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1. INTRODUCTION

The method of quazilinearization introduced by Bellman and Kalaba [1, 2] yields

iterates which are lower bounds to the solutions of the nonlinear problem when the

forcing function f is convex. Furthermore, this monotone sequence of approximate

solutions converges uniformly, monotonically, and quadratically to the unique solution

of the nonlinear problem on the interval of existence. However, if f is concave a dual

result can be developed which yields upper bounds to the solution of the nonlinear

problem. Recently, the method of quasilinearization combined with the method of

upper and lower solutions has been extended, generalized, and refined so as to include

the cases when the forcing function is the sum of convex and concave functions. See

[4] for details. The method is extremely useful in scientific computations due to its

accelerated rate of convergence as in [5, 6].

In [3] Cabada and Nieto have obtained a higher order of convergence (an order

more than 2). The idea used is on the same lines as monotone method, which requires

the nonlinearity of the iterates to be the same as that of the order of convergence.

However, in [7] they have extended the quasilinearization method of Bellman and

Kalaba to obtain a higher order of convergence when the forcing function is either

hyperconvex or hyperconcave. Furthermore, the nonlinearity of the iterates are one

less than that of the iterates in [3].

In this paper we consider the situation when the forcing function is the sum of a

hyperconvex and a hyperconcave function of the same order. Further, we consider all
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possible coupled upper and lower solutions based on the hyperconvex and hypercon-

cave functions. The results of [7] can be obtain as special cases of our main results.

For this purpose, consider the initial value problem (IVP for short)

(1.1) u
′

= f(t, u) + g(t, u), u(0) = u0, t ∈ J ≡ [0, T ],

where f, g ∈ C[J × R, R] such that f(t, u) is convex in u and g(t, u) is concave in u.

The IVP (1.1) leads to the possibility of the following four types of upper and lower

solutions:

Definition 1.1. The functions α0, β0 ∈ C1[J, R] are said to be (A1) natural lower

and upper solutions if

α
′

0 ≤ f(t, α0) + g(t, α0), α0(0) ≤ u0 on J

β
′

0 ≥ f(t, β0) + g(t, β0), β0(0) ≥ u0 on J ;

(A2) coupled lower and upper solutions of type I if

α
′

0 ≤ f(t, α0) + g(t, β0), α0(0) ≤ u0 on J

β
′

0 ≥ f(t, β0) + g(t, α0), β0(0) ≥ u0 on J ;

(A3) coupled lower and upper solutions of type II if

α
′

0 ≤ f(t, β0) + g(t, α0), α0(0) ≤ u0 on J

β
′

0 ≥ f(t, α0) + g(t, β0), β0(0) ≥ u0 on J ;

(A4) coupled lower and upper solutions of type III if

α
′

0 ≤ f(t, β0) + g(t, β0), α0(0) ≤ u0 on J

β
′

0 ≥ f(t, α0) + g(t, α0), β0(0) ≥ u0 on J .

In order to facilitate later explanations, we shall need the following definition:

Definition 1.2. A function h : A → B, A, B ⊂ R is called m-hyperconvex , m ≥ 0,

if h ∈ Cm+1[A, B] and dm+1h/dum+1 ≥ 0 for u ∈ A; h is called m-hyperconcave if the

inequality is reversed.

In this paper we use the maximum norm of u(t) over J , i.e.

‖ u ‖ = max
t∈J

| u(t) | .

In view of the above four types of coupled upper and lower solutions of (1.1), we shall

develop results when f is hyperconvex and g is hyperconcave of order m − 1. The

cases when m is even and m is odd have been discussed separately since the iterates

will be different depending on whether m is odd or even. Furthermore, we show that

these iterates converge uniformly and monotonically to the unique solution of (1.1),

and the convergence is of order m.
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2. PRELIMINARIES

In this section we recall some known existence and comparison theorems which

we need in our main results and which are related to the system of IVPs

(2.1) u
′

= H(t, u), u(0) = u0, t ∈ J ≡ [0, T ],

where H ∈ C[J × Rn, Rn].

The first comparison result for n = 1 in (2.1) is:

Theorem 2.1. Let α0, β0 ∈ C1[J, R] be lower and upper solutions respectively and

suppose that

H(t, x) − H(t, y) ≤ L(x − y),

whenever x ≥ y for some L > 0. Then α0(0) ≤ β0(0) implies α0(t) ≤ β0(t) on J .

Let us consider equation (2.1) with n = 2. That is, we also need the following

comparison results of two systems.

Theorem 2.2. Let α0, β0 ∈ C1[J, R] and H ∈ C[J × R2, R]. Suppose further that

any of the following conditions hold:

(H1) α
′

0 ≤ H(t, α0, α0), β
′

0 ≥ H(t, β0, β0),

H(t, x1, y1) − H(t, x2, y2) ≤ L[(x1 − x2) + (y1 − y2)], L ≥ 0

whenever x1 ≥ x2, y1 ≥ y2;

(H2) α
′

0 ≤ H(t, α0, β0), β
′

0 ≥ H(t, β0, α0),

H(t, x1, y) − H(t, x2, y) ≤ L(x1 − x2), L ≥ 0

H(t, x, y1) − H(t, x, y2) ≥ − L(y1 − y2)

whenever x1 ≥ x2, y1 ≥ y2;

(H3) α
′

0 ≤ H(t, β0, α0), β
′

0 ≥ H(t, α0, β0),

H(t, x, y1) − H(t, x, y2) ≤ L(y1 − y2), L ≥ 0

H(t, x1, y) − H(t, x2, y) ≥ − L(x1 − x2)

whenever x1 ≥ x2, y1 ≥ y2;

(H4) α
′

0 ≤ H(t, β0, β0), β
′

0 ≥ H(t, α0, α0),

H(t, x1, y1) − H(t, x2, y2) ≥ −L[(x1 − x2) + (y1 − y2)], L ≥ 0

whenever x1 ≥ x2, y1 ≥ y2.

Then α0(0) ≤ β0(0) implies α0(t) ≤ β0(t) on J .
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For details of proof of Theorems 2.1 and 2.2 see [4].

