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Abstract—In 3G data networks, network operators would
like to balance system throughput while serving users in a
fair manner. This is achieved using the notion of propor-
tional fairness. However, so far, proportional fairness has
been applied at each base station independently. Such an
approach can result in non-Pareto optimal bandwidth al-
location when considering the network as a whole. There-
fore, it is important to consider proportional fairness in a
network-wide context with user associations to base stations
governed by optimizing a generalized proportional fairness
objective. In this paper, we take the first step in formulat-
ing and studying this problem rigorously. We show that
the general problem is NP-hard and it is also hard to ob-
tain a close-to-optimal solution. We then consider a special
case where multi-user diversity only depends on the num-
ber of users scheduled together. We propose efficient of-
fline optimal algorithms and heuristic-based greedy online
algorithms to solve this problem. Using detailed simulation
based on the base station layout of a large service provide in
the U.S., we show that our simple online algorithm, which as-
signs a newly arrived user to a base station that improves the
generalized proportional fairness objective the most without
changing existing users’ association, is very close to the of-
fline optimal solution. The greedy algorithm can achieve sig-
nificantly better throughput and fairness in heterogeneous
user distributions, when compared to an approach that as-
signs a user to the base station with the best signal strength.

I. INTRODUCTION

Third Generation (3G) wide-area wireless networks
based on the CDMA2000 [1] and UMTS [2] standards are
now being increasingly deployed throughout the world.
As of December 2004, there were over 146 million
CDMA2000 subscribers and over 16 millions UMTS sub-
scribers worldwide [3]. Emerging 3G data standards, EV-
DO and HSDPA, promise to deliver broadband mobile in-
ternet services with peak rates of 2.4 Mbps and 14.4 Mbps,
respectively.

In these third generation wireless data networks, Pro-
portional Fair (PF) scheduling [4] is employed at the base
station to schedule downlink flows among different users.

Proportional fair is a channel-state based scheduling algo-
rithm that relies on the concept of exploiting user diver-
sity. Consider a model where there are N active users shar-
ing a wireless channel with the channel condition seen by
each user varying independently. Better channel condi-
tions translate into higher data rate and vice versa. Each
user continuously sends its measured channel condition
back to the centralized PF scheduler which resides at the
base station. If the channel measurement feedback delay
is relatively small compared to the channel rate variation,
the scheduler has a good enough estimate of all the users’
channel condition when it schedules a packet to be trans-
mitted to the user. Since channel condition varies indepen-
dently among different users, PF exploits user diversity by
selecting the user with the best condition to transmit dur-
ing different time slots. This approach can increase system
throughput substantially compared to a round-robin sched-
uler. However, such a rate maximizing scheme can be very
unfair and users with relatively bad channel conditions can
be starved. Hence, the mechanism used in PF is to weight
the current rate achievable by a user by the average rate
received by a user.

Specifically, at each time slot (every 1.67ms in EV-DO),
the decision of the PF scheduler is to schedule the user
with the largest ���������
	� 	 , where

� � is the rate achievable
by user  and � � is the average rate of user  . The average
rate is computed over a time window as a moving average:

� ������������� ������� � � �����!�"�#� � � if scheduled
� ������������� ������� � � �����!� if not scheduled

While PF scheduling achieves high throughput while
maintaining proportional fairness among all users at a base
station, the association of mobile devices to base stations
in todays networks is not based on any fairness consider-
ations. Instead, the mobile device is simply associated to
that base station from which it receives the strongest sig-
nal. Clearly, such an association algorithm could create
load imbalances where some “hotspot” base stations are
heavily loaded while neighboring base stations are lightly



loaded. Further, such imbalances will decrease both over-
all throughput and also decrease fairness among users at
neighboring base stations. In fact, such an approach can
result in non-Pareto optimal bandwidth allocation when
considering the network as a whole.

In this paper, we start with the premise that a fair
scheduling algorithm should take a network-wide view and
support fairness among all users connected to a network
of base stations. To this end, we formulate the general-
ized proportional fairness (GPF) problem that takes a more
macro-view of fairness and includes asssignment of users
to base stations as part of an overall strategy to provide
fairness across all users attached to the network of base
stations. We show that the general problem is NP-hard
and it is also hard to obtain a close-to-optimal solution. We
then consider a special case, which roughly holds in prac-
tice, where multi-user diversity only depends on the num-
ber of users scheduled together and all users have equal
priority. We propose efficient offline optimal algorithms
and heuristic-based greedy online algorithms to solve this
problem. Using detailed simulations based on the base sta-
tion layout of a large service provide in the U.S., we show
that our simple online algorithm, which assigns a newly
arrived user to a base station that improves the generalized
proportional fairness objective the most without changing
existing users’ association, is very close to the offline op-
timal solution. The greedy algorithm can achieve signifi-
cantly better throughput and fairness, in many cases where
users are not evenly distributed, when compared to an ap-
proach that assigns a user to the base station with the best
signal strength. Our results also indicate, as expected, that
max-min fairness sacrifices too much overall throughput
(less than 60% of what is achieved by our algorithm) for
fairness from each user’s perspective.

The rest of the paper is structured as follows. In Sec-
tion II, we present our motivation for generalized propor-
tional fairness and describe our system model. In Sec-
tion III, we present a rigorous formulation for the gen-
eralized proportional fairness problem and show that the
general problem is NP-hard and it is also hard to obtain
a close-to-optimal solution. In Section IV, we present the
details of our offline optimal and online greedy algorithms.
In Section VI, we present a detailed evaluation of our algo-
rithms using simulation. In Section VII, we present related
work. Finally, in Section VIII, we present our conclusions
with a discussion of future work.

