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Abstract. Metric theories of gravity are studied, beginning with a general action that is
quadratic in curvature and allows arbitrary inverse powers of the d’Alembertian operator,
resulting in infrared non-local extensions of general relativity. The field equations are derived
in full generality and their consistency is checked by verifying the Bianchi identities. The
weak-field limit is computed and a straightforward algorithm is presented to infer the post-
Newtonian corrections directly from the action. This is then applied to various infrared grav-
ity models including non-local Rf(R/�) dark energy and non-local massive gravity models.
Generically the Newtonian potentials are not identical and deviate from the 1/r behaviour
at large distances. However, the former does not occur in a specific class of theories that
does not introduce additional degrees of freedom in flat spacetime. A new nonlocal model
within this class is proposed, defined by the exponential of the inverse d’Alembertian. This
model exhibits novel features, such as weakening of the gravity in the infrared, suggesting
de-gravitation of the cosmological constant.ar
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1 Introduction

It has been known for some time that higher derivative theory of gravity can be renormalisable
but only at the cost of unitarity [1]. There is some evidence that in an infinite-order higher
derivative, i.e. non-local theory of gravity, one can avoid the issue of ghosts and other patholo-
gies while recovering general relativity (GR) at low energies. The propagator for the most
general metric theory was recently derived in [2], see also e.g. [3–5]. In non-locally improved
theories, gravity becomes weak in the ultraviolet (UV), yielding non-singular black hole, grav-
itational wave and cosmological solutions. Many aspects of ghost-free and singularity-free
gravity have been studied in the context of early Universe cosmology [2, 6–12].

However, non-local operators in the gravity sector may also play a role in the infrared
(IR). In particular, they could filter out the contribution of the cosmological constant to the
gravitating energy density, possibly providing the key to solving one of the most notorious
problems in physics [13], see also [14–18]. Cosmological implications of non-local term R�−1R
in the gravity action were investigated motivated by the possibility to render the Euclidean
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action finite [19]. More recently, many studies of cosmologies in infrared, non-locally modified
gravity models have been undertaken, stimulated by the problems of dark matter and dark
energy [20, 21]. In this paper we will focus on the infrared non-localities of gravity in a
very generic manner. We consider metric covariant quadratic curvature theories of gravity,
allowing arbitrary (including up to infinite order) inverse derivatives in the action. Typically
the corrections are then suppressed by some IR scale, which we shall denote asM everywhere
in the following.

Deser and Woodard proposed non-local corrections to the gravity action in the form
Rf(R/�) [22]. By such means one could perhaps address some of the fine-tuning problems
of dark energy: the curvature scalar R is negligible with respect to the radiation density
early on, which might help to understand why the corrections become significant only during
the matter dominated epoch, and on the other hand, R� being a dimensionless combination,
modifications at the scale of dark energy might be generated without introduction of tiny mass
scales into the theory [23]. The Rf(R/�) models have been studied extensively [16, 17, 24–
29], and in particular, cosmological perturbations have been analysed in Refs. [30–33], with
the conclusion that the current structure formation data clearly favours GR over the Rf(R/�)
models when the background evolution of the latter is fixed to be identical to the ΛCDM.
In fact, this model is ruled out at the confidence level of several sigmas [33]. Furthermore,
in more general models, involving tensorial non-local terms such as Rµν(M2/�2)Rµν , an
additional, potentially dangerous, growing mode appears in the cosmological perturbations
[34, 35].

However, this does not render all non-local gravity dark energy models incompatible
with cosmological constraints, as demonstrated by two interesting viable examples recently
put forward by Maggiore et al. One model was defined by a gµνR/� term added to the
Einstein field equations [36–38] and its viability was verified against a number of large scale
structure data [39]. The other model was defined by adding a R�−2R modification to the
Lagrangian [40]. This introduces a single-parameter alternative to the ΛCDM cosmology,
whose perturbation evolution has also been shown to produce a matter power spectrum that
matches well with current measurements [41]. The possibility that dark matter could be a
manifestation of a non-local deviation from Einstein’s gravity has been investigated by several
authors as well [42–49].

Non-local gravity poses several theoretical and technical issues. The initial value problem
has been considered [50, 51] and practical methods of solving non-local systems of differential
equations, such as the diffusion equation approach, have been developed [52–55]. In the non-
local framework, the graviton can be given a mass without introducing an additional metric
[56, 57]. One could thus speculate that non-local gravity may describe massive ghost-free
gravity, once the additional metric has been integrated out along the lines of [58]. Indeed
it has been argued that the infrared non-local gravity models proposed to date can only be
taken as phenomenological effective theories [36, 37, 59]. Two techniques have been employed
to generate causal and conserved field equations: either by varying an invariant non-local
effective action and then enforcing causality by the ad hoc replacement of any advanced
Green’s function with its retarded counterpart, or by introducing causal non-locality into a
general ansatz for the field equations and then enforcing conservation. These approaches are
implemented in the two examples of dark energy models mentioned above, respectively.

In this paper we adopt the first approach: our starting point is a general non-local
action. The most general linear equations were analysed in [2] and [60], where the authors
have presented the most general non-linear field equations for non-local gravity up to quadratic
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order in the curvature, with the aim to understand the UV properties of gravity. Here, we
proceed by extending the analysis into the IR. We begin, in Section 2 by describing the
quadratic action and deriving the field equations in full generality. Due to the complicated
nature of these calculations, it is useful to perform a consistency check by verifying that they
satisfy the Bianchi identities. This non-trivial calculation is outlined briefly. In Section 3
we consider the weak-field limit of these theories and present an algorithm to compute the
Newtonian potentials. These can be very useful in determining the observational viability of a
theory at the level of astrophysics and classical tests of gravity within the Solar system. In the
following section, we apply our formalism to specific models, by way of three examples, before
proposing a new model featuring the exponential of the inverse d’Alembertian operator. We
give some concluding remarks in Section 5 and some technical details have been confined to
the appendices, along with a scalar presentation of a restricted class of models (Appendix A).