Next we present an existence result relative to the equation (2.1) which we need

in our main result. For that purpose, we split u = (ui, [u]pi
, [u]qi

) and define coupled

lower and upper solutions of (2.1) in componentwise form as

α
′

0i
≤ Hi(t, α0i

, [α0]pi
, [β0]qi

)

β
′

0i
≥ Hi(t, β0i

, [β0]pi
, [α0]qi

),

where pi + qi = n− 1, pi, qi ≥ 0. Also α0, β0 ∈ C1[J, Rn] such that α0(t) ≤ β0(t) on J .

Definition 2.3. The function H(t, u), is said to possess a mixed quasimonotone

property if for each i, 1 ≤ i ≤ n, Hi(t, ui, [u]pi
, [u]qi

) is monotone nondecreasing in

[u]pi
and monotone nonincreasing in [u]qi

.

Theorem 2.4. Let α0, β0 ∈ C1[J, Rn] be coupled lower and upper solutions of (2.1)

respectively. If H(t, u) possesses a mixed quasimonotone property, then there exists a

solution u(t) of (2.1) such that α0(t) ≤ u(t) ≤ β0(t) on J .

The next result (see [4]) will be useful to prove the order of convergence of the

iterates.

Corollary 2.5. Let v ∈ C1[J, Rn] and v
′

≤ Av + σ, where A = (aij) is an n × n

matrix satisfying aij ≥ 0, i 6= j and σ ∈ C[J, Rn]. Then we have

v(t) ≤ v(0)eAt +

∫ t

0

eA(t−s)σ(s)ds, t ∈ J.

3. MAIN RESULTS

In this section we consider the IVP

(3.1) u
′

= f(t, u) + g(t, u), u(0) = u0, t ∈ J ≡ [0, T ],

where f, g ∈ C[Ω, R] , Ω = [(t, u) : α0(t) ≤ u(t) ≤ β0(t), t ∈ J ] and α0, β0 ∈

C1[J, R] with α0(t) ≤ β0(t) on J . Here, we state the inequalities to recall them in

the proof of our main results. We note that the iterates will be different based on the

hyperconvexity and hyperconcavity of even and odd orders.

Suppose that f(t, u) is hyperconvex in u of order m−1, then we have the following

inequalities depending on whether m is even or odd. (i) m=2k

(3.2) f(t, η) ≥

2k−1
∑

i=0

f (i)(t, ξ)(η − ξ)i

i!

(3.3) f(t, η) ≤

2k−2
∑

i=0

f (i)(t, ξ)(η − ξ)i

i!
+

f (2k−1)(t, η)(η − ξ)2k−1

(2k − 1)!
;
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(ii) m=2k+1

(3.4) f(t, η) ≥

2k
∑

i=0

f (i)(t, ξ)(η − ξ)i

i!
, η ≥ ξ

(3.5) f(t, η) ≤

2k
∑

i=0

f (i)(t, ξ)(η − ξ)i

i!
, η ≤ ξ

(3.6) f(t, η) ≤

2k−1
∑

i=0

f (i)(t, ξ)(η − ξ)i

i!
+

f (2k)(t, η)(η − ξ)2k

(2k)!
, η ≥ ξ

(3.7) f(t, η) ≥

2k−1
∑

i=0

f (i)(t, ξ)(η − ξ)i

i!
+

f (2k)(t, η)(η − ξ)2k

(2k)!
, η ≤ ξ.

Similarly, when g(t, u) is hyperconcave in u of order m− 1, we have the following

inequalities depending on whether m is even or odd: (i) m=2k

(3.8) g(t, η) ≤

2k−1
∑

i=0

g(i)(t, ξ)(η − ξ)i

i!

(3.9) g(t, η) ≥

2k−2
∑

i=0

g(i)(t, ξ)(η − ξ)i

i!
+

g(2k−1)(t, η)(η − ξ)2k−1

(2k − 1)!
;

(ii) m=2k+1

(3.10) g(t, η) ≤
2k
∑

i=0

g(i)(t, ξ)(η − ξ)i

i!
, η ≥ ξ

(3.11) g(t, η) ≥
2k
∑

i=0

g(i)(t, ξ)(η − ξ)i

i!
, η ≤ ξ

(3.12) g(t, η) ≥

2k−1
∑

i=0

g(i)(t, ξ)(η − ξ)i

i!
+

g(2k)(t, η)(η − ξ)2k

(2k)!
, η ≥ ξ

(3.13) g(t, η) ≤

2k−1
∑

i=0

g(i)(t, ξ)(η − ξ)i

i!
+

g(2k)(t, η)(η − ξ)2k

(2k)!
, η ≤ ξ.

Based on these inequalities, relative to each of the four coupled upper and lower

solutions (A1), (A2), (A3) and (A4), we have eight theorems depending on whether m

is even or odd. In all our results, we develop two monotone sequences which converge

uniformly and monotonically to the unique solution of (3.1). Further, the order of

convergence depends on the order of hyperconvexity and hyperconcavity of f and g

in (3.1).
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The first two results in this direction are relative to natural upper and lower

solutions (case (A1)) when m is even and odd respectively.

Theorem 3.1. Assume that

(i) α0, β0 ∈ C1[J, R] are natural lower and upper solutions (case (A1)) with α0(t) ≤

β0(t) on J .

(ii) f, g ∈ C0,2k[Ω, R] such that f(t, u) is (2k−1)-hyperconvex, k ≥ 1 in u and g(t, u)

is (2k − 1)-hyperconcave, k ≥ 1 in u on J [ i.e. f (2k)(t, u) ≥ 0, g(2k)(t, u) ≤ 0,

for (t, u) ∈ Ω ].

Then there exist monotone sequences {αn(t)} and {βn(t)}, n ≥ 0 which converge

uniformly and monotonically to the unique solution of (3.1) and the convergence is

of order 2k.

Proof. In order to construct monotone sequences {αn(t)} and {βn(t)}, n ≥ 0 which

converge uniformly and monotonically to the unique solution of (3.1), we need to

consider the following IVPs for n = 1, 2, . . . together with the inequalities (3.2), (3.3),

(3.8) and (3.9) :

α
′

n = F (t, αn−1, βn−1; αn) =

=
2k−1
∑

i=0

f (i)(t, αn−1)(αn − αn−1)
i

i!
+

2k−2
∑

i=0

g(i)(t, αn−1)(αn − αn−1)
i

i!