II. MOTIVATION AND SYSTEM MODEL

In this section, we first motivate the need for generalized
proportional fairness and then present our system model.

A. Motivation

Consider a single base station in a 3G data network serv-
ing its associated users. Assume all users have the same
priority. A network operator would like meet users’ de-
mands to the greatest extent possible, given resource con-
straints. However, this does not imply maximizing the
total throughput of all users, as such a policy may lead
to starvation of users who have poor channel conditions.
Therefore, we need to consider fairness constraints in al-
locating shared resources to multiple users. Two fairness
measures are commonly used: max-min fairness and pro-
portional fairness. Informally, an allocation of bandwidth
by a BS is max-min fair if there is no way to give more
bandwidth to any user without decreasing the allocation
of a user with less or equal bandwidth. Max-min fair-
ness achieves ideal fairness from the users’ perspective and
the system is work-preserving given the constraints on re-
source availability to users. However, max-min fairness
can significantly sacrifice aggregate throughput. For ex-
ample, suppose there are two users $ and % associated with
a BS � . Let the average data rate of $ and % , denoted by&('�) and &�*+) , be �-, and � unit respectively. Max-min fair-
ness will allocate both users a bandwidth of �-,/.0�1� (lets
ignore multi-user diversity for the moment). User % with a
much lower rate will be allocated 10 times ( �-,/.0�1� fraction)
more slots than $ . This clearly sacrifices aggregate system
throughput significantly. In order to achieve a better trade-
off between fairness and throughput, Kelly [5] proposed
proportional fairness. In our example, proportional fair-
ness is equivalent to time fairness. User $ and % will get a
bandwidth of 2 and ��.43 respectively. Proportional fairness
achieves much better aggregate throughput than max-min
and gives users equal time fairness. For wireless networks
with scarce bandwidth, proportional fairness is much more
appealing to network operators and thus have been imple-
mented in 3G data networks such as 3G1x-EVDO.

In CDMA-based 3G networks, a mobile device can hear
signals from multiple BSs. The user is typically associ-
ated to the base station with the strongest signal. Pro-
portional fairness scheduling is then used independently
at each base station to schedule downlink transmissions to
devices associated with each base station. Using this ap-
proach, uneven user distribution will result in uneven load
distributions at the BSs. In order to handle this load imbal-
ance, techniques that control base station coverage such as
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Fig. 1
A WIRELESS NETWORK WITH 5 BSS, 6 AND 7 , AND TWO

USERS, 8 AND 9 .

cell breathing or user association have been proposed [6],
[7]. Although Sang et al. [6] consider load balancing and
fairness in an integrated framework. The load balancing
metric does not consider the fairness objective. In fact,
the load balancing techniques may reduce network-wide
fairness objective since highly loaded cells will reduce the
amount of bandwidth allocated to users at the cell bound-
ary. Their rationale is that this may trigger users to hand-
off to other less loaded cells. However, without the ex-
plicit consideration of fairness, it is unclear whether they
will maintain a unified fairness measure. Thus, we are
the first to consider load balancing with the network-wide
proportional fairness as the goal. We argue that propor-
tional fairness should be used when allocating all shared
system resources (all BSs) to users rather than a single sys-
tem resource (a single BS). This enables optimal tradeoff
between system utilization as a whole and serving users
fairly. We achieve this by controlling user associations to
base stations.

We now illustrate the benefit of considering user associ-
ation and proportional fairness jointly using an example 1.
In this example, &:'�);�<�-, , & '�= �>, , &(*+)?�@3 , & *+= �<� .
If user association is based on strongest signal, then both
$ and % will associate with BS � . If the system is using
proportional fairness scheduling at BS � , then $ will get2 and % will get � . However, if we consider user associ-
ation and proportional fairness jointly, users $ and % will
be associated with BS � and A respectively. This gives $ a
bandwidth of �-, and % a bandwidth of � . This certainly is
a better allocation than the previous one which considers
user association and proportional fairness separately. The
allocation of 20B � is not even Pareto optimal when com-
pared with the allocation of �-, B � . A Pareto optimal allo-
cation is one such that, there does not exist another feasi-
ble allocation where at least one user gets more bandwidth,
and all others get at least the same bandwidth. Now, if we
consider max-min fairness allocation in conjunction with

user association, this will result in both $ and % being as-
sociated with BS � , and they will both get a bandwidth of�-,/.4C .
B. System Model

The latest 3G standard, called the 3G1X Evolution or
High Data Rate (HDR), is designed for bursty packet data
applications. It provides a peak downlink data rate of
2.4Mbps and an average downlink data rate of 600Kbps
within one 1.25MHz CDMA carrier. HDR is commer-
cially available. HDR downlink has much higher peak data
rate (2.4Mbps), compared with the uplink peak data rate of
153.6Kbps [8]. Users share the HDR downlink using time
multiplexing with time slots of 1.67ms each. At any time
instant, data frames are transmitted to one specific user,
and the data rate is determined by the user’s channel con-
dition. Users monitor the pilot bursts in the downlink chan-
nel to estimate the channel conditions in terms of Signal to
Noise Ratio(SNR). This SNR is then mapped into a sup-
ported data rate, and fed back every time slot to the base
station through the data-rate-request channel in the reverse
link. The duration of transmission to each user is deter-
mined by the downlink scheduling algorithm. HDR uses a
scheduling algorithm called Proportional-Fair Scheduling
[8]. The scheduler serves the user with the highest ratio
of instantaneous downlink channel rate over the average
received data rate.

