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SUMMARY

Detecting dependence between two random variables is a fundamental problem. Although the
Pearson correlation coefficient is effective for capturing linear dependence, it can be entirely
powerless for detecting nonlinear and/or heteroscedastic patterns. We introduce a new measure,
G-squared, to test whether two univariate random variables are independent and to measure the
strength of their relationship. The G-squared statistic is almost identical to the square of the
Pearson correlation coefficient, R-squared, for linear relationships with constant error variance,
and has the intuitive meaning of the piecewise R-squared between the variables. It is particu-
larly effective in handling nonlinearity and heteroscedastic errors. We propose two estimators of
G-squared and show their consistency. Simulations demonstrate that G-squared estimators are
among the most powerful test statistics compared with several state-of-the-art methods.

Some key words: Bayes factor; Coefficient of determination; Hypothesis test; Likelihood ratio.

1. INTRODUCTION

The Pearson correlation coefficient is widely used to detect and measure the dependence
between two random quantities. The square of its least-squares estimate, popularly known as
R-squared, is often used to quantify how linearly related two random variables are. However,
the shortcomings of the R-squared statistic as a measure of the strength of dependence are also
significant, as discussed recently by Reshef et al. (2011), which has inspired the development of
many new methods for detecting dependence.

The Spearman correlation calculates the Pearson correlation coefficient between rank sta-
tistics. Although more robust than the Pearson correlation, this method still cannot capture
nonmonotone relationships. The alternating conditional expectation method was introduced by
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130 X. WANG, B. JIANG AND J. S. LIU

Breiman & Friedman (1985) to approximate the maximal correlation between X and Y , i.e., to
find optimal transformations of the data, f (X ) and g(Y ), such that their correlation is maximized.
The implementation of this method has limitations, because it is infeasible to search through
all possible transformations. Estimating mutual information is another popular approach due to
the fact that the mutual information is zero if and only if X and Y are independent. Kraskov
et al. (2004) proposed a method that involves estimating the entropy of X , Y and (X , Y ) sepa-
rately. The method was claimed to be numerically exact for independent cases, and effective for
high-dimensional variables. An energy distance-based method (Szèkely et al., 2007; Szèkely &
Rizzo, 2009) and a kernel-based method (Gretton et al., 2005, 2012) for solving the two-sample
test problem appeared separately in the statistics and machine learning literatures, and have
corresponding usage in independence tests. The two methods were recently shown to be equiv-
alent (Sejdinovic et al., 2013). Methods based on empirical cumulative distribution functions
(Hoeffding, 1948), empirical copula (Genest & Rémillard, 2004) and empirical characteristic
functions (Kankainen & Ushakov, 1998; Huskova & Meintanis, 2008) have also been proposed
for detecting dependence.

Another set of approaches is based on discretization of the random variables. Known as grid-
based methods, they are primarily designed to test for independence between univariate random
variables. Reshef et al. (2011) introduced the maximum information coefficient, which focuses
on the generality and equitability of a dependence statistic; two more powerful estimators for
this quantity were suggested by Reshef et al. (arXiv:1505.02213). Equitability requires that the
same value of the statistic imply the same amount of dependence regardless of the type of
the underlying relationship, but it is not a well-defined mathematical concept. We show in the
Supplementary Material that the equitability of G-squared is superior to all other independence
testing statistics for a wide range of functional relationships. Heller et al. (2016) proposed a
grid-based method which utilizes the χ2 statistic to test independence and is a distribution-free
test. Blyth (1994) and Doksum et al. (1994) discussed using the correlation curve to measure the
strength of the relationship. However, a direct use of nonparametric curve estimation may rely too
heavily on the smoothness of the relationship; furthermore, it cannot deal with heteroscedastic
noise.

