easily obtained by analyzing (12) separately for fixed ceaiity values ofz. Hence, problem (11)
can be cast in the following form

n

b1o(7) = max ‘:1[(65 z)? =+ (14)

Again, the objective function is convex, albeit nonsmoaitg the new search space is of particular
interest ifp <« n. A different derivation of (14) for thes = p case can be found in d’Aspremont
et al. (2008).

Sparsity. Given a solutionz* of (14), the set of active indices of is given by
7= {i| (aTa")? > ).
Geometrically, active indices correspond to the definingenglanes of the polytope
D={zxcRP||a] x| <1}

that are (strictly) crossed by the line joining the origirdahe pointz*/, /7. As in the/, case, we
have
v>laill; = z()=0, i=1,...,n (15)

7

2.3 Block sparse PCA vig/,-penalty

Consider the following block generalization of (5),

m n
def
boym(7) E max Tr(XTAZN) — Z Z Enp (16)
ZE[S”}W : 1=1
where them-dimensional vectoty = [vy1,...7v,]" is nonnegative andV. = Diag(j1, . .., ttm),

with positive entries on the diagonal. The dimensiancorresponds to the number of extracted
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components and is assumed to be smaller or equal to the réimik déita matrix, i.em < Rank(A).
Each parametey; controls the sparsity of the corresponding component. llithei shown below
that under some conditions on the parametgrsthe casey = 0 recovers PCA. In that particular
instance, any solutio@™ of (16) has orthonormal columns, although this is not expfienforced.
For positive;, the columns ofZ* are not expected to be orthogonal anymore. Most existing-alg
rithms for computing several sparse principal componengs, Zou et al. (2006); d’Aspremont et al.
(2007); Shen and Huang (2008), also do not impose orthodoading directions. Simultaneously
enforcing sparsity and orthogonality seems to be a hardgaritaps questionable) task.

Reformulation. Since problem (16) is completely decoupled in the columng,afe.,

m

T
Gtm(7) = max Z;r]nee}sx iz} Azj —;llzlh,
j:

the closed-form solution (7) of (5) is easily adapted to tleek formulation (16):

X ¥ sion(alz ) wilal z;| — .
Z—z(fyj)_ g ( i J)[M]‘ i J’ ij]—i—. (17)

Vi lglafes) — 13

This leads to the reformulation

m
2 T 2
G m(7) = max 2D luslaf sl = L3, (18)

which maximizes a convex functigh: R?*™ — R on the Stiefel manifolds?,.

Sparsity. A solution X* of (18) again defines the sparsity pattern of the maftrix the entry
z;; is active if
pjlal &%) > v;,

and equal to zero otherwise. For @jl > 1; max ||a,||2, the trivial solutionZ* = 0 is optimal.
7

Block PCA. For~ = 0, problem (18) can be equivalently written in the form

07, m(0) = e Tr(X TAATXN?), (19)
which has been well studied (see e.g., Brockett (1991) argll Abal. (2008)). The solutions of
(19) span the dominant-dimensional invariant subspace of the matdiX”". Furthermore, if the
parameterg,; are all distinct, the columns of * are them dominant eigenvectors ofA”T i.e., the
m dominant left-eigenvectors of the data matixThe columns of the solutio#™ of (16) are thus
the m dominant right singular vectors of, i.e., the PCA loading vectors. Such a mathxwith
distinct diagonal elements enforces the objective funciin(19) to have isolated maximizers. In
fact, if N = I,,,, any pointX*U with X* a solution of (19) and/ € S is also a solution of (19).
In the case of sparse PCA, i.e.,> 0, the penalty term already ensures isolated maximizers, suc
that the diagonal elements 6f do not have to be distinct. However, as it will be briefly ilizged
in the forthcoming numerical experiments (Section 5), hguistinct elements on the diagonal of
N pushes towards sparse loading vectors that are more ortabgo
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2.4 Block sparse PCA via cardinality penalty

The single-unit cardinality-penalized case can also berally extended to the block case:

def
brom(7) = max Tr(Diag(X" AZN)?) Z%Hzﬂlo, (20)

ZG[S”Z]”"L
where the sparsity inducing vector= [y1,...7,,]” is nonnegative and&V. = Diag(p1, .. . , fim)

with positive entries on the diagonal. In the case= 0, problem (22) is equivalent to (19) and
therefore corresponds to PCA, provided thayalare distinct.

Reformulation. Again, this block formulation is completely decoupled ie tolumns ofZ,

m

Gtom(7) = max lzmgg(ugw j Az)* = %illillo,

so that the solution (13) of the single unit case providefitenal columnsy;:

*

ot ) = Bl el o1

VZilsign((ugal 7;)2 = )] (af 2)°

The reformulation of problem (20) is thus

m n

brom(7) = max Y Y [(pyal 5)* — )+, (22)
1::=1

XeSfZL -

which maximizes a convex functigh: R?*™ — R on the Stiefel manifolds?,.

Sparsity. For a solutionX ™ of (22), the active entries]; of Z* are given by the condition

(njai 5)* > ;.

Hence for alky; > 17 max [|a,[|3, the optimal solution of (20) ig* = 0.
(2

3. A gradient method for maximizing convex functions

By E we denote an arbitrary finite-dimensional vector spadteis its conjugate, i.e. the space of
all linear functionals orE2. We equip these spaces with norms given by (2).

In this section we propose and analyze a simple gradiert#tygthod for maximizing a convex
function f : E — R on a compact sed:

f = max f(z). (23)

Unless explicitly stated otherwise, we wilbt assumef to be differentiable. Byf'(z) we
denote any subgradient of functignatz. By 0 f(x) we denote its subdifferential.
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At any pointz € Q we introduce some measure for the first-order optimalitydd@ns:

Ax) € max(f'(z).y — ).

Itis clear that
A(z) >0, (24)

with equality only at those points where the gradienf’(z) belongs to the normal cone to the set
Conv(Q) atz.*

3.1 Algorithm

Consider the following simple algorithmic scheme.

Algorithm 1: Gradient scheme
input @z € Q
output: x;, (approximate solution of (23))
begin
k+«—20
repeat
z+1 € Argmax{f(zx) + (f'(z),y — k) |y € Q}
k—Fk+1
until a stopping criterion is satisfied

end

Note that for example in the special ca@e= rS &' {z € E | [|«| = r} or

Q=rB% {z € E | ||z|| < r}, the main step of Algorithm 1 can be written in an explicit form

g = &) (25)

e

3.2 Analysis

Our first convergence result is straightforward. Derrtsmtac":ef Orgjgk Ax;).
_2_

Theorem 1 Let sequencgz; }7° ) be generated by Algorithm 1 as applied to a convex funcfion
Then the sequendgf (z1) }72, is monotonically increasing anlgiim A(zy) = 0. Moreover,

"= f(zo)
a < 50 (26)

IN

Proof From convexity off we immediately get

f@rgr) > flan) + (f'(2r), er — ) = fan) + Aa), (27)

4. The normal cone to the s€bnv(Q) atz € Q is smallerthan the normal cone to the g8t Therefore, the optimality
conditionA(z) = 0 is strongerthan the standard one.

10
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and thereforef (zx11) > f(xx) for all k. By summing up these inequalities fo= 0,1,..., N—1,

we obtain
k

£ = fxo) = flaw) — flwo) = D> Alwi),
=0
and the result follows. [ |

For a sharper analysis, we need some technical assumptighard O.

Assumption 1 The norms of the subgradients @fare bounded from below o@ by a positive

constant, i.e.
def

6= min /@) >0 (28)
f'(z)€df(x)
This assumption is not too binding because of the followegplt.