+
g(2k−1)(t, βn−1)(αn − αn−1)

2k−1

(2k − 1)!
, αn(0) = u0,

β
′

n = G(t, αn−1, βn−1; βn) =

=
2k−2
∑

i=0

f (i)(t, βn−1)(βn − βn−1)
i

i!
+

f (2k−1)(t, αn−1)(βn − βn−1)
2k−1

(2k − 1)!

+

2k−1
∑

i=0

g(i)(t, βn−1)(βn − βn−1)
i

i!
, βn(0) = u0.

Since this theorem is a combination of Theorem 2.1 and Theorem 2.3 in [7] we omit

the details of the proof.

Theorem 3.2. Assume that

(i) α0, β0 ∈ C1[J, R] are natural lower and upper solutions (case (A1)) with α0(t) ≤

β0(t) on J .

(ii) f, g ∈ C0,2k+1[Ω, R] such that f(t, u) is (2k)-hyperconvex, k ≥ 1 in u and g(t, u)

is (2k)-hyperconcave, k ≥ 1 in u on J [ i.e. f (2k+1)(t, u) ≥ 0, g(2k+1)(t, u) ≤ 0,

for (t, u) ∈ Ω ].

Then there exist monotone sequences {αn(t)} and {βn(t)}, n ≥ 0 which converge

uniformly and monotonically to the unique solution of (3.1) and the convergence is

of order 2k + 1.
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Proof. Let us consider the following IVPs for n = 1, 2, . . . together with the inequali-

ties (3.4), (3.5), (3.12), and (3.13):

α
′

n = F (t, αn−1, βn−1; αn) =

=
2k
∑

i=0

f (i)(t, αn−1)(αn − αn−1)
i

i!
+

2k−1
∑

i=0

g(i)(t, αn−1)(αn − αn−1)
i

i!

+
g(2k)(t, βn−1)(αn − αn−1)

2k

(2k)!
, αn(0) = u0,

β
′

n = G(t, αn−1, βn−1; βn) =

=
2k
∑

i=0

f (i)(t, βn−1)(βn − βn−1)
i

i!
+

2k−1
∑

i=0

g(i)(t, βn−1)(βn − βn−1)
i

i!

+
g(2k)(t, αn−1)(βn − βn−1)

2k

(2k)!
, βn(0) = u0.

To prove this theorem we can refer to Theorem 2.2 and Theorem 2.4 in [7].

The next two Theorems are relative to the coupled upper and lower solutions of

type III case(A4) when m is even and odd respectively.

Theorem 3.3. Assume that

(i) α0, β0 ∈ C1[J, R] are coupled lower and upper solutions of type III (case (A4))

with α0(t) ≤ β0(t) on J .

(ii) f, g ∈ C0,2k[Ω, R] such that f(t, u) is (2k−1)-hyperconvex, k ≥ 1 in u and g(t, u)

is (2k − 1)-hyperconcave, k ≥ 1 in u on J [ i.e. f (2k)(t, u) ≥ 0, g(2k)(t, u) ≤ 0,

for (t, u) ∈ Ω ].

(iii)

fu(t, u) ≤ −max
Ω

[f (2k)(t, u)]
(β0 − α0)

2k−1

(2k − 2)!
≤ 0 on Ω

gu(t, u) ≤ min
Ω

[g(2k)(t, u)]
(β0 − α0)

2k−1

(2k − 2)!
≤ 0 on Ω.

Then there exist monotone sequences {αn(t)} and {βn(t)}, n ≥ 0 which converge

uniformly and monotonically to the unique solution of (3.1) and the convergence is

of order 2k.

Proof. The assumptions f (2k)(t, u) ≥ 0, g(2k)(t, u) ≤ 0 yield the inequalities (3.2),

(3.3), (3.8) and (3.9) whenever α0 ≤ η, ξ ≤ β0. Let us first consider the following IVPs:

(3.14)

w
′

= F (t, α, β; v) =

=

2k−1
∑

i=0

f (i)(t, β)(v − β)i

i!
+

2k−2
∑

i=0

g(i)(t, β)(v − β)i

i!

+
g(2k−1)(t, α)(v − β)2k−1

(2k − 1)!
, w(0) = u0,



382 T. G. MELTON AND A. S. VATSALE

(3.15)

v
′

= G(t, α, β; w) =

=

2k−2
∑

i=0

f (i)(t, α)(w − α)i

i!
+

f (2k−1)(t, β)(w − α)2k−1

(2k − 1)!

+

2k−1
∑

i=0

g(i)(t, α)(w − α)i

i!
, v(0) = u0,

where α0(0) ≤ u0 ≤ β0(0) and t ∈ J .

We develop the sequences {αn(t)} and {βn(t)} using the above IVPs (3.14) and

(3.15) respectively. Initially, we prove (α0, β0) are coupled lower and upper solutions

of (3.14) and (3.15) respectively. The inequalities (3.2) and (3.9), and (i) imply

(3.16) α′

0 ≤ f(t, β0) + g(t, β0) = F (t, α0, β0; β0), α0(0) ≤ u0,

(3.17)

β ′

0 ≥ f(t, α0) + g(t, α0) ≥
2k−1
∑

i=0

f (i)(t, β0)(α0 − β0)
i

i!

+
2k−2
∑

i=0

g(i)(t, β0)(α0 − β0)
i

i!
+

g(2k−1)(t, α0)(α0 − β0)
2k−1

(2k − 1)!

= F (t, α0, β0; α0), β0(0) ≥ u0.

Using Taylor series expansion with Lagrange remainder for F (t, α0, β0; v) and (iii),

we get

Fv(t, α0, β0; v) = fv(t, v) −
f (2k)(t, ξ1)(v − β0)

2k−1

(2k − 1)!

+ gv(t, v) −
g(2k)(t, ξ3)(v − β0)

2k−2(ξ2 − α0)
(2k − 2)!