The G2 statistic proposed in this paper is derived from a regularized likelihood ratio test
for piecewise-linear relationships and can be viewed as an integration of continuous and discrete
methods. It is a function of both the conditional mean and the conditional variance of one variable
given the other, so it is capable of detecting general functional relationships with heteroscedastic
error variances. An estimate of G2 can be derived via the same likelihood ratio approach as R2

when the true underlying relationship is linear. Thus, it is reasonable that G2 is almost identical
to R2 for linear relationships. Efficient estimates of G2 can be computed quickly using a dynamic
programming method, whereas the methods of Reshef et al. (2011) and Heller et al. (2016)
consider grids on two variables simultaneously and hence require longer computational times.
We will also show that, in terms of power, G2 is one of the best statistics for independence testing
when considering a wide range of functional relationships.

2. MEASURING DEPENDENCE WITH G-SQUARED

2·1. Defining G2 as a generalization of R2

The R-squared statistic measures how well the data fit a linear regression model. Given
Y = μ + βX + e with e ∼ N (0, σ 2), the standard estimate of R-squared can be derived from a
likelihood ratio test statistic for testing H0 : β = 0 against H1 : β |= 0, i.e.,
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Generalized R-squared for detecting dependence 131

R2 = 1 −
{

L(θ̂)

L0(θ̂0)

}−2/n

,

where L0(θ̂0) and L(θ̂) are the maximized likelihoods under H0 and H1.
Throughout the paper, we let X and Y be univariate continuous random variables.As a working

model, we assume that the relationship between X and Y can be characterized as Y = f (X )+εσX ,
with ε ∼ N (0, 1) and σX > 0. If X and Y are independent, then f (X ) ≡ μ and σ 2

X ≡ σ 2. Now
let us look at the piecewise-linear relationship

f (X ) = μh + βhX , σ 2
X = σ 2

h , ch−1 < X � ch,

where ch (h = 0, . . . , K) are called the breakpoints. While this working model allows for
heteroscedasticity, it requires constant variance within each segment between two consecutive
breakpoints. Testing whether X and Y are independent is equivalent to testing whether μh = μ

and σ 2
h = σ 2. Given ch (h = 0, . . . , K), the likelihood ratio test statistic can be written as

LR = exp

(
n

2
log ν̂2 −

K∑
h=1

nh

2
log σ̂ 2

h

)
,

where ν̂2 is the overall sample variance of Y and σ̂ 2
h is the residual variance after regressing Y

on X for X ∈ (ch−1, ch]. Because R2 is a transformation of the likelihood ratio and converges to
the square of the Pearson correlation coefficient, we perform the same transformation on LR. The
resulting test statistic converges to a quantity related to the conditional mean and the conditional
variance of Y on X . It is easy to show that as n → ∞,

1 − (LR)−2/n → 1 − exp
[
E{log var(Y | X )} − log var(Y )

]
. (1)

When K = 1, the relationship degenerates to a simple linear relation and 1−(LR)−2/n is exactly R2.
More generally, because a piecewise-linear function can approximate any almost everywhere

continuous function, we can employ the same hypothesis testing framework as above to derive
(1) for any such approximation. Thus, for any pair of random variables (X , Y ), the following
concept is a natural generalization of R-squared:

G2
Y |X = 1 − exp

[
E{log var(Y | X )} − log var(Y )

]
,

in which we require that var(Y ) < ∞. Evidently, G2
Y |X lies between 0 and 1, and is equal to zero if

and only if both E(Y | X ) and var(Y | X ) are constant. The definition of G2
Y |X is closely related to

the R-squared defined by segmented regression (Oosterbaan & Ritzema, 2006), discussed in the
Supplementary Material. We symmetrize G2

Y |X to arrive at the following quantity as the definition
of the G-squared statistic:

G2 = max(G2
Y |X , G2

X |Y ),

provided var(X ) + var(Y ) < ∞. Thus, G2 = 0 if and only if E(X | Y ), E(Y | X ), var(Y | X )

and var(X | Y ) are all constant, which is not equivalent to independence of X and Y . In practice,
however, dependent cases with G2 = 0 are rare.
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132 X. WANG, B. JIANG AND J. S. LIU

2·2. Estimation of G2

Without loss of generality, we focus on the estimation of G2
Y |X ; G2

X |Y can be estimated in the
same way by interchanging X and Y . When Y = f (X ) + εσX with ε ∼ N (0, 1) for an almost
everywhere continuous function f (·), we can use a piecewise-linear function to approximate f (X )

and estimate G2. However, in practice the number and locations of the breakpoints are unknown.
We propose two estimators of G2

Y |X , the first aiming to find the maximum penalized likelihood
ratio among all possible piecewise-linear approximations, and the second focusing on a Bayesian
average of all approximations.