Proposition 2 Assume that there exists a pointZ Q such thatf(z) < f(x) forall z € Q. Then
> Imi — f(z —T .
31 2 |ig 10) - 1(@)] / [magllo ~ 71| >0
Proof Becausef is convex, for anyr € Q we have

0< f(z) = f(@) < (f'(@),2 — 2) < I (@)|lll= — 2.
]

For our next convergence result we need to assume eithegstamvexity off or strong con-
vexity of the seConv(Q).

Assumption 2 Function f is strongly convexi.e. there exists a constaat > 0 such that for any
z,y € E

g
F) = @)+ {f @),y =) + 5 lly — =] (29)
Note that convex functions satisfy inequality (29) wathnvexity parametes ; = 0.

Assumption 3 The setConv(Q) is strongly convexi.e. there is a constantg > 0 such that for
anyz,y € Conv(Q) anda € [0, 1] the following inclusion holds:

ar+ (1 —a)y + J7Qa(1 —a)|lz — y||*S € Conv(Q). (30)

Note that any se@ satisfies inclusion (30) withonvexity parametesg = 0.

It can be shown (see the Appendix), that level sets of styonghvex functions with Lips-
chitz continuous gradient are again strongly convex. Anrg{a of such a function is the simple
quadraticr — ||z||%. The level sets of this function correspond to Euclideafstlvarying sizes.

As we will see in Theorem 4, a better analysis of Algorithm JPp@ssible if Conv(Q), the
convex hull of the feasible set of problem (23), is strongiyex. Note that in the case of the two

11
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formulations (8) and (14) of the sparse PCA problem, thaldéasetQ is the unit Euclidean sphere.
Since the convex hull of the unit sphere is the unit ball, Wwhgca strongly convex set, the feasible
set of our sparse PCA formulations satisfies Assumption 3.

In the special cas@ = rS for somer > 0, there is a simple proof that Assumption 3 holds
with 7o = 1. Indeed, for any:,y € E anda € [0, 1], we have

law + (1 —a)yl* = o®[lz]* + (1 - a)?yl* + 2a(1 — a)(Gz, y)
= alz?+ 1 - a)yl? - al — a)llz —y|*.
Thus, forz,y € S we obtain

2] 1/2

1
laz + (1 = a)yll = [r* = a(l —a)lla —y[PP] "~ <7 - ool —alllz — yll*.

Hence, we can takeg = 1.

The relevance of Assumption 3 is justified by the followingheical observation.

Proposition 3 If f be convex, then for any two subsequent iterajes:; 1 of Algorithm 1
g
Aer) = G @)llellorer — el (31)

Proof We have noted in (24) that for convgxwe haveA(z) > 0. We can thus concentrate on
the situation whemg > 0 and f'(z) # 0. Note that

(f'(zg),x141 —y) >0 forall ye Conv(Q).
We will use this inequality with

G_lf/(l'k)

THC

def o
y=yo Lap+ ol —ox) + ol = o) fan - aPme
In view of (30),y, € Conv(Q), and therefore

0> (f'(@h), Yo — Thr1) = (1 — ) {f' (1), 0k — Tpp1) + 2a(l — a)|zpr1 — l21f (@)«

2

Sincea is an arbitrary value fronp, 1], the result follows. [ |
We are now ready to refine our analysis of Algorithm 1.
Theorem 4 (Stepsize convergencelet f be convexd; > 0), and let either Assumption 2 { >

0) or Assumptions 15¢ > 0) and 3 ¢o > 0) be satisfied. Ifz;} is the sequence of points
generated by Algorithm 1, then

Z k1 — axl® < % (32)

12
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Proof Sincef is convex, Proposition 3 gives

(0Q0s + op)||lzpsr — 2>

N —

F@er) = Fan) = M) + Llares —anf® >

The additional assumptions of the theorem ensuredbat + 6, > 0. It remains to add the in-
equalities up fork > 0. |

Theorem 4 gives an upper estimate on the number of iterattaiakes for Algorithm 1 to
produce a step of small size. Indeed,

2(f* — 1
k> M_z_1 =  min [z41 — 2z <e
oQif+oyp € Osizk

It can be illustrated on simple examples that it is not in gahpossible to guarantee that the
algorithm will produce iterates converging to a local maizien. However, Theorem 4 guarantees
that the set of the limit points is connected, and that allheiht satisfy the first-order optimality
condition. Also notice that, started from a local minimizée method will not move away.

Termination. A reasonable stopping criterion for Algorithm 1 is the feliag: terminate once
the relative change of the objective function becomes small

f(@py1) — flzg)
f(zg)

3.3 Maximization with spherical constraints
ConsiderE = E* = R? with G = I, and (s, z) = >, sz, and let
Q=rS8"={zeR?| || =r}

<k, orequivalently,  f(zx41) < (1 +¢€)f(zk)- (33)

Problem (23) takes on the form

f* = max f(x). (34)

rerSP

SinceQ is strongly convexdg = %), Theorem 4 is meaningful for any convex functififoy > 0).
The main step of Algorithm 1 can be written down explicithe€g(25)):

R f' (@)
@)l
The following examples illustrate the connection of Alglom 1 to classical methods.
Example 5 (Power method) In the special case of a quadratic objective functjgn) = %xTC'x
for someC € S” | on the unit spherer(= 1), we have
f* = 32max(C),

and Algorithm 1 is equivalent to thmower iteration methotbr computing the largest eigenvalue of
C (Golub and Van Loan (1996)). Hence f@r= S?, we can think of our scheme as a generalization
of the power method. Indeed, our algorithm performs thevalhg iteration:

Cuxy,
=——— k>0.

13
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Note that bothj; and oy are equal to the smallest eigenvalue(éfand hence the right-hand side
of (32) is equal to

2)\m|n(0) ’
Example 6 (Shifted power method)If C' is not positive semidefinite in the previous example, the

objective function is not convex and our results are not @gple. However, this complication can
be circumvented by instead running the algorithm with th&esth quadratic function

(35)

A

fz) = %xT(C +wlp)z,

wherew > 0 satisfiesC’ = wI, + C' € S%_. On the feasible set, this change only adds a constant
term to the objective function. The method, however, presldifferent sequence of iterates. Note
that the constants; ando; are also affected and, correspondingly, the estimate (35).

The example above illustrates an easy “trick” to make siyoagnvex an objective function
that it is not: one simply adds to the original objective fuimc a strongly convex function that is
constant on the boundary of the feasible set. The two fortionksare equivalent since the objective
functions differ only by a constant on the domain of interéstwever, there is a clear trade-off. If
the second term dominates the first term (say, by choosinglamgew), the algorithm will tend to
treat the objective as a quadratic, and will hence tend toitete in fewer iterations, nearer to the
starting iterate. In the limit case, the method will not maveay from the initial iterate. This issue
deserves futher analysis.

3.4 Maximization with orthonormality constraints

ConsiderE = E* = RP*™, the space op x m real matrices, withn < p. Note that form = 1

we recover the setting of the previous section. We assursespiace is equipped with the trace

inner product:(X,Y) = Tr(X7Y). The induced norm, denoted X || 2= (X, X)1/2, is the

Frobenius norm (we letz be the identity operator). We can now consider various lidasiets, the

simplest being a ball or a sphere. Due to nature of applicatio this paper, let us concentrate on

the situation wher® is a special subset of the sphere with radius /m, the Stiefel manifold:
Q=8 ={X R | XTXx =1,}.

Problem (23) then takes on the following form:

f*= max f(X).

XeSE,

Using the duality of the nuclear and spectral matrix norngsRioposition 7 below it can be shown
that Conv(Q) is equal to the unit spectral ball. It can be then further deduhat this set is not
strongly convex §o = 0) and as a consequence, Theorem 4 is meaningful onfyisfstrongly
convex ¢ > 0). Of course, Theorem 1 applies also in the= 0 case.

