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A b s t r a c t  

This paper studies the static response and reliability o f  uncertain structures-with 

vectm'-vahwd attd matrix-vahwd functions. The /htite element anaO'sis method o[" 

uncertaht structures is based on matrLv calculus, Kronecker algebra and perturbation 

theory. Random variables and system derivatives are conveniently arranged httO 2D 

matrices and generali-ed mathematical .formulae,for probabilistic perturbation are 

obtahwd. 
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I. I n t r o d u c t i o n  

Up to the present, much research has been done to the finite element analysis ot" the 

deterministic parameter structures. Because of uncertain information in design stage of 

engineering structures, design parameters of the structures are uncertain; moreover, structural 

parameters are uncertain due to uncertainty of engineering material properties, errors of  

manufacture and installation, etc.. The investigations of effects of random structural 

parameters on structural response and reliability are important for engineering safe analysis. In 

recent twenty years many methods have been presented on this problem, for example, the 
t 

probabilistic finite element method H-MTI, the probabilistic perturbation method iT1 and so on. 

This paper focuses on extension of  the probabilistic perturbation method to vector-valued 

and matrix-valued functions. Using matr ix  calculus, Kronecker algebra and perturbation 

theory generalized formulae for the probabilistic perturbation method are developed. The finite 

element analysis for generalized random structures becomes proposible. 

II. S ta t i c  R e s p o n s e  A n a l y s i s  

The linear finite element equations are 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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where the stiffness matrix is 

K u = P  (2.1) 

K=;QB~'DBdO (2.2) 

where B(x), D(x, R), u(R), and P(R) denote the generalized gradient, material property matrix, 
nodal displacement vector and nodal force vector, respectively; x is the spatial coordinate; ~ is 
the domain and a superscript T is the transpose; R(x) is a random function vector of s 
dimension. In this formulation, R(x) can be random material pi'0perties or random loads, 

The random parameter vector R, stiffness matrix K, displacement vector u and force 

vector P are represented as 

R= R,~+eR,. (2 .3)  

K = K a  + e K ,  (2.4) 

, - -  u4 nt-e,, (2.5) 

P f P 4 + e P ,  (2.6) 

where e is a small parameter. The determinitic portion is denoted by subscript d and the 
random portion with the means of zero is denoted by sub'script r. Obviously, the random 
portion should be much less than the deterministic portion. Taking the expected value of 

equations (2.3), (2.4), (2.5) and (2.6) yields 

E(R)  = E (Ra) +eE(R,.) =R,, = R (2. "[) 

E(K) =E(Ka) +eE (K,) =K,=If =K (R) (2.8) 
E(u)  = E ( u , )  + e E  (u,) = n d = ~ = u ( R )  (2.9) 

E (P) =E (P,) +eE (P,) =Pe=P=P( R) (2.10) 

Similarly, on the basis of Kronecker algebra 18J and corresponding stochastic analysis theory tgl, 
taking the variance of equations (2.3), (2.4), (2.5) and (2.6)yields 

V a r ( R ) = E [  ( R _ E ( R )  )t2~]=e2E[R, tZJ] (2. I1) 

V a r  (K)  = E [  ( K -  E ( K )  ) t2j] = e 2 E [ K t 2 ~ ]  (2.12) 

V a r  ( u ) = E [ ( u - E ( n ) ) t ~ ' ~ ] = e Z E [ u ,  .t21] ('2.13)" 

V a r  (P) = E [  ( P - E  (P))t2~] = e , E [ p t , ~ ]  (2.14) 

vhere ( . )  t,~= ( . )  @ ('.) is Kronecker power, symbol Q denotes Kronecker product. Var ( �9 ) 

ncludes all the variances and covariances. 

Substituting the equations (2.4), (2.5) and (2.6) into the equation (2.1) yields 

(K,~ + e K ,  ) (u,. +eu,) = P,~ +eP,  (2.15) 

Sxpanding Eq. (2.15) and comparing the coefficients of the same power of e ,  and neglecting 

he terms of O ( e ' ) ,  we obtain 

e ~ K,,u,,=P,, (2.16) 

e ~, K d u , = P , - K , . u d  (2. IT) 
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The deterministic portion (e.g. the mean value) of the response is obtained from Eq. (2.16). 
Obviously, the random portion (e.g. interrelated portion to the variance) of the response can 

not be determined from Eq. (2.17) under the available first two moments, so that it can be 

solved after altering the form. 

