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Generalized Quadratic Residue Codes

JACOBUS H. vaN LINT anD F. JESSIE MACWILLIAMS

Abstract—A simple definition of generalized quadratic residue codes,
that is, quadratic residue codes of block length p™, is given, and an account
of many of their properties is presented.

I. INTRODUCTION

ET p,/ be distinct primes such that / is a quadratic

residue of p. Let F=GF(/), and let G be the Abelian
group of the additive structure of GF(p). The (classical)
quadratic residue codes 4*,B ¥, 4, B are certain ideals in
the group algebra FG. G is of course a cyclic group, and
the group operation is written as multiplication, i.e., G=
{Lx,x%+-,xP7'}. A" is defined as follows. Let £ be a
primitive pth root of unity over F; a polynomial c(x) of
FG is in A™ if c(¢7)=0 for all » which are quadratic
residues of p. The code A has one as an additional zero.
B*,B are defined similarly with respect to the nonre-
sidues of p. (See [1], [6], [8].)

We wish to extend this idea to codes of block length
g=p™, m>1. These will be called generalized quadratic
residue (GQR) codes. The restrictions on F will be de-
scribed later; in fact, if m is even, there are no restrictions
except that F should not have characteristic p. F can even
be taken to be the real numbers. G is now the Abelian
group of the additive structure of GF(p™). It is no longer
cyclic, but is an elementary Abelian group of type
{p.p R p), which means that it is the direct product of
m cyclic groups of order p. The code positions will be
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identified with the elements of G. Since we need addition
and multiplication both in GF(p™) and in the group
algebra FG, we use the symbols © and = for these
operations in FG; a sum in FG will be denoted by B.

We remind the reader that FG consists of all formal
sums B, c;a,8, a, EF, with the following rules for addi-
tion and multiplication:

(2 oo 2,00
(ggG agg)*( gg(; bgg) B ggG (31 +§i=g aglbgz)g. (2)

A subset S of G can be interpreted as an element of FG
by taking g, =1 if g€S and a, =0 if g&S. We use the
same symbol for the set and the corresponding element of
FG. In particular, U, V,0 are the elements of FG corre-
sponding, respectively, to the set of nonzero squares of
GF(q), the set of nonsquares, and the single element {0}.
A vector ¢ with coordinates ¢, is identified with the
element B, cc,g of FG. We denote the usual inner
product of two vectors ¢,¢’ by {e-¢’).

A character ¢ of G is a homormorphism of G into the
set of pth roots of unity over F. The characters of G form
a group x which is isomorphic in many ways to G, let us
say y,<>g. The exact form of the isomorphism we need
will be discussed in Section II. For a detailed account of
the properties of characters as applied to coding theory,
see [7]. A character is extended in the obvious way to a
linear functional on the group algebra

)- B (a+b)e (1)

Y(Bag)== ai(g).

0018-9448 /78 /1100-0730800.75 ©1978 IEEE
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We are now in a position to define the GQR .codes
A*,B* of block length g=p™.

Definition 1: The code A™ consists of all c=Zc,g for
which ¢, (¢)=0, for all u€ U. B* is defined in the same
way, replacing U by V. The codes 4,B have the addi-
tional requirement that y,(¢)=0. 4 is a subcode of 47,
and B is a subcode of B™*. It is readily apparent that the
dimension of A*,B* is 1(g+1) and that of 4,B is

1(g—1). (See [7].)

Remark: One easily checks that for m=1 this definition
agrees with the usual definition of qhadratc esidue
codes. If G is the cyclic group 1,x,x%---,x? " land £ is a

primitive pth root of unity, the characters are the map-
pings x—§&".

This generalization of the classical quadratic residue
codes to codes of block length g=p™ occurred in a
disguised form in Delsarte [3]. In Section VII we shall
show the connection. Later they were defined by Ward
[10] and Camion [2] in a much more abstract way than
that given above. The proofs of our theorems are usually
straightforward generalizations of methods used in the
classical case. The interested reader can check that our
codes are essentially the same as those described by Ward
and Camion. The main purpose of our paper is to present
the GQR codes in an elementary way and to show the
connection with [3].

FG is a semisimple group algebra; hence A*,B™ are
principal ideals, generated by idempotents EA,EB The
form of these idempotents is given in Section III. Clearly,
A™,B™" are equivalent codes, being interchanged by the
permutation g—go for any nonsquare v.