In this paper, we focus on the downlink scheduling of a
network of 3G wireless data base stations. When a device
powers up or becomes active, we assume the device re-
ports the set of BSs it can hear and the data rate to each of
the BSs. The network, possibly the Radio Network Con-
troller (RNC), then determines a user’s (device’s) associ-
ation based on this reported information as well as pre-
existing information of currently associated users at each
BS. This can be achieved in a reasonable time since fast
fades last 5-50 slots depending on the speed of a mobile,
and a device can feed up its rate information each time slot
(1.67ms). So it is reasonable to obtain a good estimate of
the average rate of a user with a BS in a short period of time
( 200ms). Alternatively, the network could also first asso-
ciate a device to the base station with the strongest signal,
then instruct the mobile device to report the average rates
to all the base stations the device can hear, and then switch
the mobile device to the optimal base station.

We determine user association upon arrival or handoff
due to mobility. Other work such as [6], [7] have assumed
much more frequent user association changes. This would
require much more coordination among BSs as to which
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packet a BS should transmit at a certain time slot. This
would also increase the signaling load to the RNC if RNC
determines the association change. Both the work of Sang
et al. [6] and Das et al. [7] have assumed that a central con-
troller can determine the scheduling policy of each base
station. This would require fine-grained feedbacks from
each BS to the central controller. In this paper, we as-
sume that the BS runs an independent proportional fair-
ness scheduler and the network (RNC) only determines the
user association to a base station. Sang et al. [6] has also
assumed that each mobile determines which BS it wants
to be associated with according to its own utility function
(which is determined by the throughput it can get from
each BS). We remark that, independent user’s action may
lead to handoff oscillations. To avoid such problems, we
have assumed the network (RNC) determines when a user
should change its association.

III. PROBLEM FORMULATION

In this section, we present a rigorous formulation of the
network-wide proportional fairness bandwidth allocation
problem. We consider a 3G wireless data network consist-
ing of a set of BSs � , and a set of users D . We assume
users are static for now and allow for mobile users in later
sections. A user $ ’s average data rate if associated with a
BS � is denoted as &�':) . Let E 'F�HG���I &('�)FJK, BML �;N �PO .
Let Q ' be the actual bandwidth allocation to user $ by the
network. It has been shown in [5] that proportional fair-
ness allocation of network resources is equivalent to the
optimization of the following objective function:

RTSVUXW'1Y1Z\[^]:_ � Q '0�

Typically 3G data users have elastic traffic. The applica-
tion traffic in most cases uses TCP as the transport proto-
col. TCP will try to achieve the maximum rate allowed by
the system. Therefore, we assume a user will consume all
the bandwidth allocated and the queues are backlogged.
In 3G data networks, typically there is a limit on how
many users can be admitted to the system. For example,
in 3G1x-EVDO, there are 60 Walsh codes for orthogonal
transmission. This puts an upper bound of 60 active users
(per base station per sector-carrier) at any given time. For
ease of explanation, we will assume that any user $ will
be admitted as long as I E '
I`Ja, . We will discuss how to
extend our framework to the admission control case later.
Note that the limit of 60 users is rarely reached in prac-
tice since 60 users sharing an average 600Kbps downlink
channel provides very little throughput for each user.

Lets denote ��'�) the association variable, i.e. ��'�)\�a� if
user $ is associated with BS � , 0 otherwise. We assume a
user can only be associated with one BS at any given time,
i.e., only one BS can transmit data through its downlink to
the user as in the EV-DO standard [4]. As noted earlier, we
pnly consider downlink bandwidth allocation in this paper.
Since all users must be admitted, we have the following:

W)-Y1b�c �d'�)e�f�

Let the bandwidth allocation for users associated with
a given BS be proportional fair. Let the number of users
associated with BS � be g )h�ji '1Y1Z �d':) . Lets denote
the set of users associated with a given BS � be k ) , i.e.
k )l�mG $ I �d':)l�j� B�L�$ N DPO . In the general case, the
multi-user diversity gain can depend on the set of users, not
just the number of users. Let n be the mapping that, given
$ and � , returns &�'�) . Users may have different schedul-
ing priorities for service differentiation. We denote the
scheduling priority of user $ as o ' . Let p be the map-
ping that given a user $ returns p ' . If �d':)q�a� for a given
user $ and BS � , its actual bandwidth Q ' allocation by BS� will be a general function of all the users associated with� . Denote this function by r ) � k ) B�$sB�n;B+o � . Of cause,
r )/� k ) B�$`B�ntB+o �u�v, if $fwN k ) . We now derive the fol-
lowing problem formulation for Generalized Proportional
Fairness, GPF1:

RTSVU W)-Y � W'1Y1xzy [�]:_ � r ) � k ) B�$`B�n;B+o ��� (1)

Subject toW)-Y1b c �d'�)q�{� B"L�$ N D (2)

k ) �|G $ I � '�) �f� B"L
$ N DPO (3)�d':)e�|G�, B � O (4)

However, as shown in [9], if the relative rate fluctu-
ations are statistically identical, the multi-user diversity
gain only depends on the number of users associated with
a given BS. This assumption on rate fluctuation is roughly
valid when the users have, for example, Rayleigh fad-
ing channels and the feasible rate is approximately lin-
ear in the SNR (reasonably accurate when the SNR is
not too high). With this assumption, according to [9],
Q ':) �~}�� g ) ��& '�) . g ) if $ is associated with BS � . Thus, we
obtain the following restricted version of the GPF1 prob-

4



lem. We refer to this problem as GPF2.