≤ 0,

where α0 ≤ v ≤ ξ1, ξ2 ≤ β0, α0 ≤ ξ3 ≤ ξ2. Hence F (t, α0, β0; v) is nonincreasing in

v and we can apply Theorem 2.4 together with (3.16) and (3.17) and conclude that

there exists a solution α1(t) of (3.14) with α = α0 and β = β0 such that α0 ≤ α1 ≤ β0

on J . Since Fv exists on Ω, we can easily show that F (t, α0, β0; v) satisfies the one-side

Lipschitz condition with respect to v for (t, v) ∈ Ω and α0(t) ≤ v(t) ≤ β0(t) for t ∈ J .

Theorem 2.1 guarantees that the solution α1(t) of (3.14) with α = α0 and β = β0 is

unique.

Similarly, we can show that there exists a unique solution β1(t) of (3.15) on J .

The inequalities (3.3) and (3.8), and (i) imply

(3.18) β ′

0 ≥ f(t, α0) + g(t, α0) = G(t, α0, β0; α0), β0(0) ≥ u0,
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(3.19)

α′

0 ≤ f(t, β0) + g(t, β0) ≤

2k−2
∑

i=0

f (i)(t, α0)(β0 − α0)
i

i!

+
f (2k−1)(t, β0)(β0 − α0)

2k−1

(2k − 1)!
+

2k−1
∑

i=0

g(i)(t, α0)(β0 − α0)
i

i!

= G(t, α0, β0; β0), α0(0) ≤ u0.

Using Taylor series expansion with Lagrange remainder for G(t, α0, β0; w) and (iii), we get

Gw(t, α0, β0; w) = fw(t, w) −
f (2k)(t, η3)(w − α0)

2k−2(η1 − β0)
(2k − 2)!

+ gw(t, w) −
g(2k)(t, η2)(w − α0)

2k−1

(2k − 1)!
≤ 0,

where α0 ≤ η1, η2 ≤ w, α0 ≤ η1 ≤ η3 ≤ β0. Hence G(t, α0, β0; w) is nonincreasing in w

and we can apply Theorem 2.4 together with (3.18) and (3.19) and conclude that there

exists a solution β1(t) of (3.15) with α = α0 and β = β0 such that α0 ≤ β1 ≤ β0 on J .

One can easily show that G(t, α0, β0; w) satisfies the one-side Lipschitz condition with

respect to w for (t, w) ∈ Ω and α0(t) ≤ w(t) ≤ β0(t), t ∈ J . Theorem 2.1 guarantees

that the solution β1(t) of (3.15) with α = α0 and β = β0 is unique.

Furthermore, by (3.2) and (3.9) with α0 ≤ β1 ≤ β0 and g(2k−1)(t, u) nonincreasing

in u on Ω, we have

(3.20)

α′

1 = F (t, α0, β0; β1) =
2k−1
∑

i=0

f (i)(t, β0)(β1 − β0)
i

i!

+

2k−2
∑

i=0

g(i)(t, β0)(β1 − β0)
i

i!
+

g(2k−1)(t, α0)(β1 − β0)
2k−1

(2k − 1)!

≤ f(t, β1) + g(t, β1), α1(0) = u0.

Using (3.3) and (3.8) with α0 ≤ α1 ≤ β0 and f (2k−1)(t, u) nondecreasing in u on

Ω, we get

(3.21)

β ′

1 = G(t, α0, β0; α1) =
2k−2
∑

i=0

f (i)(t, α0)(α1 − α0)
i

i!

+
f (2k−1)(t, β0)(α1 − α0)

2k−1

(2k − 1)!
+

2k−1
∑

i=0

g(i)(t, α0)(α1 − α0)
i

i!

≥ f(t, α1) + g(t, α1), β1(0) = u0.

Hence α1 ≤ β1 by (3.20), (3.21), and Theorem 2.2 with (H4). Thus we get α0 ≤ α1 ≤

β1 ≤ β0 on J .

Assume now that αn and βn are the solutions of IVPs (3.14) and (3.15) respec-

tively with α = αn−1 and β = βn−1 such that αn−1 ≤ αn ≤ βn ≤ βn−1 on J and

(3.22)
α

′

n ≤ f(t, βn) + g(t, βn),

β
′

n ≥ f(t, αn) + g(t, αn).
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Certainly this is true for n = 1.

We need to show that αn ≤ αn+1 ≤ βn+1 ≤ βn on J , where αn+1 and βn+1 are

the solutions of IVPs (3.14) and (3.15) respectively with α = αn and β = βn.

The inequalities (3.2) and (3.9) and (3.22) imply

(3.23) α′

n ≤ f(t, βn) + g(t, βn) = F (t, αn, βn; βn), αn(0) ≤ u0,

(3.24)

β ′

n ≥ f(t, αn) + g(t, αn) ≥

2k−1
∑

i=0

f (i)(t, βn)(αn − βn)i

i!

+

2k−2
∑

i=0

g(i)(t, βn)(αn − βn)i

i!
+

g(2k−1)(t, αn)(αn − βn)2k−1

(2k − 1)!

= F (t, αn, βn; αn), βn(0) ≥ u0.

This proves that αn, βn are coupled lower and upper solutions of (3.14) and (3.15) with

α = αn and β = βn. Hence using (3.23), (3.24), the fact that F is nondecreasing in u,

Theorem 2.4, and Theorem 2.2 with (H4), we can conclude that there exists a unique

solution αn+1(t) of (3.14) with α = αn and β = βn such that αn ≤ αn+1 ≤ βn on J .

The inequalities (3.3) and (3.8), and (3.22) imply

(3.25) β ′

n ≥ f(t, αn) + g(t, αn) = G(t, αn, βn; αn), βn(0) ≥ u0,

(3.26)

α′

n ≤ f(t, βn) + g(t, βn) ≤
2k−2
∑

i=0

f (i)(t, αn)(βn − αn)i

i!

+
f (2k−1)(t, βn)(βn − αn)2k−1

(2k − 1)!
+
∑2k−1

i=0

g(i)(t, αn)(βn − βn)i

i!

= G(t, αn, βn; βn), αn(0) ≤ u0.