2 General Quadratic Action and Field Equations

In a pioneering paper, Schmidt considered the field equations in quadratic-curvature gravity
theories of arbitrarily high derivative order [61], then restricting to modifications of GR in
terms of the Ricci scalar. Only recently, the full nonlinear analysis was generalised to arbitrary
curvature terms [60], motivated by the progress made with such theories in Ref. [2] where it
was shown that gravity in the UV can be made asymptotically-free without violating basic
principles of physics such as unitarity and general covariance. Here we extend the action into
the IR, and describe it as follows

S =

∫
d4x

√
−g
2

(
M2
PR+RF̄1(�)R+RµνF̄2(�)Rµν + CµνλσF̄3(�)Cµνλσ

)
, (2.1)

where

F̄i(�) =
∞∑
n=1

fi−n�
−n with i = (1, 2, 3) . (2.2)

with fi−n = f̃i−nM
2n, where f̃i−n is a constant to ensure correct dimensionality andM is some

infrared mass scale. To derive the field equations from this action, we need to first understand
the properties of the inverse d’Alembertian operator under variations of the metric.

2.1 Variation of Inverse Box

We compute the equations of motion of (2.1) by straightforwardly taking the variation of the
action. We note that most of the terms can be found by adhering to the prescription given in
[60]. However, one particular brand of term requires more attention, namely the δF̄i(�)-type
terms and we give details of its expression below.

Let S and T be tensors of any type. As should be clear, we note that the variation of
the identity vanishes. We may then write

δ(�n�−n)S = 0 = δ(�n)�−nS +�nδ(�−n)S (2.3)

implying
�nδ(�−n)S = −δ(�n)�−nS (2.4)

so that
Tδ(�−n)S = −T�−nδ(�n)�−nS (2.5)
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Recall from [60] that

Tδ(�n)S =

n−1∑
m=0

T�mδ(�)�n−m−1S (2.6)

which can be verified by simply expanding out powers of � . Upon substituting, we find

Tδ(�−n)S = −
n−1∑
m=0

T�m−nδ(�)�−m−1S (2.7)

and from the definition of F̄i(�) , we may write

TδF̄i(�)S = −
∞∑
n=1

fin

n−1∑
m=0

T�m−nδ(�)�−m−1S (2.8)

Using integration by parts, we can express this as follows

TδF̄i(�)S = −
∞∑
n=1

fin

n−1∑
m=0

�m−nTδ(�)�−m−1S (2.9)

or equivalently

TδF̄i(�)S = −
∞∑
n=1

fin

n−1∑
m=0

T (m−n)δ(�)S(−m−1) (2.10)

where we have introduced the notation �nS = S(n). Finally, from [60] , we know
how δ(�) acts upon the curvature scalar, Ricci tensor and Weyl tensor and following the
prescription therein, we can read off the equations of motion. Details of these variational
terms are given in Appendix B.

2.2 Equations of Motion

The field equations are:

Tαβ = M2
PGαβ + 2GαβF̄1(�)R+

1

2
gαβRF̄1(�)R− 2 (∇α∇β − gαβ�) F̄1(�)R

+ Θ1
αβ −

1

2
gαβ

(
Θ1σ
σ + Θ̄1

)
+ 2RασF̄2(�)Rσβ

− 1

2
gαβR

µ
ν F̄2(�)Rνµ − 2∇σ∇βF̄2(�)R σ

α +�F̄2(�)Rαβ + gαβ∇µ∇νF̄2(�)Rµν

+ Θ2
αβ −

1

2
gαβ

(
Θ2σ
σ + Θ̄2

)
+ 2E2

αβ

− 1

2
gαβC

µνλσF̄3(�)Cµνλσ + 2CαµνσF̄3(�)C µνσ
β − 2 (Rµν + 2∇µ∇ν) F̄3(�)C µν

βα

+ Θ3
αβ −

1

2
gαβ

(
Θ3σ
σ + Θ̄3

)
+ 4E3

αβ ,

(2.11)

where we have defined the following tensors

Θ1
αβ =

∞∑
n=1

f1−n

n−1∑
l=0

∇βR(l−n)∇αR(−l−1), Θ̄1 =

∞∑
n=1

f1−n

n−1∑
l=0

R(l−n)R(−l),
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Θ2
αβ =

∞∑
n=1

f2−n

n−1∑
l=0

∇αRµ(l−n)
ν ∇βRν(−l−1)

µ , Θ̄2 =
∞∑
n=1

f2−n

n−1∑
l=0

Rµ(l−n)
ν Rν(−l)

µ ,

E2
αβ =

1

2

∞∑
n=1

f2−n

n−1∑
l=0

∇ν
(
Rν(l−n)
σ ∇(αR

σ(−l−1)
β) −∇αRν(l−n)

σ R
σ(−l−1)
β)

)
,

Θ3
αβ =

∞∑
n=1

f3−n

n−1∑
l=0

∇αCµ(l−n)
νλσ ∇βC νλσ(−l−1)

µ , Θ̄3 =
∞∑
n=1

f3−n

n−1∑
l=0

C
µ(l−n)
νλσ C νλσ(−l)

µ ,

E3
αβ =

1

2

∞∑
n=1

f3−n

n−1∑
l=0

∇ν
(
Cλν(l−n)

σµ ∇(αC
σµ(−l−1)
|λ|β) −∇(αC

λν(l−n)
σµ C

σµ(−l−1)
λβ)

)
. (2.12)

2.3 Bianchi Identity Test

The stress-energy tensor of any minimally coupled diffeomorphism invariant gravitational
action must be conserved,

∇βTαβ = 0 . (2.13)

Furthermore, it should be noted that the Bianchi identities should hold for each ’part’ of the
action (2.1), with the first ’part’ comprised of the Einstein-Hilbert action and the following
three accounting for the F̄1(�), F̄2(�) and F̄3(�) sections, as each of these sections are
independent of each other. Clearly, the Einstein-Hilbert action satisfies the Bianchi identity
as the Einstein tensor satisfies ∇βGαβ = 0.

Let us begin with the piece

S1 =

∫
d4x
√
−g
(
RF̄1(�)R

)
. (2.14)

Expanding the tensors given in (2.12), we may write the equation of motion for (2.14) as
follows:

T 1
αβ = 2GαβF̄1(�)R+

1

2
gαβRF̄1(�)R− 2 (∇α∇β − gαβ�) F̄1(�)R

+ Θ1
αβ −

1

2
gαβ

(
Θ1σ
σ + Θ̄1

)
.