RTSVUXW'�Y1Z W)-Y1b�c �d'�) [�]:_ ��&�'�) p '
}T� g ):�
o ) � (5)

Subject toW)-Y4b:c �
'�)\�{� B`L
$ N D (6)

o ) � W'1� )(Y4b c � ':) p ' B`L �FN � (7)

g )e� W'1� )(Y4b:c �d'�) B"L �TN � (8)

�d'�)e��G�, B � O (9)

When all the users have the same priority in GPF2, we
have the following special case, GPF3:

RTSVUXW'1Y1Z W)(Y4b:c �d'�) [^]�_ ��&('�)
}�� g ):�
g ) � (10)

Subject toW)-Y1b c � '�) �f� B"L
$ N D (11)

g )e� W'1� )(Y4b:c �d':) B"L ��N � (12)

�d'�)\�|G�, B � O (13)

A. GPF1 and GPF2 are NP-hard and inapproximable

We show that, for GPF1 and GPF2, there does not exist
an algorithm that can find the optimal in polynomial time
unless � �<� � , i.e. the problem is NP-hard. Our re-
duction is via 3-dimensional matching which is known to
be NP-complete. The 3-dimensional matching problem is
stated as follows.

Definition 1: Given an instance of the following prob-
lem: Disjoint sets � ��G A:�(B-�-�-�(B+A��
O , � �>G�� ��B-�-�-��B � �
O ,� ��G�� � B-�-�-�:B � � O , and a family � ��G-� � B-�-�-�(B ��� O of
triples with I ����� � I���I ���!� � I���I ���!� � I for  �{� B-�-�-�:B � .
The question is: does � contain a matching, i.e. a subfam-
ily ��� for which I � I1��� and ��� 	 Y4�z� �z��� �~����� � ?

Theorem 1: The generalized proportional fairness prob-
lem GPF1 is NP-hard.

Proof: Our reduction is along the lines of [10].
Clearly, the answer to the 3D matching decision prob-
lem is no if � �m� . It is easy to check whether � is
a matching or not if � �@� . We simply check whether
� � 	 YV�s���¡� �¢�#�{� � . So we assume � J£� in our
reduction.

We call the triples that contain A+¤ triples of type ¥ . Let� ¤ be the number of triples of type ¥ for ¥ �{� B-�-�-�:B � . BS 

corresponds to the triple �"� for  �a� B-�-�-�:B � . We have 3V�
element users, corresponding to the 3V� elements of �t� � .
There are � ¤ ��� dummy users of type ¥ for ¥ �H� B-�-�-��B � .
Note that, the total number of jobs is �¦��� . For BS 
corresponding to a triple of type ¥ , say � ¤ �§� A ¤ B ��¨ B ��©�� ,
the corresponding element users ��¨ and ��© have an aver-
age rate of

�
. Their multi-user diversity gain when sched-

uled together is } where �#�§}T�ª3��;�«3 , i.e. each ob-
tain a rate of } � .43 . Each of the dummy jobs of type
¥ has an average rate of

�
. However, the multi-user di-

versity gain } � �ª3�� when an element user and a dummy
user of type ¥ is assigned to one of the � ¤ BSs, is much
smaller than } . All other average rates between BSs and
users are 0. Except element users corresponding to a � ¤ ,
all other users, dummy or element, when associated with
a BS, the multi-user diversity gain is given by function} � �¬� . Assume s® �°¯� � s® ¤ ¯¤ if ¥ �  . Similarly the con-
dition holds for } � . We claim that a matching exists iff
the GPF1’s optimal objective function �²±�³´� where
� �µ3V� [^]:_ �¬}

� .43��`�µ���¶�·�s� [^]:_
�

.

Suppose there is a matching. For each �`�M�¶� A ¤ B ��¨ B �/©^�
in the matching, associate element user ��¨ and ��© with
BS ¥ . For each ¥ , this leaves � ¤ �¸� idle BSs corre-
sponds to triples of type ¥ not in the matching; asso-
ciate the � ¤ �~� dummy users of type ¥ with these � ¤ �~�
BSs. This assignment has an objective function value of
� �µ3V� [^]:_ �¬}

� .43����¹���º�t�s� [^]:_
�

. Conversely, suppose
that there is such an assignment with objective function
�P±t³¸� . Dummy users can only be assigned to the BS
of its type. So the � ¤ �»� dummy users will be assigned to
the � ¤ BSs of type ¥ . If possible, BSs should not be idle.
Suppose a user �-¨ has been assigned to a BS with ¼ J¶�
users and there is an idle BS user �(¨ can be assigned, then
we can obtain a better solution after moving �:¨ to the idle
BS. This is because s® �°¯� � s® ¤ ¯¤ if ¥ �  (for } � as well).
Therefore, the set of BSs of each type ¥ gets at least one el-
ement user (otherwise, there will be an idle BS). We claim
that, if possible assignment exists, no BS should get more
than 3 users. This is because reducing the number of users
on this BS and assign them to other BS will one user al-
ways improve the solution. Therefore, each BS gets as-
signed at most 2 users in the optimal solution if possible.
For those BS with 2 users, it is better to assign the two el-
ement users corresponding to BS of type ¥ , this is because
of their multi-user diversity gain is better. In addition, no
two BSs of the same type, each gets assigned two users.
So the best possible solution is an assignment with an ob-
jective function value � . In any of these assignment, there
exists exactly one BS for each type ¥ , where two element

5



users corresponding to type ¥ is assigned, and � ¤ �½� BSs of
type ¥ , each get assigned a dummy user. There is a total of3V� element users which implies a 3-dimensional matching
in the original problem.