These codes are extended to codes of block length g+ 1,
let us say 4., B, by adding a “parity check” symbol in a
new coordinate position labeled co. The extended codes
are invariant under a group of monomial transformations,
of which the permutation part is PSL(2,q9). If —1€V,
then 4,=Ay; if —1€U, then 4 =B2:. This is dis-
cussed in Section IV, :

The minimum distance d of 4 satisfies a square-root
bound, i.e., d*>>q or d*~d+1>gq. Further, if m=2¢, then
d=Vq =p* over any field F. The supports of the code-
words of weight d always form a 2-design, and sometimes
a 3-design. This is the subject of Section V.

In Section VI various forms of the generator matrix for
A™* and 4, are described, and it is shown that in the case
m=2t certain subsets of the coordinate places cannot be
taken as information sets.

II. THEe CHARACTER GROUP

Let £ be a primitive pth root of unity in some extension
field £ of F. Let a be a zero of an irreducible polynomial
of degree m over GF(p). (In fact, we usually take o to be
a primitive element of GF(p™)*.) Every element of
GF(p™) can be represented as g=iy+ija+--- +
iy_1a™ " i €GF(p). Define the character , G—>[F by

¥i(g)=¢" ®)
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TABLE1I

‘I’O ‘[’l ‘Pa ‘Paz ‘l’cﬂ ‘Pa‘ ‘Pa’ \l/a6 ¢a7
0 |1 |1 |1 }1 1 1 1 1 1
L1 & 11 & |& |8 |1 & ¢
a |1 |1 |§ 182 |82 |1 (&2 |¢ |¢
o1 ¢ (821821 g2 g |1
Q@1 (218211 & (¢ ¢ |1 ¢
afl 1 | E2 1 182 1E g |1 g |82
1L |1 [E2E [E |1 & 182 |82
oS [1 [E21E 18 |1 & |82 (g2 |1
o |1 (¢ [§ |1 ¢ |& ]2 |1 |42

For each 4 € G define the character ¢, by

Y (g)=v,(gh)

which of course implies that Y,(g)=1.

It is easily checked that the mapping y,<>h is an
isomorphism between the group of characters x and G.
We shall often use the following properties of characters.

For any elements a,b €EFG and any character 4,

(4)

Y(axb)=y(a)y(b), (%)
and for any f,g €G,
Y (8) =1 (f) (6)
_ 10, ifg%0
S wuo={7 1l )
if f#0
S ww={0 70 ®

An element a of FG is determined by the values y,(a) for
all heG.

Example 1: Let p™'=
sentation for GF(3?):

3%, and take the following repre-

R=qa> 22=a°

11=qd’

00=0
20=qa*

10=1
2=

Ol=«
21=af

The character table for G is given in Table I. The entry in
place (a',y,,) is the value of the character ().

III. THE IDEMPOTENT

As mentioned in the-introduction, 4% is a principal
ideal generated by an idempotent E,, which has the
property that E*E,=FE,. In this section we find an
expression for E,.

Lemma 1: There exist constants cg,¢; €F such that
Y (U)=cy and ¢, (V)=c, for all u€ U and y(U)=c,
and ¢, (V)= c,, for all vE€ V. Furthermore, we may take

co=(~-1-Vgq)/2 ¢=(-1+Vq)/2, if-1€U
©)

co=(=1-V—=4)/2 c¢=(-1+V=¢q)/2,
if —leV.

(10)
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Proof: If u€ U, then
L(U)= 2 $(2)= 2 dug)= X w(h)=%(U).
gelU heU

geuU

A similar argument proves the other cases.
Let n€ V. Then summing over all characters,

S YU (—n)=2 2 Y(u—n)=0

YEX YEX ue U
by (7). Also,
S HUW=m =4Vl =m+ B dlU)hl=)
YEX uelu
+ 2 %(U)(=n)

vEV

=(g—1)/2+¢ gu%(—un)

+eop 2 (—on)
veEV
(g—1)/2+2¢cyc,, if—1€U
(g1 /24 2+, if —1EV.

Since Y, (0B UBV)=3,c;¥,(8)=0 by (8), we find I +¢,
+¢,=0, and we now have a quadratic equation with zeros

¢o¢,- The choice cy=3(—1—"V £gq) is arbitrary; it de-
pends upon the choice of £. ' Q.ED.

If m=2t, then —1€U, cg=(—1-p*)/2, and ¢;=(—1
+p9)/2. lf m=2t+1,then —1€Uifp=4s+1, —1€EV
p=4s—1, and

(-1%p'Vp)/2,
Ce €=
o (—llpt\/—p)/2,
Let Ry, R, denote the quadratic residues and nonresidues
of p,and let =3,z £'=3,z &'. Then (see [8))

92={ b,
-p,

Thus for m=2t+1, ¢g,c;=(—1F%p9)/2.