(2.15)

We then take the covariant derivative and cancel like terms

T 1;β
αβ =

1

2
∇αRF̄1(�)R+ 2Rασ∇σF̄1(�)R− 1

2
R∇αF̄1(�)R− 2∇σ∇α∇σF̄1(�)R+ 2∇α�F̄1(�)R

+
∞∑
n=1

f1−n

n−1∑
l=0

[
�R(l−n)∇αR(−l−1) +

1

2
∇σR(l−n)∇σ∇αR(−l−1) − 1

2
∇α∇σR(l−n)∇σR(−l−1)

− 1

2
∇αR(l−n)R(−l) − 1

2
R(l−n)∇αR(−l)

]
.

(2.16)
Next we use

[∇a,∇b]λc = Rcdabλ
d (2.17)

to find
∇σ∇α∇σF̄1(�)R = ∇α�F̄1(�)R+Rσα∇σF̄1(�)R (2.18)
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and substitute to obtain

T 1;β
αβ =

1

2
∇αRF̄1(�)R− 1

2
R∇αF̄1(�)R

+
∞∑
n=1

f1−n

n−1∑
l=0

[
R(l−n+1)∇αR(−l−1) +

1

2
∇σR(l−n)∇σ∇αR(−l−1) − 1

2
∇α∇σR(l−n)∇σR(−l−1)

− 1

2
∇αR(l−n)R(−l) − 1

2
R(l−n)∇αR(−l)

]
.

(2.19)
We then employ the following technical trick derived from integration by parts∑

n

∑
m

A(m)B(n) =
∑
n

∑
m

A(n)B(m) (2.20)

to find that all terms cancel and thus the Bianchi identities are satisfied.

A similar method may be used to test for the Bianchi identities of the entire action using the
general formula

[∇ρ,∇σ]Xµ1...µk
ν1...νl

= Rµ1λρσX
λµ2...µk
ν1...νl

+Rµ2λρσX
µ1λµ3...µk

ν1...νl
+ ...

−Rλν1ρσX
µ1...µk
λ...νl

−Rλν2ρσX
µ1...µk
ν1λν3...νl

− ...
(2.21)

Further details are given in Appendix C for the F̄2(�) and F̄3(�) pieces of the action.

3 Weak-Field Limit

In order to make a step towards understanding the physical implications of the theories
analysed in Section 4 and to make contact with observations, let us consider the weak-field
limit of the general field equations.

From gµν = ηµν + hµν and the definition of the Christoffel symbols and the Riemann
tensor, one can find the weak-field limit of the Riemann tensor, Ricci tensor and curvature
scalar,

Rρµσν =
1

2
(∂σ∂µhρν + ∂ν∂ρhµσ − ∂ν∂µhρσ − ∂σ∂ρhµν) ,

Rµν =
1

2

(
∂σ∂µhσν + ∂ν∂σh

σ
µ − ∂ν∂µh−�hµν

)
,

R = ∂µ∂νh
µν −�h . (3.1)

as well as the Weyl tensor which is somewhat lengthier and is given in appendix D.
In the weak-field limit, we may discount terms of order h2 and higher. With this in

mind, the equation of motion (2.11) reduces significantly,

Tαβ = M2
PGαβ − 2 (∇α∇β − ηαβ�) F̄1(�)R− 2∇σ∇βF̄2(�)R σ

α

+�F̄2(�)Rαβ + ηαβ∇µ∇νF̄2(�)Rµν − 4∇µ∇νF̄3(�)C µν
βα ,

(3.2)
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into which we can then substitute the above values for the Riemann tensor, Ricci tensor and
curvature scalar (3.1) to obtain

Tαβ = −
[
1 +

1

2
F̄2(�)�+ F̄3(�)�

]
�hαβ

−
[
−1− 1

2
F̄2(�)�− F̄3(�)�

]
∂σ
(
∂αh

σ
β + ∂βh

σ
α

)
−
[
1− 2F̄1(�)�− 1

2
F̄2(�)�+

1

3
F̄3(�)�

]
(∂β∂αh+ ηαβ∂µ∂νh

µν)

−
[
−1 + 2F̄1(�)�+

1

2
F̄2(�)�− 1

3
F̄3(�)�

]
ηαβ�h

−
[
2F̄1(�)�+ F̄2(�)�+

2

3
F̄3(�)�

]
�−1∇α∇β∂µ∂νhµν .

(3.3)

Here we have set M2
P ≡ 2 for convenience. We can rewrite this as

Tαβ = −
[
ā(�)�hαβ + b̄(�)∂σ

(
∂αh

σ
β + ∂βh

σ
α

)
+ c̄(�) (∂β∂αh+ ηαβ∂µ∂νh

µν)

+ d̄(�)ηαβ�h+ f̄(�)�−1∇α∇β∂µ∂νhµν
]
,

(3.4)

where we have defined

ā(�) ≡ 1 +
1

2
F̄2(�)�+ F̄3(�)� = −b̄(�) ,

c̄(�) ≡ 1− 2F̄1(�)�− 1

2
F̄2(�)�+

1

3
F̄3(�)� = −d̄(�) ,

f̄(�) ≡ 2F̄1(�)�+ F̄2(�)�+
2

3
F̄3(�)� , (3.5)

and have recovered the same constraints as in the UV 1 [2, 60]:

ā+ b̄ = 0 ,

c̄+ d̄ = 0 ,

b̄+ c̄+ f̄ = 0 . (3.6)

These equalities we found by explicit evaluation of the respective terms, can be understood
as a consequence of the Bianchi identities. In the linearised limit, � = ∇µ∇µ = ∂2, and it
suffices to take the partial derivative of (3.4) as

∂βTαβ = −
(
ā+ b̄

)
∂σ∂2hασ −

(
b̄+ c̄+ f̄

)
∂α∂µ∂νh

µν −
(
c̄+ d̄

)
∂2∂αh . (3.7)

This divergence should vanish identically, and when the coefficients of each independent term
is zero due to (3.6), it does. It is this classical conservation structure of the theory that

1We note that the forms of these constraints differ to those of Ref. [2]. This is due to different conventions,
namely, in [2], the authors take the signature to be "mostly negative", where as in Ref. [60], we take the
signature to be “mostly positive" with M2

p = 2. Secondly, the presence of the Weyl tensor rather than
the Riemann tensor in the action has an effect on the F̄3(�) terms. Having said this, when these convention
changes are taken into account, we find that the above constraints are the same as those in [2] and [60] with the
exception that we are now considering F̄i(�) =

∑∞
n=1 fin�

−n in the IR as opposed to Fi(�) =
∑∞

n=0 fin�
n

in the UV.
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also sets the coefficients of the effective stress energy terms ∂β∂αh and ηαβ∂µ∂νhµν identical
(denoted −c̄ here) in the first place.