According to Taylor's rule of vector-valued and matrix-valued functions tS], Kr, u, and P, 

can be expanded to E(R) =R,, under the condition that the random portion of the random 

parameter vector is small compared with the deterministic portion of the random parameter 

vector, we have 

aK, ,  _ 
K , = ~ 2 r  (2. is) 

Ou,f R ,  
u ' =  a-- ~ - (2.19)  

p_ OP,~ p 
�9 - 0 - ~ " "  (2.20) 

Substituting the Eqs. (2.18), (2.19) and (2.20) into the Eq. (2.17) and expanding the Eq. (2.17), 

we get 

K Oud 1 0 P a  aKa ,~--~ - ~ -  ----~--~ ua (2.21) 

~u4/ORt can be obtained from Eq. (2.21) 

a", - r  0., au, a., 
OR ~' -- [_ OR, OR, 0--~a ] (2 .22)  

Substituting the Eq. (2.19) into Eq. (2.13), the variance matrix of the displacement 

response can be  obtained 

_ _ ~ , f i  a u j  ,., ~t'-~l V a t '  (u) = e2E [u,t~'] - ~ = [  tO~-~-ax, ) ] 

- F an4 1 c~3 
- I_0---R~ j Var (R) (2.23) 

Substituting Eq: (2.22) into Eq. (2.23), the variances of the displacement response' are 

determined. Thus, the mean values and variances of  the displacement response are completely 

determined. 

The strain and stress vectors for a typical element e are 

e = B ( x ) u  ~ (2 .24)  

c r = D ( x , R ) e  (2.25)  

where n �9 is the element nodal displacement vector. 

Similarly, the mean value matrix and variance matrix o f  the strain e and stress a can be 

obtained to be 

E (e) =e,z= Bu~t (2 .26)  
~ . , e  -- i f2] 

Var (e)= B0---~- j va r (R)  (2.27)  

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



762 7hang Yimin. Chcn Suhuata, Zhou Zhenping and Liu Tieqiang 
1 

E(a)  = (re= Dee,~= DdBu~ (2 .28)  

I" ~ O ' d  7 C 2 ) - -  - - .  Var (cr)=l_~---~-j Vat(R) 

= +D.B~--~,-J Var(R) (2.29) 

where I, is the .s• unit matrix. 

I I I .  R e l i a b i l i t y  A n a l y s i s  

A fundamental problem in reliability analysis is the computation of the multi-fold integral 

of the reliability R 

R = ~  f x ( X ) d X  (3 .1 )  
O( X )> 0 

in which ./xC~t')denotes the probability density function of the vector of random variables X 

(response and threshold etc.), g(X) defines the state function, representing the safe state and 

failure state 

g ( X ) ~ 0  failure state -~ 
(3.2) 

. . q t X ) > 0  safe state 

where g ( X ) = 0  is the limit-state equatiom representing limit-state surface or failure surface. 

-I-he first passage pl-oblem fo," uncertain structures on the basis of the interference theory 

of the reliability is defined as 

o , ( X ) =  IA, I-IZ,  I (3.3) 
where ,4, is the threshold of  Z, of random response (displacement, strain or stress) 

Z= (ZI,Z.,_.... ,Z,,) ~' �9 The response Z, and the threshold A, are mutual independent random 

variables. 

The mean value and variance of  the state function g, (X) are determined 

E(,q~) = EIA~I - E I Z ~ I  (3.1) 

V a r  (g~) = V a r (  ..1,~ + V a r  (Z~) (3.51 

The reliability index is defined 

E(gO 
fl~= ~ / V a r  (g,) (3 .6)  

Thus. on the one hand the structural reliability 6an be directly measured using the 

reliability index: on the other hand. when the random variable vector X is normal, the limit- 

state surface is replaced with the tangent plane at the failure point. The first-order estimate of  

the reliability is 

R , = r  (3 .7 )  

where r  denotes  the standard normal cumulative distribution function. 