This proves that αn, βn are coupled lower and upper solutions of (3.14) and (3.15)

with α = αn and β = βn. Hence using (3.25), (3.26), the fact that G is nonincreasing

in u, Theorem 2.4, and Theorem 2.2 with (H4), we can conclude that there exists a

unique solution βn+1(t) of (3.15) with α = αn and β = βn such that αn ≤ βn+1 ≤ βn

on J .

Furthermore, by (3.2), (3.9) with αn ≤ βn+1 ≤ βn and g(2k−1)(t, u) nonincreasing

in u, we have

(3.27)

α′

n+1 = F (t, αn, βn; βn+1) =

2k−1
∑

i=0

f (i)(t, βn)(βn+1 − βn)i

i!

+

2k−2
∑

i=0

g(i)(t, βn)(βn+1 − βn)i

i!
+

g(2k−1)(t, αn)(βn+1 − βn)2k−1

(2k − 1)!

≤ f(t, βn+1) + g(t, βn+1), αn+1(0) = u0.
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Using (3.3) and (3.8) with αn ≤ αn+1 ≤ βn and f (2k−1)(t, u) nondecreasing in u, we get

(3.28)

β ′

n+1 = G(t, αn, βn; αn+1) =

2k−2
∑

i=0

f (i)(t, αn)(αn+1 − αn)i

i!

+
f (2k−1)(t, βn)(αn+1 − αn)2k−1

(2k − 1)!
+

2k−1
∑

i=0

g(i)(t, αn)(αn+1 − αn)i

i!

≥ f(t, αn+1) + g(t, αn+1), βn+1(0) = u0.

Thus we get αn+1 ≤ βn+1 using (3.27), (3.28), and Theorem 2.2 with (H4). This

proves αn ≤ αn+1 ≤ βn+1 ≤ βn on J . Thus by induction, we have

α0 ≤ α1 ≤ . . . ≤ αn ≤ βn ≤ . . . ≤ β1 ≤ β0.

Let u be any solution such that α0 ≤ u ≤ β0 with α0(0) ≤ u0 ≤ β0(0) on J .

Suppose for some u , we have αn ≤ u ≤ βn on J . Set Φ1 = u − αn+1, Φ2 = βn+1 − u

and use (3.2) and (3.9) so that

Φ′

1 = u′ − α′

n+1 = f(t, u) + g(t, u)

− [
2k−1
∑

i=0

f (i)(t, βn)(βn+1 − βn)i

i!

+

2k−2
∑

i=0

g(i)(t, βn)(βn+1 − βn)i

i!
+

g(2k−1)(t, αn)(βn+1 − βn)2k−1

(2k − 1)!
]

≥ f(t, u) + g(t, u) − f(t, βn+1) − g(t, βn+1)

= [ −fu(t, ξ1) − gu(t, ξ2) ] Φ2, Φ1(0) = 0,

where ξ1, ξ2 are between u and βn+1.

Now use (3.3) and (3.8) so that

Φ′

2 = β ′

n+1 − u′ =

2k−2
∑

i=0

f (i)(t, αn)(αn+1 − αn)i

i!

+
f (2k−1)(t, βn)(αn+1 − αn)2k−1

(2k − 1)!
+

2k−1
∑

i=0

g(i)(t, αn)(αn+1 − αn)i

i!

− f(t, u) − g(t, u) ≥ f(t, αn+1) + g(t, αn+1) − f(t, u) − g(t, u)

= [ −fu(t, η1) − gu(t, η2) ] Φ1, Φ2(0) = 0,

where η1, η2 are between u and αn+1. From above we have

r′ ≥ Ar, r(0) = 0,

where

r =

(

Φ1

Φ2

)

, A =

(

0 k1

k1 0

)

, |fu(t, u) + gu(t, u)| ≤ k1.

It follows that r ≥ 0 or

(3.29) αn+1 ≤ u,
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(3.30) βn+1 ≥ u.

From (3.29) and (3.30) it is clear that αn+1 ≤ u ≤ βn+1. Since α0 ≤ u ≤ β0, this

proves by induction that αn ≤ u ≤ βn on J for all n. From this we can conclude

α0 ≤ α1 ≤ ... ≤ αn ≤ u ≤ βn ≤ ... ≤ β1 ≤ β0.

Now one can show easily that the sequences {αn(t)}, {βn(t)} are equicontinu-

ous and uniformly bounded. Hence applying Ascoli-Arzela’s Theorem, we can con-

clude that there exist subsequences {αn,j(t)}, {βn,j(t)} such that αn,j(t) → ρ(t) and

βn,j(t) → r(t) with ρ(t) ≤ u ≤ r(t) on J . Since the sequences {αn(t)}, {βn(t)} are

monotone, we can conclude that αn(t) → ρ(t) and βn(t) → r(t). Taking the limit as

n → ∞, we get

lim
n→∞

αn(t) = ρ(t) ≤ u ≤ r(t) = lim
n→∞

βn(t).

Next we show that ρ(t) ≥ r(t). From IVPs (3.14) and (3.15) we get

ρ
′

(t) = f(t, r) + g(t, r), ρ(0) = 0,

r
′

(t) = f(t, ρ) + g(t, ρ), r(0) = 0.

Setting now Φ = ρ(t) − r(t), using fu, gu exist, we get

Φ′ = ρ′ − r′ = f(t, r) + g(t, r) − f(t, ρ) − g(t, ρ)

≥ −L(r − ρ) ≥ L(ρ − r), L ≥ 0, Φ(0) = 0.

From this we can conclude that r(t) ≤ ρ(t) on J . This proves r(t) = ρ(t) = u(t)

is the unique solution of (3.1). Hence {αn(t)} and {βn(t)} converge uniformly and

monotonically to the unique solution of (3.1).

Let us consider the order of convergence of {αn(t)} and {βn(t)} to the unique

solution u(t) of (3.1). To do this, set

pn(t) = u(t) − αn(t) ≥ 0

qn(t) = βn(t) − u(t) ≥ 0,

for t ∈ J with pn(0) = qn(0) = 0. Using the definitions of αn, βn, the Taylor series

expansion with Lagrange remainder, and the mean value theorem together with (ii),

we obtain

p′n+1 = u′ − α′

n+1 = f(t, u) + g(t, u) − [
2k−1
∑

i=0

f (i)(t, βn)(βn+1 − βn)i

i!