At every iteration, Algorithm 1 needs to maximize a lineandtion over the Stiefel manifold.
In the text that follows, it will be convenient to use the syhPolar(C) for the U factor of the
polar decompositiomf matrix C' € RP*":

C=UP, Ues,  PeS"

14
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The complexity of the polar decomposition@pm?), with p > m. In view of the Proposition 7,
the main step of Algorithm 1 can be written in the form

p41 = Polar(f'(zy)). (36)
Proposition 7 Let C € RP*™, with m < p, and denote by,;(C), i = 1,...,m, the singular

values ofC. Then

)]éne?s}é (C, X) Zaz (= [IC]l« = Tr[(CT )2, (37)

with maximizerX* = Polar(C). If C'is of full rank, thenPolar(C) = C(CTC)~1/2.

Proof Existence of the polar factorization in the nonsquare casmvered by Theorem 7.3.2 in
Horn and Johnson (1985). Lét= VW7 be the singular value decomposition (SVD)4fthat
is, V is p x p orthonormal W is m x m orthonormal, and is p x m diagonal with values;(A)
on the diagonal. Then

max (C, X) = max (VEWT, X)

XeSsh, XeSh,
= max (3, VI XW)
XES’HL
= max (3, Z) = ma (” < i
- (s 2) = g > ZU

i=1

The third equality follows since the functios — V7 XTW mapsSh, onto itself. Both factors of the
polar decomposition af’ can be easily read-off from the SVD. Indeed, if wellebe the submatrix
of V consisting of its firstn columns and be the principain x m submatrix of%, i.e. a diagonal
matrix with valuess;(C) on its diagonal, thew = VEWT = (VIWT)(WEWT) and we can put
U=VWTandP = WEWT. To establish (37) it remains to note that

(C,U)y=TrP=>_N(P) Zal = Te(PTP)'/? = Tr(CTC)'/? = Za

Finally, sinceCTC = PUTUP = P2, we haveP = (CT()'/2, and in the full rank case we obtain
X*=U=CP'=c(CTC)" 2 u

Note that the block sparse PCA formulations (18) and (22jaramto this setting. Here is one
more example:

Example 8 (Rectangular Procrustes Problem)Let C, X € RP*™ and D € RP*P and consider
the following problem:
min{||C — DX ||} | X" X = I,,}. (38)

Since||C — DX||% = ||C|% + (DX, DX) — 2(CD, X), by a similar shifting technique as in the
previous example we can cast problem (38) in the followimgnfo

max{w|| X||% — (DX,DX) +2(CD,X) | XTX = I,,,}.

15
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For w > 0 large enough, the new objective function will be stronglyvex. In this case our
algorithm becomes similar to the gradient method proposdetaikin et al. (2008).
The standard Procrustes problem in the literature is a splezise of (38) witlp = m.

4. Algorithms for sparse PCA

The solutions of the sparse PCA formulations of Section 2igeolocally optimal patterns of zeros
and nonzeros for a vectere S (in the single-unit case) or a matrik € [S™]™ (in the block case).
The sparsity-inducing penalty term used in these formatibiases however the values assigned
to the nonzero entries, which should be readjusted by cerisglthe sole objective of maximum
variance. An algorithm for sparse PCA combines thus a methatddentifies a “good” pattern of
sparsity with a method that fills the active entries. In thgusd, we discuss the general block sparse
PCA problem. The single-unit case is recovered in the pdaiicasen = 1.

4.1 Methods for pattern-finding

The application of our general method (Algorithm 1) to therfsparse PCA formulations of Section
2, i.e., (8), (14), (18) and (22), leads to Algorithms 2, 3,rtl & below, that provide a locally
optimal pattern of sparsity for a matri¥ € [S™]™. This pattern is defined as a binary matrix
P € {0,1}™™ such thatp;; = 1 if the loadingz;; is active andp;; = 0 otherwise. SaP is an
indicator of the coefficients of that are zeroed by our method. The computational complexity
of the single-unit algorithms (Algorithms 2 and 3)d%np) operations per iteration. The block
algorithms (Algorithms 4 and 5) have complexi®(npm) per iteration.

These algorithms need to be initialized at a point for whiod associated sparsity pattern has
at least oneactive element. In case of the single-unit algorithms, sarclnitial iteratex € S? is
chosen parallel to the column df with the largest norm, i.e.,

;- ,
—— .  where z*:argm?xﬂaiﬂg. (39)

xr =
llai |2

For the block algorithms, a suitable initial iterate € Sh, is constructed in a block-wise manner
asX = [z|X ], wherez is the unit-norm vector (39) an&, € S” , is orthogonal tar, i.e.,
wTXl = 0.

The nonnegative parameteyshave to be chosen below the upper bounds derived in Section
2 and which are summarized in Table 1. Increasing the valubesfe parameters leads to solu-
tions of smaller cardinality. There is however not explieilationship between and the resulting
cardinality. Since the proposed algorithms are fast, omeafi@rd some trials and errors to reach
a targeted cardinality. We however see it as an advantagi rotforce a fixed cardinality, since
this information is often unknown a priori. As illustratedthe forthcoming numerical experiments
(Section 5), our algorithms are able to recover cardimglithat are best adapted to the model that
underlies the data.

As previously explained, the parametgrsrequired by the block algorithms can be either iden-
tical (e.g., equal to one) or distinct (e.g; = %). Since distincti; leads to orthogonal loading
vectors in the PCA case (i.ey,= 0), they are expected to push towards orthogonality alsoen th
sparse PCA case. Nevertheless, unless otherwise stageéctinical parameteys; will be set to
one in what follows.
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Algorithm 2~ Single-unit’; v < max; ||a;]|2
Algorithm 3 Single-unity  ~ < max; ||a;||3
Algorithm 4 BlOCkél Y4 < gy Mmax; Hai||2
Algorithm 5 Block/, v < p3 max; [|ag|3

Table 1:Theoretical upper-bounds on the sparsity parameters

Let us finally mention that the input matri& of these algorithms can be the data matrix itself
as well as any matrix such that the factorization= A’ A of the covariance matrix holds. This
property is very valuable when there is no access to the ddtary the covariance matrix is avail-
able, or when the number of samples is greater than the nuofilvariables. In this last case, the
dimensionp can be reduced to at mastoy computing an eigenvalue decomposition or a Cholesky
decomposition of the covariance matrix, for instance.

Algorithm 2: Single-unit sparse PCA method based on#hpenalty (8)

input : Data matrixA € RP*"
Sparsity-controlling parameter> 0
Initial iteratex € SP
output: A locally optimal sparsity patteriy
begin
repeat
xS [laT x| — 44 sign(al v)a;
€T — ”7“"H

until a stopping criterion is satisfied

=1 if |al
Construct vectolP € {0, 1}" such that Pi If |a; x|_ -
p; =0 otherwise.

end

Algorithm 3: Single-unit sparse PCA algorithm based onthg@enalty (14)
input : Data matrixA € RP*"
Sparsity-controlling parameter> 0
Initial iteratex € SP
output: A locally optimal sparsity patter#’
begin
repeat
v 2 sign((af 2)? — )]+ af z a;
€T — HT:DH

until a stopping criterion is satisfied

i (aT 2
Construct vecto? € {0,1}" such that] 1 if (a7 2)" >y
p; =0 otherwise.

end

17
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Algorithm 4 : Block Sparse PCA algorithm based on thepenalty (18)
input : Data matrixA € RP*"
Sparsity-controlling vectofy,, . .. v,,]7 > 0
Parameterg, ..., tt;, >0
Initial iterate X € S?,
output: A locally optimal sparsity patter®’
begin
repeat
forj=1,...,mdo
|2y 30 wyluglal | — 5]+ sign(af 2)a;
X «— Polar(X)
until a stopping criterion is satisfied