If the random var iab levec tor  X is nonnormal,  a Rosenblatt transformation 1~~ must be 

made from the correlated and nonnormal random variables to uncorrelated and normal 
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random variables. 

Y~=~-'[Fx,Ix, . . . .  ,x~_,(X, rX,,. ' ,  ,X,_~) ] (3 .8 )  

where Fx()O is the joint cumulative distribution function for X, Y~ is uncorretated, standard 

normal random variable with zero mean and unit standard deviation for reliability analysis, i{ 

is convenient to transform the limit-state function ..q(X) into the limit-state function G(Y) in a 

standard, uncorrelated normal space Y=(Y,,  Y_, . . . . .  y,)r. This transformation is as follows 

.9(X) = G(Y) (:;. 9) 

IV .  N u m e r i c a l  E x a m p l e s  

E x a m p l e  1 The planar truss is shown in Fig. 1. When a vertically downward load of P 

is applied at node 4, and the mean value is 9.8(kN). The mean value of material strength r is 

230.3(MPa). The mean value of random material properties is given in Table 1. The random 

parameter  vector R=(P, E, A, r) r is normally distributed with a coefficientof variation equal 

to 0.05. 

4 

Fig. 1 The p l ana r  t r u s s  

T a b l e  1 

120cm ' P 

13 12 11 I0 9 8 7 6 5 4 3 2 I 

]crn 

Fig.  2 C a n t i l e v e r  b e a m  

Member number 
c 

1 
2 

3 
4 

Cross-sect(onal area 
A c'~ (cm z) 

Young's modulus 

E c'~ (GPa) 

2.0 
2.0 
1.{} 
1.{} 

196.0 
196.0 
196.0 
196.0 

The calculation results are as follows: 

The stress, reliability index and reliability of  element 3 are 

E f . a o ) ] =  1 5 4 , 9 5 ( M P a ) ,  d V a r ( a ( s ) )  = 3 9 . 5 0 ( M P a ) ,  f l s=  1.831, R 3 = 0 . 9 6 6  

The stress, reliability index and reliability of  element 4 are 

EI:cT~4~] = - 2 0 7 . 8 9 ( M P a  , ~/Var(~t~,) =53.00(MPa ) 
f14---- 0.4 13, R4= [J. (3C,0 

Because the structure is static state determination structure, the structure is not safe as seen 
from the element 4. 

E x a m p l e  2 A cantilever beam is shown in Fig. 2. When a vertically downward load of  

P =  78.4(N) is applied at node 1. The mean ~alue of  cross-sectional area A, Young 's  modulus 
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E, shearing modulus G, the threshold H of displacement y at node l are E(A)= 3.0 (cm-'), E(E) 

= 196.0(GPa), E(G) = 78.4(GPa), E(H) = 13 (cm). The random parameter vector R=(A,  E, G, 

H) 7 is normally distributed with a coefficient of variation equal to 0.05. 
The calculation results are as follows: 

The displacement of node l, reliability index and reliability are 

E ( y ~ ) = 9 . 2 1 6 4  ( c m ) ,  d -  Va r (y~)  = 0 . 7 9 8 2 ( c m ) ,  

f l = 3 . 6 7 5 7  , R = 0  99988 

Because the transverse deflection a.t node 1 is largest, the structure is safe by using the 
transverse deflection to measure. 

V. C o n c l u s i o n  

The structural material and geometry properties are random due to the errors for 

manufacture, measure, statistics, model and other uncertain factors. The loads on structures 

are probably random. Thus, it is inevitable to form uncertain structure systems with many 

random parameters. This paper employes matrix calculus, Kronecker algebra the perturbation 

technique to systematically develop the probabilistic perturbation method of vector-valued and 

matrix-valued functions and obtain the generalized mathematical formulae. The perfect 

numerical results are obtained. As seen from theory and numerical analysis in this paper, the 

probabilistic perturbation theory of 2D.matrices is more generalized and complete than the 

probabilistic perturbation theory that has ever been researched. 
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