Similarly we can prove the following theorem.
Theorem 2: The generalized proportional fairness prob-

lem GPF2 is NP-hard.
The key idea is to assign low priority to dummy users and
high priority to element users; then set the average rate of
dummy users with its � ¤ BSs very high, and set the rate of
element users low. This will force element users to be as-
signed together. Otherwise, they would “steal” the rates of
dummy users which results in a worse objective function
value.

Corollary 1: There does not exist a polynomial time al-
gorithm that can approximate GPF1 and GPF2 within a
factor of ¾dB¿L
¾ J», , i.e. they are inapproximable.

Proof: Theorem 1 holds even if we assign rate & in-
stead of

�
for dummy users of type ¥ to its � ¤ type ¥ BSs.

We can pick & such that � ± �|, . Suppose we have an ap-
proximation algorithm of factor ¾ . According to the def-
inition of approximation, the algorithm outputs a solution
with objective function value � such that �²±\ÀÁ¾0� which
means �jÀ , . Since �X± �«, , this means � ��, , thus
we have found the optimal which contradicts Theorem 1.
Similarly, this holds for problem GPF2.

B. Properties of GPF3

We do not yet know whether GPF3 is NP-hard or not.
The reduction for GPF1 and GPF2 can not be applied to
GPF3 because we can not enforce two element users cor-
responding to a triple in 3-dimensional matching are as-
signed to the same BS (GPF3 can associate dummy users
and element users together and still achieve optimal). De-
spite this fact, we do know interesting properties of GPF3
which enable us to design efficient algorithms. We now
show these properties.

Proposition 1: If we know g ) in GPF3, then the prob-
lem can be solved optimally in polynomial time.

If g ) is fixed, then Â '�);� [�]:_ ��&�'�) s®ÄÃ
y ¯

Ã y
� is fixed. The

problem is then equivalent to finding a maximum weighted
bipartite matching with Â '�) as the weight. The maximum
weighted matching problem can be solved optimally in
polynomial time.

Proposition 2: If two users $sB�% are associated with BS� B+A respectively in an assignment and Å c yÅ c+Æ � Å¿Ç yÅ Ç Æ , then we
can always swap $ and % ’s association and improve the
objective function.

Algorithm OfflineOPT- È BS
Input: Network É �f� �XB�D � , multi-user diversity
gain }T�¬� , &�'�) B¿L ��N B�$ N D
for each � gÊ�-B-�-�-��B�gÌË � Ë � such that i Ë � Ë�°Í � �¹�

if g ��J�I k ��I where k �"�|G $ I &�'(�MJ», B¿L
$ N DPO ,
then next iteration
if &�'(���f� and g ��J»,
Â '(�"� [^]:_ ��&('(� s®ÄÃ 	

¯
Ã 	

�
else Â '(�"��,
MatchingAlgo( É;B G Â '(� O )

end

Fig. 2
A FORMAL DESCRIPTION OF THE OFFLINE OPTIMAL

ALGORITHM

This is easily obtained by comparing the two objective
function values before and after $ and % are swapped with
their associated BSs.

IV. ALGORITHMS

A. Offline Algorithms

We first design an offline algorithm for computing the
optimal user assignments to the base stations. If the num-
ber of BSs is a constant È , based on Proposition 1, we
can obtain a polynomial time algorithm to find the optimal
association. The idea is to guess all possible g ) configu-
rations, then solve the the maximum weighted matching
problem for each configuration. The algorithm is poly-
nomial because the number of configurations is �ÏÎ (let�v�ÐI D I ) and maximum weighted matching has a run-
ning time of Ñ �¿Ò �"Ó(� . The total running time is thus
Ñ ���`Î�Ô Ó!Õ�Ö � . The OfflineOPT algorithm is presented in
Figure 2.

However, when the number of BSs is large, OfflineOPT
will be very inefficient. We note that, in our context, users
are spatially distributed; users inside a certain region will
not be able communicate with BSs further away from the
region. Therefore, there is a natural partition. We ex-
ploit this spatial property and partition the network into
smaller connected components where the number of pos-
sible edges (associations) between components is small.
We first solve our generalized proportional fairness prob-
lem within each component. We then assign users, whose
edges cross components, greedily. The formal description
of the algorithm is in Figure 3. The algorithm is refered
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Algorithm KComponent
Input: Network É �f� �PB�D � , multi-user diversity
gain }T�¬� , mapping � n � s.t.

� � $`B �Ê�Ï�¹&:'�) B¿L �FN B�$ N D
Run MinK-Cut Algorithm to obtain
É � B-�-�-�:B!É Î connected components
for each É � B¿L
 �{� B-�-�-�:B!È

OfflineOPT- È BS( É � , } ,
�

)
for each user $ whose edges cross components

Greedily assign $ to BS � that improves
the objective function the most

end

Fig. 3
A FORMAL DESCRIPTION OF THE KCOMPONENT

ALGORITHM

to as KComponent. We use the approximation algorithm
in [11] to compute a È cut. We would like to minimize the
number of edges across components. Formally, the mini-
mal × -cut problem is defined as follows: a set of edges
whose removal leaves × connected components is called a
× -cut. The × -cut problem asks for a minimal weight × -cut.
We can tune × to trade off optimality with computation
time.