A TER ,
Construct matrixP € {0, 1}"*" such that pij =1 1 “J’az_%‘ >
pi; =0 otherwise.

end

Algorithm 5: Block Sparse PCA algorithm based on tlyepenalty (22)
input : Data matrixA € RP*"
Sparsity-controlling vectofy,, . .. v,]7 > 0
Parameterg, ..., t;, >0
Initial iterate X € S?,
output: A locally optimal sparsity patter#’
begin
repeat
forj=1,...,mdo
| @y 2 mlsign((yaf 25)* — 1))+ af zj a;
X «— Polar(X)
until a stopping criterion is satisfied

, 1 if (waT )2 .
Construct matrixP € {0, 1}"*™ such that Pij ! (“J“z_ Tj)" >
pi; =0 otherwise.

end

4.2 Post-processing

Once a “good” sparsity patterR has been identified, the active entries§till have to be filled.
To this end, we consider the optimization problem,

(X*,2*) ©arg max Tr(XTAZN), (40)
XeSh,
Ze[snm
Zp=

where P € {0,1}™*™ is the complement of, Z denotes the entries df that are constrained
to zero andNV = Diag(u1, .. ., tm) With strictly positiven;. Problem (40) assigns the active part
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of the loading vectorg’ to maximize the variance explained by the resulting comptmeNithout
loss of generality, each column éfis assumed to contain active elements.
In the single-unit case: = 1, an explicit solution of (40) is available,

X* =u,

Z3 =v and Z% =0, “D)

wherecuv” with o > 0, v € B? andv € BlI”lo is a rank one singular value decomposition
of the matrix Ap, that corresponds to the submatrix Afcontaining the columns related to the
active entries. The post-processing (41) is equivalenhéwariational renormalizationproposed
by Moghaddam et al. (2006).

Although an exact solution of (40) is hard to compute in thecklcasen > 1, a local max-
imizer can be efficiently computed by optimizing alternalywwith respect to one variable while
keeping the other ones fixed. The following lemmas provideplicit solution to each of these
subproblems.

Lemma 9 For afixedZ € [S™]™, a solutionX™* of

max Tr(XTAZN)
XeSh,

is provided by théd/ factor of the polar decomposition of the produtt V.

Proof See Proposition 7. [ |

Lemma 10 The solution

A arg max Tr(XTAZN), (42)
Ze[Ssn)m
Zp=0
is at any pointX ¢ Sh, defined by the two conditiors, = (A" X ND)p and Z3 =0,whereD is
a positive diagonal matrix that normalizes each colum&dfo unit norm, i.e.,

D = Diag(NXTAATXN) 2.
Proof The Lagrangian of the optimization problem (42) is
L(Z,A1,Ny) = Te(XTAZN) — Tr(A (27 Z - 1,)) — Tr(AT 2),

where the Lagrangian multipliers; € R™*™ andAs € R™*™ have the following properties\,
is an invertible diagonal matrix and\2)p = 0. The first order optimality conditions of (42) are
thus

ATXN —2ZA — Ay =0
Diag(272) = I,
Zp =0.
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Hence, any stationary poirf* of (42) satisfiesZ;, = (ATXND)p and Zp = 0, whereD is
a diagonal matrix that normalizes the columns4f to unit norm. The second order optimal-
ity condition imposes the diagonal matriX to be positive. Such & is unique and given by

D = Diag(NXTAATXN) 2. ]

The alternating optimization scheme is summarized in Algor 6, which computes a local
solution of (40). A judicious initialization is provided an accumulation point of the algorithm for
pattern-finding, i.e., Algorithms 4 and 5.

Algorithm 6: Alternating optimization scheme for solving (40)

input : Data matrixA € RP*"
Sparsity patter? € {0, 1}"*™
Matrix N = Diag(p1, - - -, fim)
Initial iterate X € S5,
output: A local minimizer(X, Z) of (40)
begin
repeat
Z— ATXN
Z — Z Diag(Z72)" 2
Zp 0
X «— Polar(AZN)
until a stopping criterion is satisfied
end

It should be noted that Algorithm 6 is a postprocessing Is#iarthat, strictly speaking, is re-
quired only for the/; block formulation (Algorithm 4). In fact, since the cardiitya penalty only
depends on the sparsity pattdPrand not on the actual values assignedq a solution(X™*, Z*)
of Algorithms 3 or 5 is also a local maximizer of (40) for theuéting patternP. This explicit solu-
tion provides a good alternative to Algorithm 6. In the senghit case withf; penalty (Algorithm
2), the solution (41) is available.

4.3 Sparse PCA algorithms

To sum up, in this paper we propose four sparse PCA algorjteash combining a method to
identify a “good” sparsity pattern with a method to fill thetige entries of then loading vectors.
They are summarized in Table 2. TREATLAB code of thesé&Power® algorithms is available on
the authors’ website’.

5. Our algorithms are namé&aPower where the “G” stands fageneralizecbr gradient
6. http://www.inma.ucl.ac.be/richtarik
http://www.montefiore.ulg.ac.bejournee
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Computation ofP Computation o7 p

GPowery, Algorithm 2 Equation (41)
GPowery, Algorithm 3 Equation (13)
GPowery, ,,  Algorithm 4 Algorithm 6

GPowery, ,, Algorithm 5 Equation (21)

Table 2:New algorithms for sparse PCA.

4.4 Deflation scheme.

For the sake of completeness, we recall a classical deflptmeess for computing: sparse prin-
cipal components with a single-unit algorithm (d’Asprernen al. (2007)). Letz € R” be a
unit-norm sparse loading vector of the dataSubsequent directions can be sequentially obtained
by computing a dominant sparse component of the residualxmat— xz”, wherex = Az is the
vector that solves

min || A — zz7 || p.

zeRP

Further deflation techniques for sparse PCA have been peddgmsMackey (2008).

4.5 Connection with existing sparse PCA methods

As previously mentioned, oup-based single-unit algorithi@Power, rests on the same reformu-
lation (14) as the greedy algorithm proposed by d’Asprenabiad. (2008).
There is also a clear connection between both single-ugdri#thms GPower,, and GPowery,

and therSVD algorithms of Shen and Huang (2008), which solve the opétion problems

min A~ 25 + 2]zl and  min A — 22" 5+ ]2l

reSP zESP
by alternating optimization over one variable (eitheor z) while fixing the other one. It can
be shown that an update anamounts to the iterations of Algorithms 2 and 3, dependinghen
penalty type. AlthoughSVD and GPower were derived differently, it turns out that, except for the
initialization and post-processing phases, the algosthra identical There are, however, several
benefits to our approach: 1) we are able to analyze convezgemperties of the method, 2) we
show that the core algorithm can be derived as a special dagegeneralization of the power
method (and hence more applications are possible), 3) veeggimeralizations from single unit case
to block case, 4) our approach uncovers the possibility efg useful initialization technique, 5) we
equip the method with a practical postprocessing phasee@ravide a link with the formulation
of d’Aspremont et al. (2008).

5. Numerical experiments

In this section, we evaluate the proposed power algorithgagnat existing sparse PCA methods.
Three competing methods are considered in this study: agedeme aimed at computing a local
maximizer of (11) (Approximate Greedy Search AlgorithmAspremont et al. (2008)), tHePCA
algorithm (Zou et al. (2006)) and the sPCA-rSVD algorithrhé€8 and Huang (2008)). We do not
include theDSPCA algorithm (d’Aspremont et al. (2007)) in our numerical stud his method
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solves a convex relaxation of the sparse PCA problem and laageper-iteration computational
complexity ofO(n?) compared to the other methods. Table 3 lists the considégedtams.