We then close this section with a brief remark concerning massive gravity. The Fierz-
Pauli term would have the form M2(hµν − ηµν). We can now indeed recover such a term,
without resorting to Lorenz violation or additional metrics, with an action specified by an
arbitrary F̄3 by setting F̄1 = M2�−2 + 2F̄3/3 and F̄2 = −2M2�−2 − 2F̄3. However, there
will inevitably then also appear additional terms in the stress energy tensor, due to (3.6), and
thus the linearised theory doesn’t quite coincide with the pure Fierz-Pauli theory.

3.1 Newtonian Potentials

We wish to compute the Newtonian potentials. In order to do so, we consider the weak field
(i.e. h2 ≈ 0) static (i.e. � ≈ ∇2) limit. The trace and the 00-component of the field equation
(3.4) are

− ρ = (ā(�)− 3c̄(�)) (�h− ∂µ∂νhµν) (3.8)
ρ = ā(�)h00 + c̄(�) (�h− ∂µ∂νhµν) (3.9)

where we have assumed negligible pressures for Tαβ = diag(ρ, p, p, p), so that tr(Tαβ) =
−ρ+ 3p ≈ −ρ and T00 = ρ. We then impose the spherically symmetric metric

ds2 = −(1 + 2Φ)dt2 + (1− 2Ψ)dr2 , (3.10)

and note
h00 = −2Φ, hij = −2Ψηij , (3.11)

so that the pair of equations (3.8,3.9) becomes

− ρ = 2 (ā− 3c̄)
(
∇2Φ− 2∇2Ψ

)
,

ρ = 2 (c̄− ā)∇2Φ− 4c(�)∇2Ψ . (3.12)

Solving for Φ, we can then, upon performing a Fourier transform and restoring the M2
p =

1/(8πG), express the Newtonian potential as the integral

Φ(r) = − m

(4π)3M2
p

∫ ∞
−∞

d3p
ei~p~r (ā− 2c̄)

2p2ā (ā− 3c̄)
= − m

π2M2
p r

∫ ∞
0

dp

p

sin(pr) (ā− 2c̄)

2ā (ā− 3c̄)
, (3.13)

where2 ā = ā(−p2) and c̄ = c̄(−p2). Similarly we get for Ψ

Ψ(r) =
m

π2M2
p r

∫ ∞
0

dp

p

sin(pr)c̄

2ā (ā− 3c̄)
. (3.14)

2However, we should point out a subtlety that though there is no ambiguity in the case of derivative
operators, but we have identically that �eipr = −p2eipr, in the case of inverse derivative operators �−1eipr =
−p−2eipr implies a choice of boundary conditions for the operator 1/�. These boundary conditions should be
understood as specification of the operator and thus a property of the theory itself rather than free parameters
for each solution. The boundary conditions adopted here amount to setting the homogeneous solution of the
flat-space Green functions to zero, as seems most reasonable in this case. -A constant associated to the
homogeneous modes was tuned in the screening mechanism of [16, 17] to cancel the cosmological constant in
cosmological background. It is unclear if such a prescription for the operator �−1 would be viable in other
backgrounds.

– 8 –



Thus we have now a complete algorithm to determine the Newtonian potentials of an arbitrary
metric theory of gravity: given any form of local or non-local action, one may readily expand
it up to quadratic order in the curvature, read off the functions ā and c̄ and obtain the
post-Newtonian potentials by performing the above two integrals (3.13, 3.13).

We immediately see that, generally speaking, these will differ from each other, We
describe their ratio using the Eddington parameter γ, which is defined as

γ ≡ −Ψ

Φ
, (3.15)

and is constrained by the Cassini tracking experiment to be at most of the order 10−5 [62]
and therefore the discrepancy can provide useful constraints on generic non-local models.
However, we also notice that in the class of theories with ā = c̄, i.e. f̄ = 0, the Newtonian
potentials will be identically the same, thus γ = 1, but the potential can still deviate from
the 1/r behaviour at large distances. This is in complete accordance with the results of [2, 5],
where the a = c class of theories was found to introduce no new degrees of freedom, since
the additional scalar contribution in the propagator disappears at the limit a = c, while the
function a still modulates the usual graviton propagator. In the case of non-analytical (inverse
powers of the d’Alembertian) functions, however, the propagator may be an ill-defined object,
the intuition is retained here that the special f̄ = 0 class of theories is devoid of an extra
scalar and thus features only one independent Newtonian potential in the weak field limit.
To recapitulate, we have two classes of theories:

• f̄ 6= 0, i.e. ā 6= c̄. In this case, we have an extra scalar degree of freedom and the two
gravitational potentials are not independent, i.e. γ 6= 1.

• f̄ = 0, i.e. ā = c̄. In this case, there are no additional modes and thus Ψ = Φ i.e. γ = 1.

In the following section, we will consider explicit examples from both classes of theories.

4 Examples

Armed with the machinery to study generic metric theories, we illustrate its power by applying
it to several non-local models found in the literature, before proposing a new model featuring
the exponential of the inverse d’Alembertian operator.

4.1 The Rf(R/�) Model

The non-local model proposed by Deser and Woodard [22] is defined by the action

S =
M2
p

2

∫
d4x
√
−gR [1 + f(R/�)] . (4.1)

As mentioned in the introduction, this model has been ruled out as an alternative to dark
energy due to its impact on the structure formation [33]. It is, however, instructive to consider
it first as perhaps the simplest example of a non-local modification of gravity in the infrared.
Indeed, the γ parameter turns out to be simply a constant up to the first order in the post-
Newtonian expansion. For this order we only need the quadratic term

S ≈
M2
p

2

∫
d4x
√
−gR

(
1 +

f ′(0)

�
R+ . . .