In a large network with many users, Algorithm offli-
neOPT, even when running KComponent, can result in a
high computational overhead. In addition, KComponent
(also OfflineOPT) only works for GPF3. We thus consider
the design of a heuristic algorithm based on efficient local
search. We define two operations: Swap and Change. At
any given time of the algorithm, if swapping two users can
improve the objective function, we then do the swap. If
changing a user’s association can help, then we carry out
the Change operation. To make sure the algorithm runs in
polynomial time, we place a lower bound constant Ø such
that each improvement operation, or ¼ improvement oper-
ations, improves the objective function by at least Ø . The
algorithm is guaranteed to terminate in time [^]:_ �VÙ�Ú �Û � it-
erations. Its running time is Ñ � [^]:_ � Ù�Ú �Û ��� Ö � . We refer to
this algorithm as local search (LS).

Note that Algorithm LS can get stuck in local optima.
The following is an example. We have three BS � B+A:B �
and three users $`B�%
B � . We have the following rate values,&('�)T�v�(31Ü , & '�= �aÝ/Þ13 , &('�ßq�¢à1Þ1Ü , &�*+)��aÝÌ� 2 , & *�= �H3á��â ,&(*+ß\�aC 2 Þ , &(ã°)²� 2 31C , & ã°= �aâ 2 C , &�*+ß\�fÜ1C�â . It is easy to
verify that the optimal assignment 4-a yields an objective
function value of �(Þ �ä2 . Algorithm LS outputs the assign-
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(a) Optimal assignment (b) LS assignment

Fig. 4
ALGORITHM LS MAY GET STUCK IN LOCAL OPTIMA

ment in 4-b with a value of �(Þ � , . We can verify that any
single Swap or Change operation will not yield a better as-
signment. We can replicate this example so that LS search
will fail even if we consider Swap operations with I D I-�h�
users.

B. Online Algorithms

While offline algorithms are useful in computing opti-
mal assignments to compare against, they cannot be used
in a dynamic network-setting with mobile users. We there-
fore consider two greedy online algorithms with very little
computational overhead. Our first algorithm assumes that
once a user is assigned with a BS, it can not change to
associate with a different BS unless due to handoff or con-
nection failure. We greedily associate with the BS such
that the objective function improves the most. We refer to
this algorithm as Greedy-0.

Given that users’ association to base stations can change
often in a dynamic setting, we can also potentially change
users’ association if it improves the system objective func-
tion. In the second online algorithm, we assume we can
change the association of at most × existing users. Because
× is a small number, we can try out all possible cases and
pick the one that improves the objective function the most.
We refer to this algorithms as Greedy-k

V. EXTENSIONS

We discuss possible extensions to our problem. In prac-
tice, a BS can only admit a finite number of users due to
the number of available Walsh codes for uplink communi-
cation. Let this bound be � ) B¿L �·N � . We then have the
following constraint:

g ) À¹� )
Since some users may be blocked, we need to remove the
constraint i )(Y4b:c �d':)F�>� . However, this is not enough.
In order to optimize the objective function using this for-
mulation, a system may reject a user $ even if there exists
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GEOGRAPHICAL LOCATIONS OF BASE STATIONS

a BS � such that $ N E ) and g ) � � ) . To make the sys-
tem work conserving, we define the indicator variable å ) ;
å )²�f, if g )æ� � ) , 1 otherwise. We derive the following
constraint in order for the system to be work conserving:

W)-Y4b:c �
'�)\�{� B if g )ç� � ) B�$ N E )

It is easy to see that the GPF1 and GPF2 prob-
lem remains to be NP-hard and inapproximable. The
OfflineOPT- È BS can be extended to our current setting by
simply observing the capacity constraint in the algorithm
shown in Figure 2.

VI. EVALUATION

We have demonstrated the general proportional fairness
problem is NP hard and presented some online and offline
heuristic algorithms. In this section, we evaluate our al-
gorithms using simulations. We first evaluate the quality
of the LS algorithm by comparing to the optimal algo-
rithm for a small problem size. We then investigate the
advantages of associations based on our GPF3 problem
formulation (hereafter, simply referred to as GPF) over
Best-Signal and Max-min associations. Finally, we eval-
uate the performance of two online algorithms, Greedy-
0 and Greedy-k. We remark that, except OfflineOPT
and KComponent, all our other algorithms (LS, Greedy-
0 and Greedy-k) work with all three problem formulations
(GPF1,GPF2 and GPF3).

A. Simulation setup

The map of base station layout that we use for the per-
formance evaluation of our algorithms is presented in Fig-
ure 5. It is part of a 3G network operated by one of the

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15
Slow Fading Ec/Nt

Distance from BS (Cell Radius)

dB

Fig. 6
SLOW FADING
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FAST FADING

major service providers in United States. There are a to-
tal of ÜVÝ base stations within 2 ,½èéÜ4, × � Ö . The longitude
and latitude distances are all relative to a reference point
picked for good visualization.