Suppose that we have n sorted independent observations, (xi, yi) (i = 1, . . . , n), such that
x1 < · · · < xn. For the set of breakpoints, we only need to consider ch = xi. Each interval
sh = (ch−1, ch] is called a slice of the observations, so that ch (h = 0, . . . , K) divide the range
of X into K non-overlapping slices. Let nh denote the number of observations in slice h, and let
S(X ) denote a slicing scheme of X , i.e., S(xi) = h if xi ∈ sh, which is abbreviated as S whenever
the meaning is clear. Let |S| be the number of slices in S and let mS denote the minimum size of
all the slices.

To avoid overfitting when maximizing loglikelihood ratios both over unknown parameters
and over all possible slicing schemes, we restrict the minimum size of each slice to mS � m
and maximize the loglikelihood ratio with a penalty on the number of slices. For simplicity, let
m = �n1/2�. Thus, we focus on the penalized loglikelihood ratio

nD(Y | S, λ0) = 2 log LRS − λ0(|S| − 1) log n, (2)

where LRS is the likelihood ratio for S and λ0 log n > 0 is the penalty incurred for one addi-
tional slice. From a Bayesian perspective, this is equivalent to assigning the prior distribution
for the number of slices to be proportional to n−λ0(|S|−1)/2. Suppose that each observation
xi (i = 1, . . . , n − 1) has probability pn = n−λ0/2/(1 + n−λ0/2) of being the breakpoint
independently. Then the probability of a slicing scheme S is

p|S|−1
n (1 − pn)

n−|S| ∝
(

pn

1 − pn

)|S|−1

= n−λ0(|S|−1)/2.

When λ0 = 3, the statistic −nD(Y | S, λ0) is equivalent to the Bayesian information criterion
(Schwarz, 1978) up to a constant.

Treating the slicing scheme as a nuisance parameter, we can maximize over all allowable
slicing schemes to obtain that

D(Y | X , λ0) = max
S: mS�m

D(Y | S, λ0).

Our first estimator of G2
Y |X , which we call G2

m with m standing for the maximum likelihood ratio,
can be defined as

G2
m(Y | X , λ0) = 1 − exp{−D(Y | X , λ0)}.

Hence, the overall G-squared can be estimated as

G2
m(λ0) = max{G2

m(Y | X , λ0), G2
m(X | Y , λ0)}.
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Generalized R-squared for detecting dependence 133

By definition, G2
m(λ0) lies between 0 and 1, and G2

m(λ0) = R2 when the optimal slicing schemes
for both directions have only one slice. Later, we will show that when X and Y follow a bivariate
normal distribution, G2

m(λ0) = R2 almost surely for large λ0.
Another attractive way to estimate G2 is to integrate out the nuisance slicing scheme parameter.

A full Bayesian approach would require us to compute the Bayes factor (Kass & Raftery, 1995),
which may be undesirable since we do not wish to impose too strong a modelling assumption. On
the other hand, however, the Bayesian formalism may guide us to a desirable integration strategy
for the slicing scheme. We therefore put the problem into a Bayes framework and compute the
Bayes factor for comparing the null and alternative models. The null model is only one model
while the alternative is any piecewise-linear model, possibly with countably infinite pieces. Let
p0(y1, . . . , yn) be the marginal probability of the data under the null. Let ωS be the prior probability
for slicing scheme S and let pS(y1, . . . , yn) denote the marginal probability of the data under S.
The Bayes factor can be written as