)
. (4.2)
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We may read off from the action that F1 = f ′(0)/� and F2 = F3 = 0 as well as the functions
ā = 0 and c̄ = 2f ′(0), upon referring back to (3.5). Solving the integral in (3.13,3.14) for
these values of ā and c̄, we obtain

Φ =
m (1 + 8f ′(0))

8πM2
p r (1 + 6f ′(0))

, Ψ = − m (1 + 4f ′(0))

8πM2
p r (1 + 6f ′(0))

. (4.3)

Newton’s constant is thus shifted - an occurrence which can be nullified with a redefinition.
To first order, we obtain γ = 4f ′(0). This agrees with an earlier result given in [30] and
derived using a scalar field formulation of the theory (see appendix A for such a treatment of
F1(�) theories).

4.2 Non-Local Massive Gravity

As explained in section 3, in the context of non-local theories, the graviton may acquire mass
without the introduction of an external reference metric [56, 57]. The IR part of an action
that has been proposed for this purpose reads

S =
M2
p

2

∫
d4x
√
−g
[
R+R

(
M2

�2

)
R− 2Rµν

(
M2

�2

)
Rµν

]
. (4.4)

As we will see shortly, we can now interpret the IR scaleM as the mass of the graviton. From
the action, we read off

F̄1(�)� =
M2

�
, F̄2(�)� = −2

M2

�
, F̄3(�) = 0 , (4.5)

so that

ā(�) =
�−M2

�
= −b̄(�) = c̄(�) = −d̄(�) , (4.6)

i.e.

ā(−p2) =
p2 +M2

p2
. (4.7)

We observe that this model belongs to the class f̄ = 0 where there are no additional
degrees of freedom. To solve for the gravitational potential (3.13), we need to integrate
I =

∫∞
0

sin(pr)
pā(−p2)

dp, that is

I =

∫ ∞
0

p sin(pr)

p2 +M2
dp =

∫ ∞
−∞

peipr − pe−ipr

2i(p+ iM)(p− iM)
dp , (4.8)

where M represents the mass of the graviton. We observe that there are poles at p = iM on
the upper half plane and p = −iM on the lower half plane. We will take each pole separately
and use the general contour integral formula∮

C

f(z)

z − z0
dz = 2πif(z0) . (4.9)

Pole p = iM is on the upper half plane so we only consider the eipr portion of sin(pr) which
encircles the pole, so that

I =

∮
m

peipr/2i(p+ iM)

(p− iM)
dp . (4.10)
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which we consider of the form

I =

∮
m

f(p)

p− p0
dp = 2πif(p0) . (4.11)

with p0 = iM and f(p) = peipr/2i(p+ iM), so that

I = 2πif(iM) =
π

2
e−Mr . (4.12)

Similarly for the pole p = −iM

I =

∮
−m

−pe−ipr/2i(p− iM)

(p+ iM)
dp = −2πif(−iM) = −2iπ

(
iMe−Mr

4M

)
=
π

2
e−Mr , (4.13)

where, in this case we are moving into the lower half plane so that

I =

∮
−m

f(p)

p− p0
dp = −2πif(p0) . (4.14)

Hence
I =

π

2
e−Mr . (4.15)

Solving the integral (3.13), we find

Φ(r) =
m

2π2M2
p r

∫
dp
p sin(pr)

p2 +M2
=

m

4π2rM2
p

(π
2
e−Mr

)
=

m

8πrM2
p

e−Mr . (4.16)

We thus obtain precisely the expected Yukawa-type correction for massive gravity. We plot
the solution (4.16) in Figure 2.

4.3 The R�−2R Model and Generalisations

A variation of the previous model (4.4) where the tensorial piece is omitted was studied in
Refs. [40, 41], where the instability arising from tensorial non-localities is avoided [34, 35].
However, as we have learned, an additional scalar mode will appear in flat space. The action
to consider is3

S =
M2
p

2

∫
d4x
√
−gR

(
1 +

1

3

M2

�2
R

)
. (4.17)

Thus, F̄1(�) = M2/3�2 and F̄2(�) = F̄3(�) = 0. We proceed analogously to the previous
two cases, further details can be found in Appendix E. As before, the integrals in (3.13, 3.14)
can be completed by calculating their residuals, resulting in the following:

Φ(r) =

(
4− e−Mr

)
m

24M2
Pπr

, Ψ(r) =
−(2 + e−Mr)m

24M2
Pπr

. (4.18)

Thus, the gravitational potentials differ from each other and display the usual 1/r behaviour
at distances r & r0 ∼ 1/M , as expected.

3Here we chose the opposite sign for the M2-term from [40]. In the case of a scalar field at least, that
sign choice would correspond to tachyonic mass-squared, which, however, is the choice that has been shown
to lead to interesting cosmology [40, 41]. The Newtonian limit has been calculated for that case in Ref. [38],
expectedly with slightly different results from what we obtain here. Setting M → iM one obtains oscillating
cosMr type corrections instead of the exponential e−Mr we find here as well did in the case (4.16).
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Figure 1. The Eddington parameter as a function of the distance from the source in R2 models.
The thick black line is for the model (4.17), the thin blue dotted line is for the local f(R) gravity and
the dashed red line for a RM4�−3R model. For higher powers of 1/�, the behaviour is qualitatively
the same.

The asymptotic value of the Eddington parameter γ → 1/2 coincides with that predicted
for Solar System measurements in fourth order (i.e. local) metric f(R) theories [63] (for a
unified analysis covering also e.g. the Palatini and non-minimally coupled f(R) theories, see
[64]). The Newtonian potentials behave contrary to those in f(R) models: near to the source
γ = 1/2 and at large distances γ → 1. This can readily be seen by plugging a constant
F̄1 = f ′′(0) into our expressions, for instance F̄1 = r2

0/3:

Φf(R)(r) =

(
3 + e

− r
r0

)
m

24M2
pπr

, Ψf(R)(r) = −

(
3− e−

r
r0

)
m

24M2
pπr

. (4.19)

It is nontrivial that non-local models of the type (4.17) exhibit the opposite behaviour with
respect to the fourth order local models. Were this not the case, however, the former would
of course be immediately ruled out.