+
2k−2
∑

i=0

g(i)(t, βn)(βn+1 − βn)i

i!
+

g(2k−1)(t, αn)(βn+1 − βn)2k−1

(2k − 1)!
]

= f(t, u) + g(t, u) − [ f(t, βn+1) −
f (2k)(t, ξ1)(βn+1 − βn)2k

(2k)!

+ g(t, βn+1) −
g(2k−1)(t, ξ2)(βn+1 − βn)2k−1

(2k − 1)!
+

g(2k−1)(t, αn)(βn+1 − βn)2k−1

(2k − 1)!
]
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= fu(t, η1)(u − βn+1) + gu(t, η2)(u − βn+1)

+
f (2k)(t, ξ1)(βn+1 − βn)2k

(2k)!
+

g(2k)(t, η3)(βn+1 − βn)2k−1(ξ2 − αn)

(2k − 1)!

≤ [fu(t, η1) + gu(t, η2)](u − βn+1) +
f (2k)(t, ξ1)(u − βn)2k

(2k)!

+
g(2k)(t, η3)(u − βn)2k−1[(βn − u) + (u − αn)]

(2k − 1)!

= [−fu(t, η1) − gu(t, η2)]qn+1 +
f (2k)(t, ξ1)q

2k
n

(2k)!
−

g(2k)(t, η3)q
2k−1
n (pn + qn)

(2k − 1)!
,

where βn+1 ≤ ξ1, ξ2 ≤ βn, u ≤ η1, η2 ≤ βn+1 and αn ≤ η3 ≤ ξ2. Let k1, k2 be positive

constants such that

|fu(t, u) + gu(t, u)| ≤ k1, k2 = max(k3, k4),

where
∣

∣

∣

∣

∣

f (2k)(t, u)

(2k)!
−

g(2k)(t, u)

(2k − 1)!

∣

∣

∣

∣

∣

≤ k3

∣

∣

∣

∣

∣

g(2k)(t, u)

(2k − 1)!

∣

∣

∣

∣

∣

≤ k4.

This proves

p
′

n+1 ≤ k1qn+1 + k2q
2k−1
n (pn + qn), pn+1(0) = 0.

Similarly,

q′n+1 = β ′

n+1 − u′ =
2k−2
∑

i=0

f (i)(t, αn)(αn+1 − αn)i

i!

+
f (2k−1)(t, βn)(αn+1 − αn)2k−1

(2k − 1)!
+

2k−1
∑

i=0

g(i)(t, αn)(αn+1 − αn)i

i!

− f(t, u) − g(t, u) = f(t, αn+1) −
f (2k−1)(t, ξ1)(αn+1 − αn)2k−1

(2k − 1)!

+
f (2k−1)(t, βn)(αn+1 − αn)2k−1

(2k − 1)!
+ g(t, αn+1) −

g(2k)(t, ξ2)(αn+1 − αn)2k

(2k)!

− f(t, u) − g(t, u) = fu(t, η1)(αn+1 − u) + gu(t, η2)(αn+1 − u)

+
f (2k)(t, η3)(αn+1 − αn)2k−1(βn − ξ1)

(2k − 1)!
−

g(2k)(t, ξ2)(αn+1 − αn)2k

(2k)!

≤ [fu(t, η1) + gu(t, η2)](αn+1 − u)

+
f (2k)(t, η3)(αn − u)2k−1[(u − βn) + (αn − u)]

(2k − 1)!
−

g(2k)(t, ξ2)(αn − u)2k

(2k)!

= [−fu(t, η1) − gu(t, η2)]pn+1 +
f (2k)(t, η3)p

2k−1
n (pn + qn)

(2k − 1)!
−

g(2k)(t, ξ2)p
2k
n

(2k)!
,
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where αn ≤ ξ1, ξ2 ≤ αn+1, αn+1 ≤ η1, η2 ≤ u and ξ1 ≤ η3 ≤ βn. Let k5 = max(k6, k7)

be a positive constant where
∣

∣

∣

∣

∣

f (2k)(t, u)

(2k − 1)!
−

g(2k)(t, u)

(2k)!

∣

∣

∣

∣

∣

≤ k6

∣

∣

∣

∣

∣

f (2k)(t, u)

(2k − 1)!

∣

∣

∣

∣

∣

≤ k7.

Then we have

q
′

n+1 ≤ k1pn+1 + k5p
2k−1
n (pn + qn), qn+1(0) = 0.

Hence we have the following system with k = max(k2, k5):

p
′

n+1 ≤ k1qn+1 + kq2k−1
n (pn + qn), pn+1(0) = 0,

q
′

n+1 ≤ k1pn+1 + kp2k−1
n (pn + qn), qn+1(0) = 0.

We can write this as the following vectorial inequality:

r′n+1 ≤ Arn+1 + σn,

where

rn+1 =

(

pn+1

qn+1

)

, A =

(

0 k1

k1 0

)

, σn =

(

k q2k−1
n (pn + qn)

k p2k−1
n (pn + qn)

)

.

Applying Corollary 2.5, treating σn as a forcing term, we get

0 ≤ rn+1(t) ≤

∫ t

0

eA(t−s) σn(s) ds,

which, in turn, yields

‖rn+1(t)‖ ≤ A−1eAT‖σn‖,

or

(3.31) ‖u(t) − αn+1(t)‖ ≤ C1‖βn(t) − u(t)‖2k−1[‖u(t) − αn(t)‖ + ‖βn(t) − u(t)‖]

and

(3.32) ‖βn+1(t) − u(t)‖ ≤ C2‖u(t) − αn(t)|2k−1[‖u(t) − αn(t)‖ + ‖βn(t) − u(t)‖],

where C1,2 = C1,2(k, k1, T, α0, β0, f, g). Using (3.31) and (3.32), we obtain

max
t∈J

[|u(t) − αn+1(t)| + |βn+1(t) − u(t)|] ≤ C max
t∈J

[|u(t) − αn(t)| + |βn(t) − u(t)|]2k.

This completes the proof.