Example 2: Let p™ =3 We may take cy ¢
=(=1F3V=3)/2=(—1F3(¢—-£2)/2, ie, ¢g=1+3¢?
and ¢,=1+3¢ In general, if m=2¢+1, we may take

o=(p'=1)/2+p' T &  co=(p'~1)/2+p" 2 &

i€R, iERy

if p=4s+1
if p=4s-1.

if p=ds+1
if p=4s—1.

Lemma 2: The generating idempotents of the GQR
codes are given by

[ (@+1)/2:08—cUB ~c\V,
1 (g+1)/2:08 —c,UD — ¢V,

qEj is obtained by interchanging ¢, and c;.

if -1€eU
if —leb.

Proof: We give the proof for the first case; the others
are similar. By Lemma 1,

o(E)=a"{(g+1) /2= co(g—=1)/2— (g 1)/2} =1
¢u(EA)=q_1{(Q+1)/2—c§—cf}=0, forue U

U (E) =g {(g+1)/2=2¢coc,} =1, forveV.
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TABLE II

00| 10} O1 121 221 20| 02 21} 11

0 1| a| 2| o®| a*| & | o8| o

00 0 5 21 —1 2| -1 2] -1 21 -1
M=10 1 2 5 21 -1 2 2 —-1|—-1{-1
01 a | —1 2 51—-1 21 —-1]—-1 2 2
12 o2 21 —-1] -1 5 21 -1 2 2| -1
2 &3 -1 2 2 2 51 -1 21 ~-11-1
20 o 2 21 -1 -1]—-1 5 21 -1 2
02 o —-1]—-1]-1 2 2 2 51 -1 2
21 of 21 -1 2 21 -1 —-1]—1 5 2
11 &7t =-1]-1 21 -1} -1 2 2 2 5

Thus y,(E,) is zero or one for all g€ G, which shows that
E, is idempotent; moreover, it has the correct zeros to be
the idempotent of 4 7. QE.D.

Remark: Compare the form of the idempotent for
classical quadratic residue codes, as given in [8].

Lemma 3: Suppose m=2¢t+1. If / is a quadratic re-
sidue of p, then ¢y, ¢; EGF(/), and we may take F=GF(/).
If it is not, we must take F=GF(/?).

Proof: @ is in some extension field of GF(/) which
contains the pth roots of unity. (For example, § €
GF(/77").) In this field

8, ifl/€R,
-6, ifl/€R,
Thus c¢y,c; €GF(/) if /ER,, and in any case ¢,,¢;E |
GF(/?. Q.E.D.

6'=

Example 3:

i) Let p™=3* and /=7, which is a quadratic residue
of three. Then we may take £=2. Thus
co=1+12=6mod7 ¢;=1+6=0mod7 E,=—V.

i) Take p™=3" and /=2. Then F =GF(2%), and E, =
£2U+ £V, where £3=1.

Definition 2: A generator matrix M for 4 * may now
be constructed as follows. Label the rows and columns of
M by the elements 0,1,a,0% - - ,a?"* of GF(q). The first
row of M contains the coordinates of ¢E,, and the entry
in place (a',a’) is the coordinate of ¢E, in place (o’ — ab).

"M is a g X g matrix with rank (g + 1)/2. Other forms for a

generator matrix will be discussed in Section VI.

Example 4: Let pm=3?% cy=(~1-3)/2=-2, and ¢,
=(—1+3)/2=1. Using the table of GF(3? given in Ex-
ample 1 we obtain the results given in Table II.

IV. TuEe ExXTENDED CODE AND ITS AUTOMORPHISM
GRoOUP

The codes A4, B, are obtained from A ™, B ™ by adding
a parity check ¢, in a position which we label as . ¢, is
defined as follows.

Definition 3: If c¢=B,csc,8 1s a codeword of A% or
B* and — 1€V (which implies m=2¢+1), then

Ne=v
43 =2 S o

q P=ye pt+'1

[
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If —1€U, then

forced™

> ¢, forceEB*.

In fact, ¢, is chosen to make the extended idempotent
(E,, Y) invariant under the monomial form of PSL(2,¢) as
will presently appear.

Lemma 4: If —1€V, then A_,B, are self-dual. If
—1€U, then4,,=B2.

Proof: Let I=q '0®USV) in FG. I is char-
acterized by the property that
Yol )=1 Y, (1)=0, for alt A=0. (1

Assume —1€V. Let c=(Bg,g,c,,), ¢’ =(Bc',g,¢,,) be two
codewords of 4. For all veV

(B g(-2)=v_ (B g)=0.