We have checked that by considering higher powers of the inverse box operator, for
example a RM4�−3R model, one obtains qualitatively similar behaviour with exponential
modification terms, further modulated by oscillatory functions. We illustrate this in figure 1,
where we plot the γ for both the RM2�−2R and RM4�−3R models.

4.4 Degravitation with F̄i(�) and ā = c̄ 6= 0, f̄ = 0

Instead of keeping �−1 order by order, in this section we wish to keep all orders in F̄i(�) =∑∞
n=1 fin�

−n. We study the scenario when ā = c̄ 6= 0, f̄ = 0. One particular choice would
be to consider the function ā(�) = c̄(�) = e−M

2/�, see Appendix A. This, as other examples
considered here, is a non-analytic function. It is however qualitatively different as it involves
an infinite series of inverse derivative operators, featuring ‘’double nonlocality” in this sense.
The would-be propagator has an essential singularity at the origin. The zero-mode of course
corresponds to the cosmological constant, and it remains to be seen what the presence of an
essential singularity implies for degravitation. Here our aim is simply to check that the model
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Figure 2. The suppression of the gravitational potential in the exponential model. The thick black
line is the modulus of the potential (4.20) as a function of the radius. Few first oscillations are visible
in the figure as the potential is suppressed with respect to the Newtonian 1/r behaviour depicted
by the thin blue dotted line. For comparison, we also show the pure Yukawa suppression in massive
gravity (4.16) as the dashed red line.

behaves reasonably at its Newtonian limit. We obtain:

Φ(r) =
4πm

M2
P

[2π2sgn(r) 0F2

(
; 1

2 , 1; M
2r2

4

)
r

− 4Mπ3/2
0F2

(
;
3

2
,
3

2
;
M2r2

4

)]
. (4.20)

where pFq is the hypergeometric function with p = 0 and q = 2. We plot the r-dependence
of the potential in figure 2. As the modifications become significant for large r, the potential
begins to oscillate and changes its sign rapidly. The latter feature, which was not present in
the previus examples, could have interesting effects at astrophysical and cosmological scales
when r & 1/M . Note that the Newtonian potential drops rapidly at large distances, exhibiting
the degravitation of the Newtonian potential in the far IR.

5 Concluding Remarks

In this treatment, we have analysed general, non-local infrared modifications of gravity.
Specifically, we considered cases where the gravitational action is quadratic in the curva-
ture and the infrared non-localities can be presented as (possible infinite) power series of the
inverse d’Alembertian operator. This suffices in order to study the leading order weak-field
limit of any metric theory of gravity, since for that one needs the action only up to quadratic
order in the curvature.

The full field equations were presented in the form Eqs. (2.11, 2.12) and they were cross-
checked by explicit computation of the Bianchi identities. We then considered the weak field
limit of the theories in order to calculate the gravitational potentials from which one could
extract the post-Newtonian corrections. We identified a specific class of theories in which there
is only one independent gravitational potential at the weak-field limit. The models within this
class involve both scalar and tensor non-localities, specified by a single free function. Non-local
theories of the form Rf(�−nR) do not include tensorial non-localities and thus feature an
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additional scalar degree of freedom. Therefore they predict a non-trivial Eddington parameter
γ that describes the ratio of the two independent gravitational potentials. Regarding this class
of theories, we can summarise our findings as follows:

• n=0: In the fourth order (local) f(R) models, near the source we have γ = 1/2, whereas
at large radii γ → 1.

• n=1: In this class of models the γ is a constant.

• n=2: In these variations of massive gravity (without the discontinuity), near the sources
γ = 1 and at large radii γ → 1/2.

• n>2: With higher order non-locality, the asymptotic behaviours remain the same as in
the previous case, but GR modifications of type e−Mr are modulated by oscillations of
the type cos(Mr).

Furthermore, we checked that the non-local massive gravity action predicts the expected
Yukawa-type correction to the Newtonial potential.

A new model was proposed, specified by the single function exp
(
−M2/�

)
. In this sce-

nario, the Eddigton parameter is identically unit and the Newtonian potential is, at distances
larger than r ∼ 1/M oscillationg with an exponentially suppressed amplitude. We expect
this model to exhibit degravitation, as gravity is very strongly suppressed in the far infrared
modes. Some properties of this theory with infinite-order inverse derivative operators could be
quite different when compared to theories with finite order inverse operators and it would be
interesting to explore further. For example, one could investigate whether the growing modes
associated to tensorial non-local terms in power-law models will be present in the exponential
model. In the ultraviolet, it is indeed crucial to consider entire functions, i.e. infinite series of
derivatives, in order to bestow asymptotic freedom without introducing any new dangerous
degrees of freedom that would spoil unitarity. It remains to be seen whether we can free grav-
ity from the weight of the vacuum in the furthermost infrared by not truncating the order of
the operators without giving rise to new instabilities.
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A Scalar Presentation

Consider the action

S =

∫
d4x
√
−g
(
R+R

∞∑
n=1

an�
−nR

)
. (A.1)

We can rewrite this action in the form of a higher derivative scalar-tensor action

S =

∫
d4x
√
−g
(

Φ−1R+
∞∑
n=1

anψ�
−nψ − ψΦ−1 + ψ

)
, (A.2)
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where if we set ψ = R, the action (A.1) is recovered. We now perform a conformal transfor-
mation, where we have defined the following:

Φ = eφ ≈ 1 + φ+O(φ2) =⇒ 1/Φ = 1/eφ ≈ 1− φ+O(φ2) . (A.3)

Subsequently, up to quadratic orders, we obtain the following

S =

∫
d4x
√
−g̃
(
R̃− 3

2
φ�̃φ+

∞∑
n=1

anψ�̃
−nψ + ψφ

)
. (A.4)

Varying the action for φ and ψ, gives

δS

δφ
= ψ − 3�φ = 0 =⇒ ψ = 3�φ , (A.5)