Theorem 3.4. Assume that

(i) α0, β0 ∈ C1[J, R] are coupled lower and upper solutions of type III (case (A4))

with α0(t) ≤ β0(t) on J .

(ii) f, g ∈ C0,2k+1[Ω, R] such that f(t, u) is (2k)-hyperconvex, k ≥ 1 in u and g(t, u)

is (2k)-hyperconcave, k ≥ 1 in u on J [ i.e. f (2k+1)(t, u) ≥ 0, g(2k+1)(t, u) ≤ 0,

for (t, u) ∈ Ω ].
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(iii)

fu(t, u) ≤ −max
Ω

[f (2k+1)(t, u)]
(β0 − α0)

2k

(2k − 1)!
≤ 0 on Ω

gu(t, u) ≤ min
Ω

[g(2k+1)(t, u)]
(β0 − α0)

2k

(2k − 1)!
≤ 0 on Ω.

Then there exist monotone sequences {αn(t)} and {βn(t)}, n ≥ 0 which converge

uniformly and monotonically to the unique solution of (3.1) and the convergence is

of order 2k + 1.

Proof. We can get monotone sequences {αn(t)} and {βn(t)}, n ≥ 0 which converge

uniformly and monotonically to the unique solution of (3.1), using the following IVPs

for n = 1, 2, . . . together with the inequalities (3.6), (3.7), (3.10), and (3.11):

α
′

n = F (t, αn−1, βn−1; βn) =

=
2k−1
∑

i=0

f (i)(t, βn−1)(βn − βn−1)
i

i!
+

f (2k)(t, αn−1)(βn − βn−1)
2k

(2k)!

+
2k
∑

i=0

g(i)(t, βn−1)(βn − βn−1)
i

i!
, αn(0) = u0,

β
′

n = G(t, αn−1, βn−1; αn) =

=

2k−1
∑

i=0

f (i)(t, αn−1)(αn − αn−1)
i

i!
+

f (2k)(t, βn−1)(αn − αn−1)
2k

(2k)!

+

2k
∑

i=0

g(i)(t, αn−1)(αn − αn−1)
i

i!
, βn(0) = u0.

The proof is similar to that of Theorem 3.3 with appropriate modifications. We omit

the details.

Since next four theorems are a combination of previous four theorems with ap-

propriate conditions f(t, u) ≡ 0 and/or g(t, u) ≡ 0, we merely indicate the iterates

which enable us to develop the required sequences.

The next two results are relative to the coupled upper and lower solutions of type

I case(A2) when m is even and odd respectively.

Theorem 3.5. Assume that

(i) α0, β0 ∈ C1[J, R] are coupled lower and upper solutions of type I (case (A2))

with α0(t) ≤ β0(t) on J .

(ii) f, g ∈ C0,2k[Ω, R] such that f(t, u) is (2k−1)-hyperconvex, k ≥ 1 in u and g(t, u)

is (2k − 1)-hyperconcave, k ≥ 1 in u on J [ i.e. f (2k)(t, u) ≥ 0, g(2k)(t, u) ≤ 0,

for (t, u) ∈ Ω ].
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(iii)

gu(t, u) ≤ min
Ω

[g(2k)(t, u)]
(β0 − α0)

2k−1

(2k − 2)!
≤ 0 on Ω.

Then there exist monotone sequences {αn(t)} and {βn(t)}, n ≥ 0 which converge

uniformly and monotonically to the unique solution of (3.1) and the convergence is

of order 2k.

Proof. In order to construct monotone sequences {αn(t)} and {βn(t)}, n ≥ 0 which

converge uniformly and monotonically to the unique solution of (3.1), we need to

consider the following IVPs for n = 1, 2, . . . together with the inequalities (3.2), (3.3),

(3.8), and (3.9):

α
′

n = F (t, αn−1, βn−1; αn, βn)

=
2k−1
∑

i=0

f (i)(t, αn−1)(αn − αn−1)
i

i!
+

2k−2
∑

i=0

g(i)(t, βn−1)(βn − βn−1)
i

i!

+
g(2k−1)(t, αn−1)(βn − βn−1)

2k−1

(2k − 1)!
, αn(0) = u0,

β
′

n = G(t, αn−1, βn−1; βn, αn) =

=

2k−2
∑

i=0

f (i)(t, βn−1)(βn − βn−1)
i

i!
+

f (2k−1)(t, αn−1)(βn − βn−1)
2k−1

(2k − 1)!

+
2k−1
∑

i=0

g(i)(t, αn−1)(αn − αn−1)
i

i!
. βn(0) = u0,

Theorem 3.6. Assume that

(i) α0, β0 ∈ C1[J, R] are coupled lower and upper solutions of type I (case (A2))

with α0(t) ≤ β0(t) on J .

(ii) f, g ∈ C0,2k+1[Ω, R] such that f(t, u) is (2k)-hyperconvex, k ≥ 1 in u and g(t, u)

is (2k)-hyperconcave, k ≥ 1 in u on J [ i.e. f (2k+1)(t, u) ≥ 0, g(2k+1)(t, u) ≤ 0,

for (t, u) ∈ Ω ].

(iii)

gu(t, u) ≤ min
Ω

[g(2k+1)(t, u)]
(β0 − α0)

2k

(2k − 1)!
≤ 0 on Ω.

Then there exist monotone sequences {αn(t)} and {βn(t)}, n ≥ 0 which converge

uniformly and monotonically to the unique solution of (3.1) and the convergence is

of order 2k + 1.
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Proof. Let us consider the following IVPs for n = 1, 2, . . . together with the inequali-

ties (3.4), (3.5), (3.10), and (3.11):

α
′

n = F (t, αn−1, βn−1; αn, βn) =
2k
∑

i=0

f (i)(t, αn−1)(αn − αn−1)
i

i!

+

2k
∑

i=0

g(i)(t, βn−1)(βn − βn−1)
i

i!
, αn(0) = u0,

β
′

n = G(t, αn−1, βn−1; βn, αn) =

2k
∑

i=0

f (i)(t, βn−1)(βn − βn−1)
i

i!