GPowery, Single-unit sparse PCA vi& -penalty
GPowery, Single-unit sparse PCA vig-penalty
GPowery, ,,, Block sparse PCA vid,; -penalty
GPower, ,,  Block sparse PCA vid,-penalty

Greedy Greedy method

SPCA SPCA algorithm

rSVDy, sSPCA-rSVD algorithm with ar, -penalty (“soft thresholding”)
rSVDy, SPCA-rSVD algorithm with ary-penalty (“hard thresholding”)

Table 3:Sparse PCA algorithms we compare in this section.

These algorithms are compared on random data (Section$8.%.2) as well as on real data
(Sections 5.3 and 5.4). All numerical experiments are peréal inMATLAB. The parameter in
the stopping criterion of thEPower algorithms has been fixed 10~*. MATLAB implementations
of the SPCA algorithm and the greedy algorithm have been renderedsé@iby Zou et al. (2006)
and d’Aspremont et al. (2008). We have, however, implentetite SPCA-rSVD algorithm on our
own (Algorithm 1 in Shen and Huang (2008)), and use it withghme stopping criterion as for
the GPower algorithms. This algorithm initializes with the best ranke approximation of the data
matrix. This is done by a first run of the algorithm with the Igiig-inducing parametey that is set
to zero.

Given a data matrixd € RP*", the considered sparse PCA algorithms providenit-norm
sparse loading vectors stored in the maffix [S™]™. The samples of the associated components
are provided by the: columns of the producti Z. The variance explained by thesecomponents
is an important comparison criterion of the algorithms. Ha simple casen = 1, the variance
explained by the componenitz is

Var(z) = 2T AT Az.

When z corresponds to the first principal loading vector, the va@aisVar(z) = omax(A4)2. In
the casem > 1, the derived components are likely to be correlated. Hesomming up the
variance explained individually by each of the componentsrestimates the variance explained
simultaneously by all the components. This motivates thmnmf adjusted varianceroposed by
Zou et al. (2006). The adjusted variance of theomponents” = AZ is defined as

AdjVar Z = Tr R?,
whereY = QR is the QR decomposition of the components sample matr{x) € Sh, andR is

anm x m upper triangular matrix).

5.1 Random data drawn from a sparse PCA model

In this section, we follow the procedure proposed by ShenHunehg (2008) to generate random
data with a covariance matrix having sparse eigenvectarghi$ end, a covariance matrix is first
synthesized through the eigenvalue decompositioe= VDV, where the firstn columns of
V € R"*™ are pre-specified sparse orthonormal vectors. A data mataxR?*" is then generated
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by drawingp samples from a zero-mean normal distribution with covagamatrixX:, i.e., A ~
N(0,%).

Consider a setup with = 500, m = 2 andp = 50, where the two orthonormal eigenvectors
are specified as follows

vu:\/%_o for i=1,...,10, UQZ:%I_O for i=11,...,20,
v;; =0  otherwise, vy; = 0  otherwise,

The remaining eigenvectors, j > 2, are chosen arbitrarily, and the eigenvalues are fixed at the
following values

dy1 =400

dao = 300

djj=1, for j=3,...,500.

We generate 500 data matricdse RP*™ and employ the fouGGPower algorithms as well as
Greedy to compute two unit-norm sparse loading vectars:, € R*%°, which are hoped to be close
to v; andvy. We consider the model underlying the data tesbecessfully identifiefbr recovered
when both quantitie? 21| and|v] 2, | are greater than 0.99.

Two simple alternative strategies are compared for chgdbia sparsity-inducing parametegs
and~, required by th&Power algorithms. First, we choose them uniformly at random, leetathe
theoretical bounds. Second, we fix them to reasonable a péahres; in particular, the midpoints
of the corresponding admissible interval. For the blocloatgm GPowery, ,,,, the parametety,
is fixed at 10 percent of the corresponding upper bound. Tdlisewwas chosen by limited trial
and error to give good results for the particular data amalyz2We do not intend to suggest that
this is a recommended choice in general. The values of thesigpaducing parameters for the
ly-basedGPower algorithms are systematically chosen as the squares o&tbhes/chosen for their
{1 counterparts. More details on the selectionpfind~, are provided in Table 4. Concerning the
parameterg:; and o used by the block algorithms, both situations = uo andp; > po have
been considered. Note th@teedy requires to specify the targeted cardinalities as an inguf.ten
nonzeros entries for both loading vectors.

In Table 5, we provide the average of the scalar produgts;|, [v! ;| and|vd z,| for 500 data
matrices with the covariance matr¥x. The proportion of successful identification of the vectors
v1 andws is also given. The table shows that tGBower algorithms are robust with respect to the
choice of the sparsity inducing parametetsGood values ofy; and~, are easily found by trial
and error. The chances of recovery of the sparse model yimtpithe data are rather good, and
some versions of the algorithms successfully recover thesspmodel even when the parameters
are chosen at random. Tk#ower algorithms do not appear to be as successf@rasdy, which
managed to correctly identify vectorsandus in all tests. Note that while the latter method requires
the exact knowledge of the cardinality of each componemrtGtPower algorithms find the sparse
model that fits the data best without this information. Thigperty of theGPower algorithms is
valuable in real-data settings, where little or nothingnswn a priori about the cardinality of the
components.

Looking at the values reported in Table 5, we observe thablbek GPower algorithms are
more likely to obtain loading vectors that are “more orthagld when using parameteys; which
are distinct.

23



JOURNEE, NESTEROV RICHTARIK AND SEPULCHRE

Algorithm Random Fixed
GPowery, ~1 uniform distrib. on[0, max; ||a;||2] 1 = = max; |a;]2
~2 uniform distrib. on[0, max; ||a;||2] Y2 = 5 max; [|ai|2
GPowery, /71 uniform distrib. on[0, max; [a; 2] 1 = 7 max; ||a;||?
/72 uniform distrib. on[0, max; [|a||2] Yo = 7 max; [|a;[|3
GPowerg, ~1 uniform distrib. on[0, max; ||a;||2] Y1 = 3 max; [Jag|2
with M1 = 2 = 1 Y2 uniform distrib. On[(),maxl- ||aZH2] Yo = % max; ||aZH2
GPowerg, ., /71 uniform distrib. on[0, max; [a; 2] Y1 = 7 max; [Ja;[[3
with 1y = g =1 /72 uniform distrib. on[0, max; ||a|2] Y2 = o5 max; [ai|3
GPowerg, ~1 uniform distrib. on[0, max; ||a;||2] Y1 = 3 max; [Jag|2
with ;11 = 1 andyus = 0.5 72 uniform distrib. on[0, $ max; [|as|2] Y2 = 55 max; ||ai2
GPowerg, ., /71 uniform distrib. on[0, max; |[a; 2] Y1 = 7 max; [Ja;[[3
with iy = 1andps = 0.5 /72 uniform distrib. on[0, 3 max; ||as(|2] Y2 = 755 max; [a; |3

Table 4:Details on the random and fixed choices of the sparsity-imgusarameters, and-~y»

leading to the results displayed in Table 5. Matdixised in the case of the single-unit algorithms
denotes the residual matrix after one deflation step.