BF =
∑

S: ms�m

ωS × pS(y1, . . . , yn)

p0(y1, . . . , yn)
, (3)

where mS is the minimum size of all the slices of S. The marginal probabilities are not easy
to compute even with proper priors. Schwarz (1978) states that if the data distribution is in the
exponential family and the parameter is of dimension k , the marginal probability of the data can
be approximated as

p(y1, . . . , yn) ≈ L exp{−k(log n − log 2π)/2}, (4)

where L is the maximized likelihood. In our set-up, the number of parameters k for the null model
is 2, and for an alternative model with a slicing scheme S it is 3|S|. Inserting expression (4) into
both the numerator and the denominator of (3), we obtain

BF ≈
∑

S: ms�m

ωS LRS exp{−(3|S| − 2)(log n − log 2π)/2}. (5)

If we take ωS ∝ n−λ0(|S|−1)/2 (λ0 > 0), which corresponds to the penalty term in (2) and is
involved in defining G2

m, the approximated Bayes factor can be restated as

BF(λ0) =
⎡
⎣ ∑

S: mS�m

n−{λ0(|S|−1)}/2

⎤
⎦

−1 ∑
S: mS�m

(
2π

n

)(3|S|−2)/2

exp
{n

2
D(Y | S, λ0)

}
. (6)

As we will discuss in § 2·5, BF(λ0) can serve as a marginal likelihood function for λ0 and be used to
find an optimal λ0 suitable for a particular dataset. This quantity also looks like an average version
of G2

m, but with an additional penalty. Since BF(λ0) can take values below 1, its transformation
1 − BF(λ0)

−2/n, as in the case where we derived R2 via the likelihood ratio test, can take negative
values, especially when X and Y are independent. It is therefore not an ideal estimator of G2.

By removing the model size penalty term in (5), we obtain a modified version, which is simply
a weighted average of the likelihood ratios and is guaranteed to be greater than or equal to 1:

BF
∗(λ0) =

⎡
⎣ ∑

S: mS�m

n−{λ0(|S|−1)}/2

⎤
⎦

−1 ∑
S: mS�m

exp
{n

2
D(Y | S, λ0)

}
.
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134 X. WANG, B. JIANG AND J. S. LIU

We can thus define a quantity similar to our likelihood formulation of R-squared,

G2
t (Y | X , λ0) = 1 − BF

∗(λ0)
−2/n,

which we call the total G-squared, and define

G2
t (λ0) = max

{
G2

t (Y | X , λ0), G2
t (X | Y , λ0)

}
.

We show later that G2
m(λ0) and G2

t (λ0) are both consistent estimators of G2.

2·3. Theoretical properties of the G2 estimators

In order to show that G2
m(λ0) and G2

t (λ0) converge to G2 as the sample size goes to infinity, we
introduce the notation μX (y) = E(X | Y = y), μY (x) = E(Y | X = x), ν2

X (y) = var(X | Y = y)
and ν2

Y (x) = var(Y | X = x), and assume the following regularity conditions.

Condition 1. The random variables X and Y are bounded continuously with finite variances
such that ν2

Y (x), ν2
X (y) > b−2 > 0 almost everywhere for some constant b.

Condition 2. The functions μY (x), μX (y), ν2
Y (x) and ν2

X (y) have continuous derivatives almost
everywhere.

Condition 3. There exists a constant C > 0 such that

max
{|μ′

X (y)|, |ν′
X (y)|} � CνX (y), max

{|μ′
Y (x)|, |ν′

Y (x)|} � CνY (x)

almost surely.

With these preparations, we can state our main results.

THEOREM 1. Under Conditions 1–3, for all λ0 > 0,

G2
m(Y | X , λ0) → G2

Y |X , G2
t (Y | X , λ0) → G2

Y |X

almost surely as n → ∞. Thus, G2
m(λ0) and G2

t (λ0) are consistent estimators of G2.