+
2k
∑

i=0

g(i)(t, αn−1)(αn − αn−1)
i

i!
. βn(0) = u0,

The last two Theorems are relative to the coupled upper and lower solutions of

type II case(A3) when m is even and odd respectively.

Theorem 3.7. Assume that

(i) α0, β0 ∈ C1[J, R] are coupled lower and upper solutions of type II (case (A3))

with α0(t) ≤ β0(t) on J .

(ii) f, g ∈ C0,2k[Ω, R] such that f(t, u) is (2k−1)-hyperconvex, k ≥ 1 in u and g(t, u)

is (2k − 1)-hyperconcave, k ≥ 1 in u on J [ i.e. f (2k)(t, u) ≥ 0, g(2k)(t, u) ≤ 0,

for (t, u) ∈ Ω ].

(iii)

fu(t, u) ≤ −max
Ω

[f (2k)(t, u)]
(β0 − α0)

2k−1

(2k − 2)!
≤ 0 on Ω.

Then there exist monotone sequences {αn(t)}, and {βn(t)}, n ≥ 0 which converge

uniformly and monotonically to the unique solution of (3.1) and the convergence is

of order 2k.

Proof. We can get monotone sequences {αn(t)} and {βn(t)}, n ≥ 0 which converge

uniformly and monotonically to the unique solution of (3.1), using the following IVPs

for n = 1, 2, . . . together with the inequalities (3.2), (3.3), (3.8), and (3.9):

α
′

n = F (t, αn−1, βn−1; αn, βn)

=
2k−1
∑

i=0

f (i)(t, βn−1)(βn − βn−1)
i

i!
+

2k−2
∑

i=0

g(i)(t, αn−1)(αn − αn−1)
i

i!

+
g(2k−1)(t, βn−1)(αn − αn−1)

2k−1

(2k − 1)!
, αn(0) = u0,



392 T. G. MELTON AND A. S. VATSALE

β
′

n = G(t, αn−1, βn−1; βn, αn) =

=
2k−2
∑

i=0

f (i)(t, αn−1)(αn − αn−1)
i

i!
+

f (2k−1)(t, βn−1)(αn − αn−1)
2k−1

(2k − 1)!

+

2k−1
∑

i=0

g(i)(t, βn−1)(βn − βn−1)
i

i!
, βn(0) = u0.

Theorem 3.8. Assume that

(i) α0, β0 ∈ C1[J, R] are coupled lower and upper solutions of type II (case (A3))

with α0(t) ≤ β0(t) on J .

(ii) f, g ∈ C0,2k+1[Ω, R] such that f(t, u) is (2k)-hyperconvex, k ≥ 1 in u and g(t, u)

is (2k)-hyperconcave, k ≥ 1 in u on J [ i.e. f (2k+1)(t, u) ≥ 0, g(2k+1)(t, u) ≤ 0,

for (t, u) ∈ Ω ].

(iii)

fu(t, u) ≤ −max
Ω

[f (2k+1)(t, u)]
(β0 − α0)

2k

(2k − 1)!
≤ 0 on Ω.

Then there exist monotone sequences {αn(t)} and {βn(t)}, n ≥ 0 which converge

uniformly and monotonically to the unique solution of (3.1) and the convergence is

of order 2k + 1.

Proof. Considering the following IVPs for n = 1, 2, . . . together with the inequalities

(3.6), (3.7), (3.12), and (3.13), we can get:

α
′

n = F (t, αn−1, βn−1; αn, βn) =

2k−1
∑

i=0

f (i)(t, βn−1)(βn − βn−1)
i

i!

+
f (2k)(t, αn−1)(βn − βn−1)

2k

(2k)!
+

2k−1
∑

i=0

g(i)(t, αn−1)(αn − αn−1)
i

i!

+
g(2k)(t, βn−1)(αn − αn−1)

2k

(2k)!
, αn(0) = u0,

β
′

n = G(t, αn−1, βn−1; βn, αn) =

2k−1
∑

i=0

f (i)(t, αn−1)(αn − αn−1)
i

i!

+
f (2k)(t, βn−1)(αn − αn−1)

2k

(2k)!
+

2k−1
∑

i=0

g(i)(t, βn−1)(βn − βn−1)
i

i!

+
g(2k)(t, αn−1)(βn − βn−1)

2k

(2k)!
, βn(0) = u0.

Remark 3.9 Results of Theorems 1.3.1 to 1.3.4 and its corollaries of [4] can be

considered as special cases of our results for m = 2. Further, we have obtained the

same order of convergence as in [3] when the nonlinearity of the iterates we have
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developed is one less than that of [3]. Our results yield the results of [7] as a special

cases.

Conclusion: We have used iterates of nonlinearity of order m − 1 when the forcing

function is the sum of hyperconvex and hyperconcave of order m − 1. Observe that

when m ≥ 3, we have nonlinear iterates. We hope to develop linear iterates and yet

have the order of convergence as m. At present this problem is still open.

REFERENCES

[1] Bellman, R., Methods of Nonlinear Analysis, Vol. 1, Academic Press, New York, 1970.

[2] Bellman, R. and Kalaba, R., Quasilinearization and Nonlinear Boundary Value Problems, Ele-

vier, New York, 1965.

[3] Cabada, A. and Nieto, J., Rapid Convergence of the Iterative Technique for The First Order

Initial Value Problems, Applied Mathematics and Computations 87, pp. 217-226, 1997.

[4] Lakshikantham, V. and Vatsala, A., Generalized Quasilinearization for Nonlinear Problems,

Kluwer Academic Publishers, Boston, 1998.

[5] Mandelzweig, V., Quasilinearization Method and Its Verification on Exactly Solvable Models in

Quantum Mechanics, Journal of Mathematical Phisics, Vol. 40, No. 4, pp. 6266-6291, 1999.

[6] Mandelzweig, V. and Tabakin, F, Quasilinearization Approach to Nonlinear Problems in Physics

with Application to Nonlinear ODEs, Computer Physics Communications 141, pp. 268-281, 2001.

[7] Mohapatra, R., Vajravelu, K. and Yin, Y., Extension of the Method of Quasilinearization and

Rapid Convergence, Journal of Optimization Theory and Applications, Vol. 96, No. 3, pp. 667-

682, 1998.