Algorithm v |27 2o |vT 21|  |vlz|  Chance of success
GPowery, random 15.8 1072 0.9693 0.9042 0.71
GPowery, random 15.710~2 0.9612 0.8990 0.69
GPowery, ,,, With 11 = ps = 1 random 10.110~2 0.8370 0.2855 0.06
GPowery, ,,, With 11 = pa = 1 random 9.21073 0.8345 0.3109 0.07
GPowery, ,, with iy = 1 andus = 0.5 random 1.8 10-* 0.8300 0.3191 0.09
GPowery, ,, with iy = 1 andpus = 0.5 random 1.5 10-* 0.8501 0.3001 0.09
GPowery, fixed 0 0.9998 0.9997 1
GPowery, fixed 0 0.9998 0.9997 1
GPowery, , With pi = po =1 fixed 4251072 0.9636 0.8114 0.63
GPowery, , With pi = po =1 fixed 3.771072 0.9663 0.7990 0.67
GPowery, ,, with 3 = 1 andpus = 0.5 fixed 1.81073 0.9875 0.9548 0.89
GPowery, ,, With 111 = 1andp = 0.5 fixed  6.710~° 0.9937 0.9654 0.96
PCA - 0 0.9110 0.9063 0
Greedy - 0 0.9998 0.9997 1

Table 5:Average of the quantitiels{ 2|, [v 21|, |v3 22| and proportion of successful identifi-
cations of the two dominant sparse eigenvectors bfy extracting two sparse principal compo-
nents from 500 data matrices. T@eeedy algorithm requires prior knowledge of the cardinalities
of each component, while ti&Power algorithms are very likely to identify the underlying spars
model without this information.

Table 5 does not include results for the algorithr8¥D and sPCA because of our limited
experience with those algorithms and the absence of su@rtiggnts in the literature but we expect
a similar flexibility to the sparsity parameter tuning inwief the connections developed in Section

4.5.

5.2 Random data without underlying sparse PCA model

All random data matricegl € RP*"™ considered in this section are generated according to a-Gaus
sian distribution, with zero mean and unit variance.
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Trade-off curves. Let us first compare the single-unit algorithms, which pdeva unit-norm
sparse loading vector € R™. We first plot the variance explained by the extracted corapbn
against the cardinality of the resulting loading vector-or each algorithm, the sparsity-inducing
parameter is incrementally increased to obtain loadingovee with a cardinality that decreases
from n to 1. The results displayed in Figure 1 are averages of compuatatn 100 random ma-
trices with dimensiong = 100 andn = 300. The considered sparse PCA methods aggregate in
two groups: GPowery, , GPowery,, Greedy andrSVD,, outperform theSPCA and therSVD,, ap-
proaches. It seems that these latter methods perform wecrseibe of thé, penalty term used in
them. If one, however, post-processes the active partagtording to (41), as we do GPowery, ,
all sparse PCA methods reach the same performance.
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Figure 1:Trade-off curve between explained variance and cardinality. The vertixial ia the
ratio Var(zspca )/ Var(zpca ), Where the loading vectarpca is computed by sparse PCA and
zpca is the first principal loading vector. The considered aldponis aggregate in two groups:
GPowerg, , GPower,,, Greedy andrSVDy, (top curve), andPCA andrSVD,, (bottom curve).
For a fixed cardinality value, the methods of the first groypl@x more variance. Postprocessing
algorithmsSPCA andrSVD,, with equation (41), results, however, in the same perfooaars
the other algorithms.

Controlling sparsity with v. Among the considered methods, the greedy approach is tkie onl
one to directly control the cardinality of the solution,.j.the desired cardinality is an input of the
algorithm. The other methods require a parameter conigptie trade-off between variance and
cardinality. Increasing this parameter leads to solutieith smaller cardinality, but the resulting
number of nonzero elements can not be precisely predicteBigure 2, we plot the average rela-
tionship between the parametgiand the resulting cardinality of the loading vectofor the two
algorithmsGPower,, andGPower,. In view of (10) (resp. (15)), the entrie¢f the loading vector
z obtained by thé&Power,, algorithm (resp. th&Power/, algorithm) satisfying

laila <~ (resp.]jai]|3 <7) (43)

have to be zero. Taking into account the distribution of thies of the columns afl, this provides
for every~ a theoretical upper bound on the expected cardinality ofdkelting vector.
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Figure 2: Dependence of cardinality on the value of the sparsity-dimdy parametery. In
case of theGPower,, algorithm, the horizontal axis showg/||a;- ||2, whereas for th&Power,,
algorithm, we usg/7/||a:~ ||2. The theoretical upper bound is therefor identical for bo#thods.
The plots are averages based on 100 test problems gf siz€00 andn = 300.

Greedy versus the rest.From the experiments reported aboGeeedy and theGPower meth-
ods appear to have similar performance in terms of qualitthefobtained solution. Moreover,
Greedy computes a full path of solutions up to a chosen cardinalitg does not have to deal with
the issue of tuning the sparsity parameterThe price of this significant advantage Gfeedy is
its heavy computational load. In order to compare the erglitomputational complexities of
different algorithms, we display in Figure 3 the averageetimmquired to extract one sparse compo-
nent from Gaussian matrices of dimensigns- 100 andn = 300. One immediately notices that
the greedy method slows down significantly as cardinalityeases, whereas the speed of the other
considered algorithms does not depend on cardinality.eSinaverag&reedy is much slower than
the other methods, even for low cardinalities, and becawsaim at large-scale applications where
the computational load direedy would be prohibitive, we discard it from the following nurica
experiments.

Speed and scaling testln Tables 6 and 7 we compare the speed of the remaining dgmit
Table 6 deals with problems with a fixed aspect ratjpp = 10, whereas in Table 7y is fixed
at 500, and exponentially increasing valuesnoére considered. For th@Power,, method, the
sparsity inducing parameterwas set ta 0% of the upper boun@y,.x = ||a;||2. For theGPowery,
method,y was set tal % of Yax = ||as % in order to aim for solutions of comparable cardinalities
(see (43)). These two parameters have also been used fe\ig, and therSVD,, methods,
respectively. Concernin§PCA, the sparsity parameter has been chosen by trial and emget,ton
average, solutions with similar cardinalities as obtaibgthe other methods. The values displayed
in Tables 6 and 7 correspond to the average running timeseddltiorithms on 100 test instances
for each problem size. In both tables, the new metl&etsver,, andGPower,, are the fastest. The
difference in speed betwediPower,, and GPower, results from different approaches to fill the
active part ofz: GPower,, requires to compute a rank-one approximation of a submatri (see
Equation (41)), whereas the explicit solution (13) is afalit toGPower,,. The linear complexity
of the algorithms in the problem sizeis clearly visible in Table 7.
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Figure 3: The computational complexity @reedy grows significantly if it is set out to output
a loading vector of increasing cardinality. The speed ofdteer methods is unaffected by the
cardinality target.

pXn 100 x 1000 250 x 2500 500 x 5000 750 x 7500 1000 x 10000
GPowery, 0.10 0.86 2.45 4.28 5.86
GPowery, 0.03 0.42 1.21 2.07 2.85
SPCA 0.24 2.92 14.5 40.7 82.2
rSVDy, 0.19 2.42 3.97 7.51 9.59
rSVDy, 0.18 2.14 3.85 6.94 8.34

Table 6:Average computational time for the extraction of one congmbigin seconds).

pXn 500 x 1000 500 x 2000 500 x 4000 500 x 8000 500 x 16000
GPowery, 0.42 0.92 2.00 4.00 8.54
GPowery, 0.18 0.42 0.96 2.14 4.55
SPCA 5.20 7.20 12.0 22.6 44.7
rSVDy, 1.05 2.12 3.63 7.43 14.4
rSVDy, 1.02 1.97 3.45 6.58 13.2

Table 7:Average computational time for the extraction of one congmaigin seconds).