Hence
t/u,,(E 8% D cgf(—g))=0, for all A#0.
Now
Yo B e B e (-2)=(Z ¢, )(Z ) = gt
Hence
D g+ B (—8)= —qecll.
Therefore,

> CoCp =~ ConCloos
gEG
ie, {(c:¢’>)=0, and 4, is self-dual. A similar proof holds

for the second statement. Q.E.D.

We shall now show (with some trouble) that 4, B, are
invariant under the action of a group of monomial trans-
formations, of which the underlying permutation group is
PSL(2,9). Since the field automorphisms of GF(q) also
leave the code invariant, the automorphism group of 4,
contains a monomial form of PEL(2,q).

PSL(2, g) consists of all permutations of the set GF(g)U
co of the form i—(ia+ b)/(ic+d), where a,b,c,d € GF(q)
and ad—bc=1. It is generated by the following set of
permutations.

T, The additive group of GF(g).
T, i»ui,ucU.
7, i»—1/i

T, and T, fix oo, and by construction A * is invariant
under 7', and T,. Hence so is 4. Hence it suffices to find
a monomial transformation for which the underlying per-
mutation is 73, which preserves 4.

Let 7 be the transformation formed by multiplying the
coordinates in ¥ and co by —1 and then applying T,.

Remark: There is some latitude as to whether the coor-
dinates in places 0, o are or are not multiplied by —1. If
we replaced the parity check ¢, by —c_, we would have
to make a different choice.
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A, is generated by a matrix M, obtained from the M
of Definition 2 by adding an additional column oo which
contains the parity check (V—gq if —1€V, Vq if —1€
U).

We consider the case —1€ V. The proof for the other
case is similar.

i) The first row of M, is mapped by 7 into

—V—=q0Bc,UD—c,V,(qg+1)/2.
ForanyuelU
Y(- V=908 U® -,V )=—V=¢ +2—c?=0,
and the entry in place «o agrees with Definition 3. Thus
the permuted row is a codeword in 4.
ii) Let s be a square in GF(qg), and let r, be the row of

M, with label 5. We will show by a rather lengthy
argument that

(rs)7=r_1/s+(c00®— U,cy).

r, has — ¢, in place 0 (—s€V), (¢+1)/2 in place s, — ¢,
in place u+s for all squares u, — ¢, in place v+s for all
nonsquares v, and V —g¢ in place 0. (r,)" has —V —gq in
place 0, (g+1)/2 in place —1/5, —c, in place —1/(u+5)
if u+s€U, ¢, in place —1/(u+s) if u+s€V, —¢, in
place —1/(v+s) if v+sEU, ¢, in place —1/(v+s) if
v+sEV, and — ¢, in place co.

We now compare this with the row labeled —1/s, let us
say r; of M. r; has —c, in place 0, (g+1)/2 in place
—1/s (which is why we chose this row), —c¢, in place
u—1/s for all squares u, —¢, in place v—1/s for all
nonsquares v, and V —gq in place co. Let X=(r,) —r..
Clearly, place —1/s (a nonsquare) in X contains zero.

Let u+s€U. Then u/(s(u+s)=1/s—1/(u+s)EU;
ie, —1/(u+s)=u'—1/s, for some «’'€U, and place
—1/(u+s) (a nonsquare) in X contains zero.

If u+s€V, then —1/(u+s)=v"—1/s, for some v'E
V, and place —1/(u+s) (a square) in X contains ¢y+ ¢, =
— 1. Similarly, if v+s€ U, place —1/(v+s) in X contains
zero, and if v+s€V, place —1/(v+s) contains — 1. In
fact,

X=((-V=¢+¢)0®-U,-c,—V—¢q)
=(c0D - U, —¢)).
Now ¢,(co0@® — U)=0 for all squares u, and the parity
check —c, satisfies Definition 3. Thus X €4_; hence
(ry €d,.

i) If z€ ¥, a similar proof shows that row r, of M, is
transformed by 7 into a codeword of A4.. The same
method works for B, and also for the case — 1€ U. These
results give us the following theorem.

Theorem I1: The codes A ,B,, are invariant under a
group of monomial transformations for which the under-
lying permutations form the group PSL(2,q).

Corollary 1: The minimum weight of 4 is one more
than the minimum weight of 4+,

Proof: Since A, is invariant under a transitive group,
each codeword of minimum weight can be transformed
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into a word with ¢, 0. The word with ¢, removed must
be a minimum weight word of 4 ™.

Corollary 2: If ¢=B,cqc,g is a word of minimum
weight in 4", then 2 ¢, #0.