In our simulation, we assume all base stations have a
uniform radius of à km and there are a total of �-,1,1, 3G
HDR mobiles in the network. User requests for radio chan-
nel arrives according to a Poisson process with an average
rate , � ,1,Ê� /second. We assume that the average radio chan-
nel holding time is exponentially distributed with mean ofÜ4,1, seconds. We divide the map in Figure 5 into 2 ,½è?Ü4,
zones where each zone is one square kilometer. We as-
sume mobiles migrate from one zone to another with an
exponentially distributed staying time of mean C4, seconds.
We further assume mobiles have the same rates within the
same zone and a re-association may be performed when an
active mobile moves from one zone to another and its rates
change.
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The HDR downlink channel is modeled according to the
published experimental data in [8], [12]. The HDR down-
link channel quality is determined by both slow fading and
fast fading. Slow fading is modeled as a function of the
client’s distance from the HDR base station, as shown in
Figure 6. Fast fading is modeled by Jakes’ Rayleigh fading
[13] as shown in Figure 7. The combined ê ß .�� ã for both
slow and fast fading is then mapped to a table of supported
data rate with 1% error [12]. Figure 8 presents a snapshot
of HDR downlink instantaneous channel rates, and the av-
erage rate over a long time period for clients with different
distances from the base station. In our simulations, we use
the average rate for determining throughput and base sta-
tion associations and do not simulate the fast fading or the
zero mean shadow fading on a per-mobile basis.

In order to simulate skewed user distributions that are
typical in a real 3G network setting, we assign differ-
ent weights to different zones. When a mobile moves, it
choose its next destination zone from one of the neigh-
boring zones with probability proportional to the weights
of that zone. In our simulation, we randomly generate a
weight for each zone in �^, B �-,Vë uniformly.

B. Comparison of local search algorithm with optimal

It has been shown that Algorithm OfflineOPT can find
the optimal association in polynomial time. We evaluate
the local search (LS) heuristic algorithm for a small net-
work of C base stations where the optimal solution can be
obtained in reasonable amount of time using OfflineOPT.
We picked base stations 20B à B Þ B ��Ý B � 2 and 3 2 in Figure 5
together with 34,1, users as input and run the simulation for�-,1,1,1, seconds. A new association is calculated when a
radio channel is requested or terminated. A radio chan-
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CDF OF PERFORMANCE RATIOS

nel request may be triggered by either a mobile user be-
coming active or an active mobile user moving into a new
zone. A radio channel termination may be triggered by
the inactive timer timeout or a mobile moving away from
a zone. We compute each association with both the op-
timal algorithm and our LS heuristic algorithm. Figure 9
plots the CDF of the performance ratio, which is defined
as the ratio between the value of generalized proportional
fairness objective function obtained from the heuristic al-
gorithm and that obtained from the optimal algorithm. We
observe that only less than ��ì of the performance ratios
are less than , � Þ1Þ�â . In almost Þ4,/ì of the cases, the LS
heuristic algorithm achieves the same objective function
values as the optimal algorithm. Thus, we can approximate
the OfflineOPT algorithm with the much more efficient LS
heuristic-based algorithm with high confidence when com-
puting the optimal bounds on large networks.

C. Comparison of GPF with other association algorithms

In this Section, we compare our GPF association with
other association schemes including Best-Signal and Max-
Min. We use the LS algorithm to obtain the “optimal” GPF
association. The Best-Signal algorithms always assigns a
mobile to the BS with the strongest signal regardless of
network load. The Max-Min algorithm is the offline al-
gorithm presented in [14]. We do not consider backhaul
bottlenecks. Therefore, the max-min fair association com-
puted has an approximation factor of 2 coordinate-wise
in terms of the throughput vector (in ascending order) all
users get with respect to the optimal max-min fair associ-
ation.

We evaluate the algorithms using the achieved network
aggregate throughput and fairness metrics. The achieved
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throughput metric measures the throughput efficiency at
the network level whereas the fairness metric focuses on
the performance perceived by each individual user.

The fairness metric is measured using fairness index
proposed in [15]. The throughput is first normalized by
the reference association which we assume an equal band-
width share. In this case, the fairness index can be com-
puted as following

�Pí-î xl� � i �¿�ª� Ö
� i � Ö�

The fairness index value is a positive number with max
value � suggesting an equal throughput among all mobiles.
The higher the fairness index is, the closer the allocation is
to an equal throughput allocation.

We compare the GPF allocation with the other two by
normalizing the achieved throughput using the one ob-
tained from the GPF allocation; the fairness index metric
is normalized to users receiving equal share. Figures 10
and 11 plot the CDF of normalized throughput and fair-
ness indexes respectively (thus, GPF has a value of 1 in
Figure 10).

We observe from Figure 10 that both Best-Signal and
GPF algorithm achieve much higher throughput than Max-
Min algorithm. Almost in all cases, the Max-Min algo-
rithm achieves throughput less than C4,/ì of the through-
put of GPF. The GPF approach achieves higher throughput
in more than à4,/ì cases than Best-Signal. In about C4,/ì
cases, the GPF approach achieve more than �-,/ì more
throughput than Best-Signal. Figure 11 shows that the
bandwidth allocation of our GPF algorithm is always more
fair than the allocation of Best-Signal algorithm while
the allocation of the Max-Min algorithm is the most fair
scheme. However, we observe in Figure 10 the fairness
of Max-min is achieved by significantly compromising
throughput. Thus, the GPF association can achieve sig-
nificantly better throughput and fairness when compared
to an approach that assigns a user to the base station with
the best signal strength. Also, as expected, max-min fair-
ness sacrifices too much overall throughput (less than 60%
of what is achieved by our algorithm) for fairness.