Different convergence mechanismskigure 4 illustrates how the trade-off between explained
variance and sparsity evolves in the time of computatiotfetwo method&Power,, andrSVDy,.
In case of th&sPower,, algorithm, the initialization point (39) provides a googamximation of the
final cardinality. This method then works on maximizing tlagiance while keeping the sparsity at a
low level throughout. TheSVD,, algorithm, in contrast, works in two steps. First, it maxzes the
variance, without enforcing sparsity. This correspondsaimputing the first principal component
and requires thus a first run of the algorithm with randomidhitation and a sparsity inducing
parameter set at zero. In the second run, this parametet s agoositive value and the method
works to rapidly decrease cardinality at the expense of antpdest decrease in explained variance.
So, the new algorithn&Power,, performs faster primarily because it combines the two phage
one, simultaneously optimizing the trade-off betweenarsze and sparsity.
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Figure 4: Evolution of the variance (solid lines and left axis) anddiaality (dashed lines
and right axis) in time of computation for the methd&Bower,, andrSVD,, on a test problem
with p = 250 andn = 2500. The vertical axis is the rati&ar(zspca)/ Var(zpca), where
the loading vectorspca is computed by sparse PCA andca is the first principal loading
vector. TherSVD,, algorithm first solves unconstrained PCA, wher&®wer,, immediately
optimizes the trade-off between variance and sparsity.

Extracting more components. Similar numerical experiments, which include the methods
GPowery, ,, andGPower/, ,,,, have been conducted for the extraction of more than one coemp.
A deflation scheme is used by the non-block methods to segllgrdomputem components.
These experiments lead to similar conclusions as in théesingt case, i.e, the metho@owery, ,
GPowery,, GPowery, ,,, GPower,, ,,, andrSVD,, outperform thesPCA andrSVD,, approaches in
terms of variance explained at a fixed cardinality. Agaiesthlast two methods can be improved
by postprocessing the resulting loading vectors with Atpon 6, as it is done folGPowery, ,,.
The average running times for problems of various sizesistezllin Table 8. The new power-like
methods are significantly faster on all instances.

pXn 50 x 500 100 x 1000 250 x 2500 500 x 5000 750 x 7500
GPowery, 0.22 0.56 4.62 12.6 20.4
GPowery, 0.06 0.17 2.15 6.16 10.3
GPowery, m, 0.09 0.28 3.50 12.4 23.0
GPowerg, m, 0.05 0.14 2.39 7.7 12.4
SPCA 0.61 1.47 134 48.3 113.3
rSVDy, 0.29 1.12 7.72 22.6 46.1
rSVDy, 0.28 1.03 7.21 20.7 41.2

Table 8:Average computational time for the extractionrof= 5 components (in seconds).

Cost and benefits of the post-processing phasé&igure 5 illustrates the evolution of the rel-
ative increase of computational time as well as the relativerovement in terms of explained
variance due to the post-processing phase for increasings/af~. Only the methods with it-
erative post-processing algorithms are considered,GRower,, (left-hand plot) andzPowery, ,,
(right-hand plot). In the single unit case, the post-precgs phase, which amounts to a rank-one
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SVD of the truncated data matritp, becomes less costly as the level of sparsity increases. As
expected, the improvement of variance increases wigats larger, i.e., when thg-penalty biases
more and more the values assigned to the non-zero entribg ekttorz. A similar observation
holds in the block case, excepted that the relative excessmputational time took by the post-
processing increases with This difference with the single-unit case results fromféet that the
post-processing in the block case deals with sparse maticeossibly large dimension, whereas
in the single-unit case the problem is easily rewritten imteof a full vector with a dimension that
equals the number of nonzero elements. Overall, the pasipsong uses less that 10% of the time
needed by the main routine, to improve the explained vagidrycup to 30%.
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Figure 5: Effects of post-processing in the case of the algoriti@Rower,, (left-hand
plot) and GPower,, ., (right-hand plot) for increasing values of. The horizontal axis
is the quantity Varagter post-processind Varbefore post-processing-1 @nd the vertical axis is the ratio
CPU tim&or the postprocessingCPU tiM&or the main routine FOr GPowery, , several problem sizes are con-
sidered, whereas the curves faPower,, ,,, relate to matrices of dimension 500-by-5000, but for
several numbers: of extracted components. Each curve is an average on 25ma@@aissian
data matrices.

5.3 Pitprops data

The “pitprops” data, which stores 180 observations of 13aldes, has been a standard bench-
mark to evaluate algorithms for sparse PCA (see e.qg., féolif al. (2003); Zou et al. (2006);
Moghaddam et al. (2006); Shen and Huang (2008)). Followivegé previous studies, we use
the GPower algorithms to computesix sparse principal components of the data. For such more-
samples-than-variables settings, it is customary to frstof the covariance matrix & = A7 A
with A € R13%13_ such that the dimensignis virtually reduced to 13. This operation can be readily
done through the eigenvalue decompositiortof

In Table 9, we provide the total cardinality and the promortof adjusted variance explained by
six components computed wifPCA, rSVDy, , Greedy as well as ouGPower algorithms. The re-
sults concerningPCA, rSVDy,, Greedy correspond to the patterns of zeros and nonzeros proposed
by Zou et al. (2006), Shen and Huang (2008) and Moghaddam @Q#&6), respectively. For fair
comparison, the pattern related to SPCA a®dD,, have been post-processed with the approach
proposed in Section 4.2. Concerning Bgower algorithms, we fix the six parametets at the
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same ratio of their respective upper-bounds. For the blgkighm GPower,, ,,, €xperiments have
been conducted in both cases “identigal and “distinct ;"

Table 9 illustrates that better patterns can be identifi¢k thie GPower algorithms, i.e., patterns
that explain more variance with the same cardinality (anmietomes even with a smaller one).
These results are furthermore likely to be improved by a fiming of the six parameters; (i.e.,
by choosing them independently from each others).

Method Parameters Total cardinality  Prop. of explaineéwene
rSVDy, see Shen and Huang (2008) 25 0.7924
SPCA see Zou et al. (2006) 18 0.7680
Greedy cardinalities: 6-2-3-1-1-1 14 0.7150

cardinalities: 5-2-2-1-1-1 12 0.5406
GPowery, vi/7 =022, for j=1,...,6 25 0.8083

v /7 = 0.40 13 0.7172

v /7 = 0.50 11 0.6042
GPowery, ,  v;/7; =0.17, for j=1,...,6 25 0.7733
with pi=1 ’}/j/’ﬁ/j =0.25 17 0.7708

v /7 = 0.3 14 0.7508

v/ =04 13 0.7076

v /7 = 0.45 11 0.6603
GPowery, ,n,  v;/7; =0.18, for j=1,...,6 25 0.8111

v /7 = 0.25 18 0.7849

v /7 = 0.35 13 0.7323

Table 9: Extraction of 6 components from the pitprops data. &8ower,,, one defines the

upper-boundsy; = max; ||al”’||2, where AU) is the residual data matrix aftgr— 1 deflation
steps. FoGPower,, ..., the upper-bounds arfg = j; max; ||ail|2.

5.4 Analysis of gene expression data

Gene expression data results from DNA microarrays and geavie expression level of thousands
of genes across several hundreds of experiments. Thergtiztipn of these huge databases remains
a challenge. Of particular interest is the identificatiorgehes that are systematically coexpressed
under similar experimental conditions. We refer to Riva gi2005) and references therein for more
details on microarrays and gene expression data. PCA haditteasively applied in this context
(e.g., Alter et al. (2003)). Further methods for dimensietuction, such as independent component
analysis (Liebermeister (2002)) or nonnegative matrixdiazation (Brunet et al. (2004)), have also
been used on gene expression data. Sparse PCA, which sxioacponents involving a few genes
only, is expected to enhance interpretation.
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Data sets. The results below focus on four major data sets related tasbi@ncer. They are
briefly detailed in Table 10.Each sparse PCA algorithm computes ten components frora tiza
sets, i.e.;n = 10.