Let —1€ V. Let S be the Paley matrix of order g. (See
Hall [5].) Then

Mo=(g/21-3V=gq S+3;V=4j7)
where J is the all-one matrix and j is the all-one vector.
Since SST=¢gl —J and SjT=0, we find that
M MI=0.

This is another way of showing that A is self-dual.

V. THE SQUARE-ROOT BOUND AND THE EXACT
MINIMUM DISTANCE FOR m =2t

For the GQR codes we have the following analog of the
well-known square-root bound [1], [6], [8].

Theorem 2: Let g=p™, and let d be the minimum
distance of 4+ (resp. B™) over some field F. Then

iy d>Vgq,
i) d*—d+1>qif —1€V,
iiiy d=Vgq if mis even.
Proof: Let c=B,¢sc,8 be a codeword of minimum
weight d in A*. Let n€ V. Define ¢/ =B, c5c,n8. ¢’ is a
word of weight d in B*. By Corollary 2

Yo(e)#0 Yo(€)#0;
thus
Yolexe’) #0,
and
Y,(exc’)=0,  forall 0.

Thus c*¢’ is a nonzero multiple of 0O UD V.

Now ¢*¢’ has at most d? nonzero coefficients; hence
d*>q. If —1€V, we may take n=—1; then cxc’ has at
most d?~ d+ 1 nonzero coefficients. This proves i) and i1).

Now let m=2¢. Define K=GF(p’) and

U, =|a*k|k € K\{0}], i=0,1,---,(p'—1)/2, K*=U,
All elements of K are squares in GF(p*'); hence
U=3U.
i
Forany ue U
W(U)= 2 dle’®)= 2 vdauls):
gEK* gEK*

This is the sum of the values of a character over all
nonzero elements of a field; hence it is —1 or |[K|—1=p’
—1. But S (U)=¢,(U)=co=(—1-p")/2, which is
possible only if ¢,(U)=—1, for all i. It follows that

U (Boex8)=1+¢,(K)=0 and B, g€E4 *. This proves
iif). , Q.ED.

We now say a little more about the case m=2s. Let
¢*=p* (note that we now denote p™ by ¢°); let c=B, ¢
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g. The vector (c, 1) is a codeword of weight (g+1) in 4,
and so are all vectors obtained from (¢, 1) by the mono-
mial form of PSL(2,4°). The vectors obtained from (¢, 1)
by all transformations of PGL(2,4%) are the circles of the
finite miquelian inversive plane [4]; i.e., these vectors form
a 3-design with parameters 3—(g*+1,q+1,1).

In [3] Delsarte defines 4, to be the binary code gener-
ated by the g(g*>+1)/2 circles obtained from (¢, 1) by

‘transformations of PSL(2,4%). In the next section we show

that A * can be generated by the (¢g*+1)/2 vectors B, <8
and B, c k58 Where u€U, b €GF(4%), and b#0. Thus
Delsarte’s 4, is the same as ours if we take /=2. We can
now prove the following theorem.

Theorem 3: If t=1, i.e., g=p, then all minimum weight
codewords of 4, B, are circles in the miquelian plane.

It clearly suffices to prove that all codewords of weight
g in A* are of the form B ¢ ¢, ,8- The proof requires
several lemmas. For these we do not need the restriction
that g=p.

Lemma 5: Leta=3,c;a,g be a codeword of weight g
in A*, and suppose 4, contains (a,1). Then a,=0 or 1,
forall geG.

Proof: (a,1) is orthogonal to all circles in B, in
particular to all vectors of the form (B, ¢ k5,8 — 1), where
o€V and bEGF(¢?). Fix v, and let b run over GF(¢%);
we obtain a set of g nonintersecting circles. Thus @ must
meet each of them in one point g, and g, = 1. Q.E.D.

Lemma 6: Suppose a,=1, i.e., a contains the point
zero. Then a,=1 implies that g is a square in GF(g%).

Proof: (a,1) must be orthogonal to the extended
idempotent of B, which is 1/¢*(¢*+1)/2-08 —c,U®
—¢oV, — q). Suppose a,=1 for s values of g in U and ¢
values in V. Then

s+i=qg—1
(?+1)/2—c5—cot—g=0.

Combining these we obtain s—t=g—1, ie, s=g—1L
Q.E.D.

We now suppose that ¢ is a prime p.

Proof of Theorem 3: Let a be a codeword of weight ¢
in A* with g,=1. From Lemmas 5 and 6, we may
suppose that a has ones at points of the set 4=
{0,u,up,* -« b1}, 4 EU. Let A/=A—u={—u,u —
ui,-~-,0,---,up_l—u,~}. The vector a/ with ones at the
points of 4] is also a codeword of A*; thus u,—u, €U,
i#j.