D. Comparison of online GPF association algorithms

We have demonstrated that an offline generalized pro-
portional fairness association achieves both better fairness
and higher throughput than the currently used Best-Signal
approach. In this section, we compare Best-Signal to two
online versions of the GPF association,i.e, greedy-0 and
greedy-k; they differ in whether a constant number of the
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existing association can be changed. We would like to see
if the gains of using the offline GPF association can be pre-
served in a practical dynamic environment using the online
algorithms. As before, we evaluate these algorithms using
both the throughput and fairness metrics.

We normalize the throughput of each mobiles by its GPF
allocation, where we approximate the GPF allocation us-
ing values obtained from the LS algorithm. Let us denote
the throughput achieved by GPF for mobile  being �  Ú ��
and �¿ï� the throughput achieved by association scheme ð .
We compare the fairness of Best-Signal and on-line GPF
association relative to the offline GPF association. The
fairness index relative to GPF association for ð is calcu-

10



0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

Normalized throughput

C
D

F

Best−signal
Greedy−2
Greedy

Fig. 12
CDF OF THROUGHPUT NORMALIZED BY THROUGHPUT

ACHIEVED FROM GPF ASSOCIATION

lated from

��í  Ú �ñ� ð �Ï�
�¬i@�¿ï� .:�  Ú �� � Ö
� i ��� ï� .:�  Ú �� � Ö

where � is total number of active mobiles in the network.
We also normalize the throughput from different asso-

ciations by the throughput achieved by algorithm LS and
present the CDF of normalized throughput in Figure 12.
We observe that both online algorithms achieve higher
throughput than the Best-Signal. There is very little differ-
ence between the two online algorithm. In more than âV,/ì
cases, the online algorithms achieves throughput greater
than Þ 2 ì of that achieved by the offline GPF.

Figure 13 presents the CDF of the fairness indexes for
different association algorithms. We observe that both on-
line algorithms are more fair than Best-Signal with the
Greedy-2 slightly more fair than the Greedy-0. The fair-
ness indexes for both online algorithms are almost always
greater than , � à .

VII. RELATED WORK

The Proportional fair scheduler was first presented
in [4], [16] for the third generation EV-DO wireless data
system. Since then, there has been a lot of work on the
topic of proportional fair scheduling.

The performance of PF has been analyzed by several
The proportional fair algorithm can be shown to maximize
the sum of the logarithm of the throughput of the users
attached to each base station [17]. The user-level perfor-
mance of the proportional fair algorithm in a dynamic set-
ting was analyzed in [9]. Extensions to proportional fair
algorithm to support quality of service have been proposed
in [18], [19], [20], [21]. The authors in [19], [20] show that
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an exponential rule performs best in gracefully trading-off
delay versus throughput.

Several researchers have also examined the fairness as-
pect of the proportional fair algorithm [22], [23]. It has
been shown that, with users experiencing heterogeneous
channel quality, the differences in variances of the channel
quality can result in unfairness using the proportional fair
algorithm [9]. In [23], the author describes a monitoring-
based feedback algorithm to correct the unfairness of the
proportional fair algorithm under heterogeneous channel
conditions. The authors in [22] propose a new definition
of fairness that extends the absolute fairness bound mea-
sure derived from the Generalized Processor Sharing dis-
cipline [24]. They propose an opportunistic proportional
fair algorithm that is a weighted combination of the max
rate scheduling [19] and proportional fair scheduling. Note
that all the above algorithms, like the proportional fair
scheduling algorithm, only support fairness among users
attached to a single base station. In this paper, we take a
network-wide approach for supporting fairness while ex-
ploiting user diversity to maximize throughput.

As we have discussed in Section II, user association
changes have been used as one of the techniques for load
balancing in third generation wireless data networks. The
objective of their work [6], [7] is load balancing given cer-
tain definition of load at the BS. However, they do not
consider fairness in a network-wide view. We remark that
a network-wide proportional fairness formulation enables
better tradeoff between system utilization and fairness, and
is a natural objective of load balancing. As shown in [5],
proportional fairness optimizes the aggregate user utili-
ties (total user satisfaction) if each user’s utility function
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is an increasing, strictly concave and continuously differ-
entiable function of its throughput. Load balancing and
fairness have been considered jointly in the wireless LAN
context in [14]. However, the fairness metric considered
in [14] was max-min fairness. We remark that, in third
generation wireless data networks, a better fairness metric
is proportional fairness which is currently used in deployed
third generation data networks.

VIII. CONCLUSION AND FUTURE WORK

In today’s networks, users are associated to base stations
with the strongest signal strength and each base station in-
dependently executes the proportional fairness scheduling
algorithm. This approach can result in non-Pareto optimal
bandwidth allocation when considering the network as a
whole. Therefore, we formulate and study a generalized
proportional fairness problem where user associations to
base stations are based on optimizing a generalized pro-
portional fairness objective.

We show that this problem is NP-hard and hard to ap-
proximate in general. For the special case, which roughly
holds in practice, we obtain efficient offline and online al-
gorithms. Our results show that the throughput and fair-
ness can both be improved in heterogeneous user distribu-
tions when compared to an approach that assigns a user to
the base station with the best signal strength.

For future research, we would like to incorporate other
load balancing techniques such as cell breathing into the
consideration of network-wide proportional fairness. In
addition, we would like to consider uplink scheduling.
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