Study Samples) Genest) Reference

Vijver 295 13319 van de Vijver et al. (2002)
Wang 285 14913 Wang et al. (2005)
Naderi 135 8278 Naderi et al. (2007)
JRH-2 101 14223 Sotiriou et al. (2006)

Table 10:Breast cancer cohorts.

Speed. The average computational time required by the sparse P@¥itiims on each data
set is displayed in Table 11. The indicated times are averagell the computations performed to
obtain cardinality ranging from down to 1.

Vijver Wang Naderi JRH-2
GPower, 592 533 2.15 2.69
GPowery, 486  4.93 1.33 1.73
GPower;, ,, 5.40  4.37 1.77 1.14
GPower,, ,, 5.61 7.21 2.25 1.47

SPCA 77.7 82.1 26.7 11.2
rSVDy, 10.19 9.97 3.96 4.43
rSVDyg, 9.51 9.23 3.46 3.61

Table 11:Average computational times (in seconds) for the extraation, = 10 components.

Trade-off curves. Figure 6 plots the proportion of adjusted variance versasctrdinality for
the “Vijver” data set. The other data sets have similar plés for the random test problems, this
performance criterion does not discriminate among thedifit algorithms. All methods have in
fact the same performance, provided thatSR&€A andrSVD,, approaches are used with postpro-
cessing by Algorithm 6.

Interpretability. A more interesting performance criterion is to estimateliodogical inter-
pretability of the extracted components. Tgehway enrichment inde€®El) proposed by Teschen-
dorff et al. (2007) measures the statistical significande@bverlap between two kinds of gene sets.
The first sets are inferred from the computed components thjnieg the most expressed genes,
whereas the second sets result from biological knowledge.instance, metabolic pathways pro-
vide sets of genes known to participate together when aiedrialogical function is required. An
alternative is given by the regulatory motifs: genes taggél an identical motif are likely to be
coexpressed. One expects sparse PCA methods to recovero$dhese biologically significant
sets. Table 12 displays the PEI based on 536 metabolic pgshnekated to cancer. The PEl is the
fraction of these 536 sets presenting a statistically Saarit overlap with the genes inferred from
the sparse principal components. The values in Table 12%wond to the largest PEI obtained

7. The normalized data sets have been kindly provided by @&mdieschendorff.
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Figure 6: Evolution of the explained variance with the cardinalitage of the “Vijver” data).
The y-axis is the raticAdjVar(Zspca )/ AdjVar(Zpca) where the loading vector8spca are
computed by sparse PCA auhca are them first principal loading vectors.

among all possible cardinalities. Similarly, Table 13 isd@ on 173 motifs. More details on the
selected pathways and motifs can be found in Teschendcaff €007). This analysis clearly in-
dicates that the sparse PCA methods perform much betteP@énin this context. Furthermore,
the newGPower algorithms, and especially the block formulations, previgrgest PEI values for
both types of biological information. In terms of biologlidaterpretability, they systematically
outperform previously published algorithms.

Vijver Wang Naderi JRH-2
PCA 0.0728 0.0466 0.0149 0.0690
GPowery, 0.1493 0.1026 0.0728 0.1250
GPowery, 0.1250 0.1250 0.0672 0.1026
GPowery, ,,  0.1418 0.1250 0.1026 0.1381
GPowery, ,, 0.1362 0.1287 0.1007 0.1250

SPCA 0.1362 0.1007 0.0840 0.1007
rSVDy, 0.1213 0.1175 0.0914 0.0914
rSVDy, 0.1175 0.0970 0.0634 0.1063

Table 12:PEl-values based on a set of 536 cancer-related pathways.

6. Conclusion

We have proposed two single-unit and two block formulatiohghe sparse PCA problem and
constructed reformulations with several favorable prier First, the reformulated problems are
of the form of maximization of a convex function on a compatt with the feasible set being either
a unit Euclidean sphere or the Stiefel manifold. This stireetallows for the design and iteration
complexity analysis of a simple gradient scheme which apio our sparse PCA setting results in
four new algorithms for computing sparse principal compisef a matrixd € RP*". Second, our

algorithms appear to be faster if either the objective fiamcor the feasible set are strongly convex,
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Vijver Wang Naderi JRH-2
PCA 0.0347 0 0.0289 0.0405
GPowery, 0.1850 0.0867 0.0983 0.1792
GPowery, 0.1676 0.0809 0.09250.1908
GPowery, ,,,  0.1908 0.1156 0.13290.1850
GPowery, ,, 0.1850 0.1098 0.1329 0.1734

SPCA 0.1734 0.0925 0.0809 0.1214
rSVDy, 0.1387 0.0809 0.1214 0.1503
rSVDy, 0.1445 0.0867 0.0867 0.1850

Table 13:PEl-values based on a set of 173 motif-regulatory gene sets.

which holds in the single-unit case and can be enforced iliek case. Third, the dimension of
the feasible sets does not depenchdiut onp and on the number, of components to be extracted.
This is a highly desirable property jif < n. Last but not least, on random and real-life biological
data, our methods systematically outperform the existiggrdhms both in speed and trade-off
performance. Finally, in the case of the biological dat& ¢bmponents obtained by our block
algorithms deliver the richest biological interpretat@scompared to the components extracted by
the other methods.
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7. Appendix A

In this appendix we characterize a class of functions witbngfly convex level sets. First we need
to collect some basic preliminary facts. All the inequaktof Proposition 11 are well-known in the
literature.

Proposition 11 (i) If f is a strongly convex function with convexity parameter then for all
rz,yand) < o < 1,

g

flaz+(1—a)) < af(@) + (1 —a)f(y) ~ Fall —a)lr—yl*.  (44)

(i) If fis a convex differentiable function and its gradient is Icip$z continuous with constant
Ly, then for allz and ,

Flo+h) < F@) + @)k + LRI, (45)
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and
I (@)l < /2L (f(z) = f), (46)

def .
where f, = mingeg f(z).
We are now ready for the main result of this section.

Theorem 12 (Strongly convex level setshet f : E — R be a nonnegative strongly convex func-
tion with convexity parameter; > 0. Also assumé has a Lipschitz continuous gradient with
Lipschitz constanL ; > 0. Then for anyw > 0, the set

def

Qu =A{z| flz) Sw}
is strongly convex with convexity parameter
9f
g = .
O 2wy

Proof Consider anyr,y € Q,, scalar0 < « < 1 and letz, = ax + (1 — «)y. Notice that by
convexity, f(z,) < w. Foranyu € E,

e+ )8 P (z0) (), )+ L uf?

L
< f(za) + 1 Cza)lllll 4+ =5

- (Vi + \/Quun)z
0 (Vo=B+ %)

L
O f(za) + 2L f (o) ull + [l
2

where o
B = all — )z -yl (47)

In view of (30), it remains to show that the last displayedresgpion is bounded above bywhen-
everw is of the form

oo, 9 of 9
u=—a(l —a)l|lx — s=———0a(l —a)|lz — s, 48
5ol )z =yl N, ( )z =yl (48)

for somes € S. However, this follows directly from concavity of the soafanction g(t) = v/t

w—pB=gw-PB) < gw)— (g w),B)

- B
SV %a(l —a)llz —y|?

L
Oy =\ F
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Example 13 Let f(z) = ||z||%. Note thato; = L; = 2. If we letw = r2, then
Qu="{z|flz) cw}={z| |z <r}=r-B.

We have shown before (see the discussion immediately iiodj @vgsumption 3), that the strong con-
vexity parameter of this setigp , = % Note that we recover this as a special case of Theorem 12:

of 1
o

7% = Awl;
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