Let B={0,0u;,vu,- - ,ou,_,}, 0E V. If wy+ou=u+
vu,, i#s, tj, then u,—u,=o(u,—u;). But one side is a
square and the other a nonsquare, a contradiction. Hence
A+ B=GF(p?); that is, any element of GF(p? can be
expressed as x+y, xEA, y € B. Further, |4|-|B|=p".

Now it was proved by Sands [9] that if G is a group of
type (p,p) having subsets 4,B which satisfy the above
conditions, then at least one of 4, B, let us say 4, contains
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a nonzero element A such that 4 +A=A4. But this implies
that 4 is of the form ©,u,2u,--- ,(p—Du), or a=uc.
Q.E.D.

Thus we have the following result.

Theorem 4: Let A, B, be the extended GQR codes of
block length p?+ 1. Each of 4, B, contains 1p(p>+ 1)(/
—1) codewords of minimum weight (p + 1). The p(p2+1)
supports of these codewords form a 3—(p*+1,p+1,1)
design.

\[{

VI. BASES AND INFORMATION SETS

In this section we are interested in the following prob-
lems.

i) Is it possible to specify a priori, and in some canoni-
cal way, a set of coordinate positions which form an
information set for 4., ? (The answer to this question is
that we can only say that certain sets will not do.)

i) Is it possible to specify in some canonical way a
subset of (g+1)/2 codewords which generate 4 ? (This,
in fact, can be done for the case m=21.)

First we describe a different and easier way to obtain
the matrix M. This is done by rearranging the rows and

columns in the order 0,1,a%a%---,a? 3, a,a3,- -,
a?7% 0. Then
(g+1)/2 a, --,a b,---,b Coo
a Co
A B .
M= a
b Coo
. C D :
b

a and b are either — ¢, or —c,.

Lemma 7:

1) A,B,C,D are circulant matrices with elements (g+
1)/2, — ¢y, — ¢, only.

i) a@;=d,;=(q+1)/2; otherwise D is obtained from 4
by interchanging ¢, and c,.

iii) C is obtained from B by interchanging ¢y and ¢;
and a cyclic permutation one place to the left.

iv) Let n=(g—1)/2. In the first row of 4, ay =4y ,_, if
—1€U. ay is obtained from a,, ; by interchanging ¢,
and ¢, if —1€V

Proof:

i) a;=the coordinate of E, in place a¥—a*. a,,, ;,,=
the coordinate of E, in place a*(a? — a¥) =g, ;- Thus 4 is
circulant. A similar proof holds for the other matrices.

i) d; comes from place a(a?—a¥) of E,. If i#j,
d;=—c¢, if @;=— ¢y, and conversely.

iii) b; comes from place a¥*'—a%*! of E,, and
¢;_1,- from place a¥ — o%. N
az:\i)zjaojlcomes from place a¥ 1, and q,,_ ; from place
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TABLE III

0l 1 & o o] a & o ol
0 5 2 2 2 2|-1 -1 -1 -1]3
1 2 5 -1 2 -1 2 2 -1 -1(3
a?| 2(-1 5 -1 2] -1 2 2 -1/3
atl 2 2 -1 5 —-1{—-1 -1 2 23
eS| 2] -1 2 —1 5 2 -1 -1 2|3
a | —1 2 -1 -1 2 5 2 -1 203
@ | -1 2 2 -1 -1 2 5 2 -1!13
i -1]-1 2 2 -1}-1 2 5 213
o« —1]-1 -1 2 20 2 -1 2 513

Now (a¥ = 1)(a? 'Y —D=a9 ' —q¥ —q ¥V 4+]=
(= D{(e¥ — 1)/ /)2, which proves iv). Q.E.D.

Example 5: The matrix of Example 4 arranged in this
way is given in Table IIL

The matrix 4 of Example 5 is invertible over any field
of characteristic not equal to three. Thus in this case we
may take the first five rows of M_ as a set of generators
for A, and the first five columns as an information set.
This does not always happen.

Theorem 5: If g=1 mod (4) and 4, is a GQR code of
block length ¢+ 1, then OU U and OU ¥ cannot be infor-
mation sets.

We need a preliminary lemma.
Lemma 8: Let a be a primitive element of GF(g?).
Then the following hold.
i) "D+ 1=a", where /;+i is even, i #(q+1)/2.

i) «'@"V—1=a’, where /,+i is even if g= — 1 mod
(4) and [, +1i is odd if g=1 mod (4).
Proof:

i) Let B=a"+a’. Then B7=p, ie., BEGFg).
Hence if B#0, B=a'@*D. Thus I, +i=1(g+ 1), which is
even.

i) Let a”*'=y=a“—q. Then y?=—1y, so y=
a®* VD2 for some 1. Thus I, +i=(t+1)(g+ /2,
and the result follows. Q.E.D.