δS

δψ
= 2

∞∑
n=1

an�
−nψ + φ = 0 =⇒ φ = −2

∞∑
n=1

an�
−nψ . (A.6)

Substituting ψ from (A.5) into (A.6) gives

− 6

∞∑
n=1

an
�
�n

φ = −6

∞∑
n=1

an
1

�n−1
φ ≡ Γ̃(�)φ = 0 . (A.7)

Here, we may identify Γ̃(�) as something analogous to the propagator. We would like to
consider an infrared model with the inverse exponential modulating the propagator. Thus,
we write

− 6
∞∑
n=1

an
1

�n−1
≡ e−M2/� . (A.8)

before deriving appropriate coefficient

an = −1

6

(−1)n−1M2(n−1)

(n− 1)!
(A.9)

We note that (A.8) is an entire function and for the coefficients above, we find

R− 1

6
R
∞∑
n=1

(−1)n−1M2(n−1)

(n− 1)!
�−nR = R− 1

6
R

(
e−M

2/�

�

)
R . (A.10)

This argument can then be generalised for higher orders as appear in the action (2.1).

B Variational Terms

δ(�)R = −hαβR;α;β +
1

2
gαβR;λ(hαβ);λ −R;α(hαβ);β (B.1)

δ(�)Rµν = −hαβR;α;β
µν − (hαβ);βR;α

µν +
1

2
gαβ(hαβ);σRµν;σ

− 1

2

[
�(hαβ)δβ(µR

α
ν) − (hαβ);τ ;αδβ(µRτν) + (hαβ) ;β

;(µR
α
ν)

]
−Rα;β

(ν hαβ;µ) − δ
β
(µR

α;λ
ν) hαβ;λ + δβ(µR

;α
τν)h

;τ
αβ )

(B.2)
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δ(�)Rµνλσ = −hαβR;α;β
µνλσ − (hαβ);βR;α

µνλσ +
1

2
h;τRµνλσ;τ

− 1

2

[
gατ (hαβ);β

;µRτνλσ + gατ (hαβ);β
;νRµτλσ + gατ (hαβ);β

;λRµντσ + gατ (hαβ);β
;σRµνλτ

]
−
[
gατ (hαβ);µR

;β
τνλσ + gατ (hαβ);νR

;β
µτλσ + gατ (hαβ);λR

;β
µντσ + gατ (hαβ);σR

;β
µνλτ

]
(B.3)

δRµνλσ =
1

2
[δαλδ

β
ν (hαβ);σ;µ − δαλδβµ(hαβ);σ;ν + δαµδ

β
σ(hαβ);ν;λ − δασ δβν (hαβ);µ;λ] (B.4)

δRµν =
1

2
[δβν (hαβ);α

;µ + δβµ(hαβ);α
;ν − δαµδβν�(hαβ)− gαβ(hαβ);µ;ν ] (B.5)

CµνλσδF3C
µνλσ = (2RµνF3Cµνλσ + (F3Cµνλσ);µ;ν)hαβ . with Cµνµλ = 0 (B.6)

δR = −hαβRαβ + (hαβ);α;β − gαβ�(hαβ) (B.7)

δ
√
−g =

1

2

√
−ggαβhαβ (B.8)

C Bianchi Identities

Below, we sketch the proof for the Bianchi identities of the Ricci and Weyl tensor sections of
the action (2.1).

C.1 S2

S2 =

∫
d4x
√
−g
(
RµνF̄2(�)Rµν

)
(C.1)

The equation of motion reads

T 2
αβ = 2RασF̄2(�)Rσβ −

1

2
gαβR

µ
ν F̄2(�)Rνµ − 2∇σ∇βF̄2(�)R σ

α

+�F̄2(�)Rαβ + gαβ∇µ∇νF̄2(�)Rµν + Θ2
αβ −

1

2
gαβ

(
Θ2σ
σ + Θ̄2

)
+ 2E2

αβ .

(C.2)

Taking the covariant derivative, we find

∇βT 2
αβ = 2∇λRασF̄2(�)Rσλ + 2Rασ∇λF̄2(�)Rσλ −

1

2
∇αRµν F̄2(�)Rνµ ,

− 1

2
Rµν∇αF̄2(�)Rνµ − 2∇λ∇σ∇λF̄2(�)R σ

α +∇λ�F̄2(�)Rαλ +∇α∇µ∇νF̄2(�)Rµν ,

+∇σΘ2
ασ −

1

2
∇αΘ2σ

σ −
1

2
∇αΘ̄2 + 2∇σE2

ασ ,

(C.3)
Using (2.12), we solve for the following

∇σΘ2
ασ =

∞∑
n=1

f2−n

n−1∑
l=0

[
∇σ∇αRµ(l−n)

ν ∇σRν(−l−1)
µ +∇αRµ(l−n)

ν Rν(−l)
µ

]
,

− 1

2
∇αΘ2σ

σ =

∞∑
n=1

f2−n

n−1∑
l=0

[
−∇α∇σRµ(l−n)

ν ∇σRν(−l−1)
µ

]
, (C.4)
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− 1

2
∇αΘ̄2 =

∞∑
n=1

f2−n

n−1∑
l=0

[
−Rν(l−n)

µ ∇αRµ(−l)
ν

]
,

∇λE2
αλ =

∞∑
n=1

f2−n

n−1∑
l=0

[
[∇ν ,∇λ]R

σ(l−n)
λ ∇αRν(−l−1)

σ + [∇ν ,∇λ]∇αRν(−l−1)
σ R

σ(l−n)
λ

]
. (C.5)

Finally using the following general formula

[∇ρ,∇σ]Xµ1...µk
ν1...νl

= Rµ1λρσX
λµ2...µk
ν1...νl

+Rµ2λρσX
µ1λµ3...µk

ν1...νl
+ ...

−Rλν1ρσX
µ1...µk
λ...νl

−Rλν2ρσX
µ1...µk
ν1λν3...νl

− ...
, (C.6)

we find that all terms cancel and thus ∇βT 2
αβ = 0 as required.