A proof of the theorem and numerical studies of the estimators’ consistency are provided
in the Supplementary Material. It is expected that G2

m(λ0) should converge to G2 because of
the way it is constructed. It is surprising that G2

t (λ0) also converges to G2. The result, which
links G2 estimation with the likelihood ratio and Bayesian formalism, suggests that most of the
information up to the second moment has been fully utilized in the two test statistics. The theorem
thus supports the use of G2

m(λ0) and G2
t (λ0) for testing whether X and Y are independent. The

null distributions of the two statistics depend on the marginal distributions of X and Y , and can be
generated empirically using permutation. One can also perform a quantile-based transformation
on X and Y so that their marginal distributions become standard normal; however, the G2 based
on the transformed data tends to lose some power.

When X and Y are bivariate normal, the G-squared statistic is almost the same as the R-squared
statistic when λ0 is large enough.
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Generalized R-squared for detecting dependence 135

THEOREM 2. If X and Y follow a bivariate normal distribution, then for n large enough,

pr{G2
m(λ0) = R2} > 1 − 3n−λ0/3+5.

So, for λ0 > 18 and n → ∞, we have G2
m(λ0) = R2 almost surely.

The lower bound on λ0 is not tight and can be relaxed in practice. Empirically, we have observed
that λ0 = 3 is large enough for G2

m(λ0) to be very close to R2 in the bivariate normal setting.

2·4. Dynamic programming algorithm for computing G2
m and G2

t

The brute force calculation of either G2
m or G2

t has a computational complexity of O(2n)

and is prohibitive in practice. Fortunately, we have found a dynamic programming scheme for
computing both quantities with a time complexity of only O(n2). The algorithms for computing
G2

m(Y | X , λ0) and G2
t (Y | X , λ0) are roughly the same except for one operation, namely

maximization versus summation, and can be summarized by the following steps.

Step 1 (Data preparation). Arrange the observed pairs (xi, yi) (i = 1, . . . , n) according to the
x values sorted from low to high. Then normalize yi (i = 1, . . . , n) such that

∑n
i=1 yi = 0 and∑n

i=1 y2
i = 1.

Step 2 (Main algorithm). Define m = �n1/2� as the smallest slice size, λ = −λ0 log(n)/2 and
α = exp(λ). Initialize three sequences, (Mi, Bi, Ti) (i = 1, . . . , n) with M1 = 0 and B1 = T1 = 1.
For i = m, . . . , n, recursively fill in entries of the tables with

Mi = max
k∈Ki

(
λ + Mk + lk:i

)
, Bi =

∑
k∈Ki

αBk , Ti =
∑
k∈Ki

αTkLk:i,

where Ki = {1}∪{k : k = m+1, . . . , i −m+1}, lk:i = −(i −k) log(σ̂ 2
k:i)/2 and Lk:i = exp{lk:i},

with σ̂ 2
k:i being the residual variance of regressing y on x for observations (xj, yj) (j = k , . . . , i).

Step 3. The final result is

G2
m = 1 − exp{Mn − λ}, G2

t = 1 − (Tn/Bn)
−2/n.

Here, Mi (i = m, . . . , n) stores the partial maximized likelihood ratio up to the ordered obser-
vation (xk , yk) (k = 1, . . . , i); Bi (i = m, . . . , n) stores the partial normalizing constant; and
Ti (i = m, . . . , n) stores the partial sum of the likelihood ratios. When n is extremely large, we
can speed up the algorithm by considering fewer slice schemes. For example, we can divide X into
chunks of size m by rank and consider only slicing schemes between the chunks. For this method,
the computational complexity is O(n). We can compute G2

m(X | Y , λ0) and G2
t (X | Y , λ0) sim-

ilarly to get G2
m(λ0) and G2

t (λ0). Empirically, the algorithm is faster than many other powerful
methods, as shown in the Supplementary Material.