Proof of Theorem 5: a“*Y/2€ V¥, so the transforma-
tion ¢:x—a“*2(x+1)/(x—1) is in PGL(2,¢? and not
in PSL(2,4%). The monomial transformation ¢’ corre-
sponding to ¢ interchanges A, and B_. Let ¢ be the
vector with one in places a®™ D, 0<i<g, and zero
elsewhere.

¢(1)=oc0, and by Lemma 8§

$(a’ 9 D) = g+ D.q=i*4a+ D) / o =i+ Qe+ 1D +1)/2

= o= D@D EGF(g).
Hence ¢ maps ¢ into a vector with one in the places
labeled by GF(q)U .

Since (x+1)/(x—=1D=1+(-2)~1/(x—1), ¢’ involves
multiplication by —1 for exactly those i for which a’@— Y
— 1€V, ie., for even i. Let ¢’ be the vector with +1 in
places a’@~ Y according as i is odd or even. Then (¢)* has
one in the places of GF(q)U oo, so (¢)* is a codeword of
A . (Theorem 2.) Thus ¢’ is a codeword of B,=AZL.
Thus if we take the columns of M, indexed by /@~ (all
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of which are in U) and alternately give them coefficients
+1, the resulting sum is zero. Hence OU U cannot be an
information set for 4. A similar argument shows that
0U ¥ cannot be an information set. Q.E.D.

In [10] Ward observes that if g=3 mod (4), ¢ <50 and
F=GF(2), 0u U always contains an information set.

Another way of obtaining (maybe!) a set of basis vec-
tors and an information set is as follows.

Find an element ¢ of PSL(2,q) which has a cycle
representation as two cycles of length (¢+1)/2. (One way
of doing this is to try permutations of the form x—{(x+
1)/a’x, where s=2¢ if —1€U and s=2¢+1if —1€V)
Take any codeword, e.g., the extended idempotent, and
act on it with ¢'. This gives two (g+1)/2X(g+1)/2
matrices (4|B) which are not quite circulants, since some
coordinates are multiplied by —1.

Hopefully this matrix has rank (¢+1)/2, and one or
both of 4, B are invertible, giving a canonical form for the
generator matrix of 4. An example of this technique is
given in Section VIIL.

We now describe how to find a set of basis vectors for
A*,B* for the case of block length ¢?+ 1. The proof is
essentially the same as in [10, th. 7.3]. GF(g?) is consid-
ered to be an affine two-dimensional space AG(2,q) over
K=GF(q). From the proof of Theorem 2 the vector
Byeuk+s8isinA* forall u€ U, and B, 4,8 isin B*
for all v€ V. These codewords are the lines of AG(2,q).
Also gI=0QU@VisinbothA*,B™.

Let H, be a (¢*+1)/2X ¢* matrix, consisting of the
coordinates of g/ and of all codewords B, c k4,8 With
b#0. Let Hy consist of g/ and all codewords B, c 458
with b#0. Clearly, H,, H, generate subcodes A’,B’ of
A*,B*. Since ¢l is the sum of any parallel class of lines,
A’(B’) contains all the lines in 4 *(B*). Let P be any
point of AG(2,¢). The sum of —gJ and all lines through P
has a nonzero entry only in the position corresponding to
P. Hence A’, B’ together generate a code of dimension g°.
This implies that A", B’ both have dimension (¢*+1)/2.
Thus we have proved the following theorem.

Theorem 6: If A* is a GQR code of length ¢ over
some field F and K=GF(q), then the words ¢/ and
B, cuk+58 b#0, form a basis for 4 *.

Of course, a basis for 4, is obtained by adding a
column containing the appropriate parity check.

VII. DESIGNS

PSL(2,q9) is 2-transitive; hence the supports of the
codewords of minimum weight in 4., form a 2-design. In
addition, if —1€ ¥, PSL(2,q) is a 3-homogeneous group
(i.e,, any 3-set can be transformed into any 3-set), and the
supports of the codewords of minimum weight form a
3-design.