C.2 S3

Similarly for

S3 =

∫
d4x
√
−g
(
CµνλσF̄2(�)Cµνλσ

)
(C.7)

we have the equation of motion

T 3
αβ = −1

2
gαβC

µνλσF̄3(�)Cµνλσ + 2CαµνσF̄3(�)C µνσ
β − 2 (Rµν + 2∇µ∇ν) F̄3(�)C µν

βα

+ Θ3
αβ −

1

2
gαβ

(
Θ3σ
σ + Θ̄3

)
+ 4E3

αβ .

(C.8)
Take the covariant derivative

∇βT 3
αβ = −1

2
∇αCµνλσF̄3(�)Cµνλσ −

1

2
Cµνλσ∇αF̄3(�)Cµνλσ + 2∇τCαµνσF̄3(�)C µνσ

τ

+ 2Cαµνσ∇τ F̄3(�)C µνσ
τ − 2 (∇τRµν + 2∇τ∇µ∇ν) F̄3(�)C µν

τα

+∇τΘ3
ατ −

1

2
∇αΘ3τ

τ −
1

2
∇αΘ̄3 + 4∇τE3

ατ ,

(C.9)
Again, using (2.12), we solve for

∇τΘ3
ατ =

∞∑
n=1

f3−n

n−1∑
l=0

[
∇τ∇αCµ(l−n)

νλσ ∇τC νλσ(−l−1)
µ +∇αCµ(l−n)

νλσ C νλσ(−l)
µ

]
,

− 1

2
∇αΘ3τ

τ =

∞∑
n=1

f3−n

n−1∑
l=0

[
−∇α∇τCµ(l−n)

νλσ ∇τC νλσ(−l−1)
µ

]
,

− 1

2
∇αΘ̄3 =

∞∑
n=1

f3−n

n−1∑
l=0

[
−∇αCµ(l−n)

νλσ C νλσ(−l)
µ

]
,

∇τE3
ατ =

∞∑
n=1

f3−n

n−1∑
l=0

[
[∇τ ,∇ν ]Cλν(l−n)

σµ ∇αC σµ(−l−1)
λτ + [∇ν ,∇τ ]∇αCλν(−l−1)

σµ C
σµ(l−n)
λτ .

(C.10)
Finally using the general formula given in (C.6), we find that all terms cancel and thus
∇βT 3

αβ = 0 as required.
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D Weak-Field Limit of Weyl Tensor

Cβµνα =
1

2
(∂ν∂µhβα + ∂α∂βhµν − ∂ν∂βhµα − ∂α∂µhβν)

− 1

4
gβν (∂σ∂µhασ + ∂α∂σhµσ −�hµα − ∂α∂µh) +

1

4
gβα (∂σ∂µhνσ + ∂ν∂σhµσ −�hµν − ∂ν∂µh)

− 1

4

(
∂σ∂βhνσ + ∂ν∂σhβσ −�hβν − ∂ν∂βh

)
gµα +

1

4

(
∂σ∂βhασ + ∂α∂σhβσ −�hαβ − ∂α∂βh

)
gµν

+
1

6
(∂τ∂σhστ −�h) gβνgµα − 1

6
(∂τ∂σhστ −�h) gβαgµν

(D.1)

E R�−2R-Model Contour Integrals

For the action (4.17) we read off

F1(�)� =
1

3

M2

�
, F2(�) = F3(�) = 0 (E.1)

so that

ā(�) = 1, c̄(�) =
3�− 2M2

3�
(E.2)

i.e.

ā(�) = 1, c̄(�) =
3p2 + 2M2

3p2
(E.3)

We note the contrary to 4.2, in this case a 6= c. The Newtonian potentials then become

Φ(r) = − m

12π2M2
P r

∫ ∞
0

dp
(3p2 + 4M2) sin(pr)

p(p2 +M2)

= − m

12π2M2
P r

1

4i

∫ ∞
−∞

dp
(3p2 + 4M2)(eipr − e−ipr)

p(p+ iM)(p− iM)

Ψ(r) = − m

12π2M2
P r

∫ ∞
0

dp
(3p2 + 2M2) sin(pr)

p(p2 +M2)

= − m

12π2M2
P r

1

4i

∫ ∞
−∞

dp
(3p2 + 2M2)(eipr − e−ipr)

p(p+ iM)(p− iM)

(E.4)

We use the general contour integral formula given in (4.9) and begin by considering Φ(r)
and the pole at p = iM on the upper plane. Then

I1 =
1

4i

∮
iM
dp

(3p2 + 4M2)eipr/p(p+ iM)

(p− iM)
= −π

4
e−Mr (E.5)

On the lower plane p = −iM we find

I2 =
1

4i

∮
−iM

dp
−(3p2 + 4M2)e−ipr/p(p− iM)

(p+ iM)
= −π

4
e−Mr (E.6)

Next, we consider the pole at p = 0 by taking the limit as ε approaches zero with ε > 0
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I3 = lim
ε→0

1

4i

∮
iε
dp

(3p2 + 4M2)eipr/(p+ iM)(p− iM)

(p− iε)
= lim

ε→0

2πi

4i

(−3ε2 + 4M2)e−εr

(iε+ iM)(iε− iM)
= 2π

(E.7)
Combining these, we find the Newtonian potential to be

Φ(r) = − m

12π2M2
P r

(
−π

2
e−Mr + 2π

)
=
m
(
e−Mr − 4

)
24πM2

P r
(E.8)

Similarly for the Ψ-Integral: at the pole p = iM

I4 =
1

4i

∮
iM
dp

(3p2 + 2M2)eipr/p(p+ iM)

(p− iM)
=
π

4
e−Mr (E.9)

at the pole p = −iM

I5 =
1

4i

∮
iM
dp
−(3p2 + 2M2)e−ipr/p(p− iM)

(p+ iM)
=
π

4
e−Mr (E.10)

at the pole p = 0

I3 = lim
ε→0

1

4i

∮
iε
dp

(3p2 + 2M2)eipr/(p+ iM)(p− iM)

(p− iε)
= lim

ε→0

2πi

4i

(−3ε2 + 2M2)e−εr

(iε+ iM)(iε− iM)
= π

(E.11)
So that

Ψ(r) = − m

12π2M2
P r

(π
2
e−Mr + π

)
== −

m
(
e−Mr + 2

)
24πM2

P r
(E.12)
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