If g=p*, the minimum weight is p’+1. We have
already described (Section V) the designs which occur in
this case. Here we given an example.
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TABLE IV
5 2 2 2 2{-1 -1 -1 -1 3
2 5 ~-1 2 -1 2 2 -1 -13
2] -1 5 -1 2| -1 2 2 -1 3
2 2 -1 5 —-1[—-1 -1 2 23
2) -1 2 -1 5 2 -1 -1 23
TABLE V

1 2 3145 6
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Example 6: Consider the top half of the matrix of
Example 5, as shown in Table IV. The determinant of the
5% 5 matrix on the left is 9°; hence this matrix is invertible
over any finite field of characteristic not equal to three.
By multiplying by this inverse (over the reals), we find a
generator matrix for 4 of the form

G=(I|C)=

OO0 O -
DO O O
OO = O D
O OO
_—0 00O
_— O e
DD -
D ot D
—— ) D
s —

By Section V this code should contain ;q(¢*+1)

= 3-3.10 =15 supports for vectors of weight four, and
these supports form a 2—(10,4,2) design. In fact, these
vectors are as shown in Table V.

If we add the 15 supports of words of weight four in the
dual code B, we obtain the 30 blocks of the miquelian
plane 3—(10,4,1). We now give an example in which
-1€V.

Example 7: Let g=27. If F=GF(p), then p must be a
quadratic residue of three, and the smallest such p is
seven. From Lemma 1 we find that ¢;=—1 and ¢,=0;
hence gE,=V.

In order to study this code, we proceeded as suggested
in Section VI. Let a be a primitive element of GF(3*) with
o= a?+2. The permutation ¢ : x—(x+ 1)/a’x consists of
two cycles:

(a®,a', a3,a8,a'2,a”,azs,a“,a",al(’,a23,a2‘,a7,a15)
(00,a", 0,05 0% e 1,05 a8, o, a,a'®,a, 0).



]2
7
VAN LINT AND MACWILLIAMS: QUADRATIC RESIDUE CODES 737
TABLE VI
201 1413 81 1217 25} 11 91 16 23| 21 71 15
i 1 I 1 1 1 1
- -1 —1|-1]-1]-1 1] -1{-1
1{~—1 -1 1 1 1{-1
TABLE VII TABLE IX
oo | 19| 22 5 21 24]0;6|8(4{1] 10| 13 0 20 | 14 8 1211712511119 |16 {2321 15
1 1 1 1 1 Wil 0 e e o |0 @ |®le o | w]e
-1 - -1 -1 -1
—1 ~1 | 21 -1 a 19215 | 2|2 8 1 {10]13
I o |[0? |o |0 |0?|e?|0?|e?|ew?|lew |®] o0
TABLE VIII
0 1 2 3 45 6 7 8 9 10 11 12 13
0 1 3000 02 -10 3 2 -3 =2
0 -2 -3230-12 00 0 0 3 1 TABLEX
0i1 (2 |3 6781911011 [12]13
1| w? 010wl w?|w |0
. ) 2 2 2
We take V as the first row of the matrix; subsequent rows Ojojeje]e|0j1]w]0]0 “ 1

are obtained by applying ¢ to the previous row. The result
is a matrix of the form (A|B), where 4,B would be
circulants except for some multiplications by —1. The
first three rows of A4, B are shown in Tables VI and VIL

Some columns were multiplied by —1 so that both
matrices become negacyclic (that is, cyclic except for the
fact that the coordinate moved from the last to the first
position is multiplied by —1). Both matrices are invert-
ible, giving a generator matrix of the form (I|C) or (C’|[).
C,C’ are also negacyclic; their first rows are shown in
Table VIIL.

A computer search then showed that this code has
minimum weight nine. (It sufficed to calculate the sums of
four rows of C, since the number of codewords of weight
i,j is the same as the number of weight j,i.) There are
1092 supports of codewords of weight nine, and these
form a 3—(28,9,28) design. Since the size of PSL(2,27) is
9X1092, each codeword of minimum weight is fixed by a
subgroup of order nine of PSL(2,27). For example, the
word with coordinates 1, —1, —1,2,2, —2, 3,3, —3 in

positions a®°, 2, a®, &%, a'®, 0, a?, &, a'® is fixed by

a®x+1 o +al’
ax + a2 alx + a?

which are both of order three and commute.

Example 8: We take the same code over the field
GF(4). Let GF(4)={0,1,w,?}. From Lemma 1 and Ex-
ample 2, E,=w?U®wV. The same permutation ¢ was
used to obtain a 14X28 matrix (4]B). A,B are now
circulant matrices, with first rows as shown in Table IX.
Both matrices are invertible, giving generator matrices for
A, of the form (I|C) or (C’|I), where the first row of

C,C’ is as shown in Table X. Again the minimum weight
is nine, and the 1092 supports of codewords of weight
nine form the same 3 —(28,9,28) design as before.
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