2·5. An empirical Bayes strategy for selecting λ0

Although the choice of the penalty parameter λ0 is not critical for the general use of G2,
we typically take λ0 = 3 for G2

m and G2
t because D(Y | X , 3) is equivalent to the Bayesian

information criterion. Fine-tuning λ0 can improve the estimation of G2; we therefore propose
a data-driven strategy for choosing λ0 adaptively. The quantity BF(λ0) in (6) can be viewed as
an approximation to pr(y1, . . . , yn | λ0) up to a normalizing constant. Hence we can use the
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Fig. 1. Sampling distributions of G2
m and G2

t under the two models described in § 2·5 with G2
Y |X = 0·5 for

λ0 = 0·5 (dashed), 1·5 (dotted), 2·5 (dot-dash) and 3·5 (solid). The density function in each case is estimated
by the histogram. The sampling distributions of G2

m and G2
t with the empirical Bayes selection of λ0 are

shaded grey and overlaid on top of the other density functions.

maximum likelihood principle to choose the λ0 that maximizes BF(λ0). We then use the chosen
λ0 to compute G2

m and G2
t as estimators of G2. In practice, we evaluate BF(λ0) for a finite set of

λ0 values, such as {0·5, 1, 1·5, 2, 2·5, 3, 3·5, 4}, and pick the λ0 value that maximizes BF(λ0);
BF(λ0) can be computed efficiently via a dynamic programming algorithm similar to that described
in § 2·4. As an illustration, we consider the sampling distributions of G2

m(λ0) and G2
t (λ0) with

λ0 = 0·5, 1·5, 2·5 and 3·5 for the following two scenarios:

Example 1. X ∼ N (0, 1) and Y = X + σε with ε ∼ N (0, 1).

Example 2. X ∼ N (0, 1) and Y = sin(4πx)/0·7 + σε with ε ∼ N (0, 1).

We simulated n = 225 data points. For each model, we set σ = 1 so that G2
Y |X = 0·5 and

performed 1000 replications. Figure 1 shows histograms of G2
m(λ0) and G2

t (λ0) with different
λ0 values. The results demonstrate that for relationships which can be approximated well by a
linear function, a larger λ0 is preferred because it penalizes the number of slices more heavily,
so that the resulting sampling distributions are less biased. On the other hand, for complicated
relationships such as trigonometric functions, a smaller λ0 is preferable because it allows more
slices, which can help to capture fluctuations in the functional relationship. The figure also shows
that the empirical Bayes selection of λ0 worked very well, leading to a proper choice of λ0 for
each simulated dataset from both examples and resulting in the most accurate estimates of G2.
Additional simulation studies and discussion of the consistency of the data-driven strategy can
be found in the Supplementary Material.

3. POWER ANALYSIS

Next, we compare the power of different independence testing methods for various rela-
tionships. Here we again fixed λ0 = 3 for both G2

m and G2
t . Other methods we tested

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/104/1/129/3045032 by guest on 20 August 2022



Generalized R-squared for detecting dependence 137

include the alternating conditional expectation (Breiman & Friedman, 1985), Genest’s test (Gen-
est & Rémillard, 2004), Pearson correlation, distance correlation (Szèkely et al., 2007), the
method of Heller et al. (2016), the characteristic function method (Kankainen & Ushakov,
1998), Hoeffding’s test (Hoeffding, 1948), the mutual information method (Kraskov et al.,
2004), and two methods, MICe and TICe, based on the maximum information criterion (Reshef
et al., 2011). We follow the procedure for computing the powers of different methods as
described in Reshef et al. (arXiv:1505.02214) and a 2012 online note by N. Simon and
R. J. Tibshirani.

For different functional relationships f (X ) and different noise levels σ 2, we let

X ∼ Un(0, 1), Y = f (X ) + εσ , ε ∼ N (0, 1),

where var{f (X )} = 1. Thus G2
Y |X = (1 + σ 2)−1 is a monotone function of the signal-to-noise

ratio, and it is of interest to observe how the performances of different methods deteriorate as the
signal strength weakens for various functional relationships. We used permutation to generate
the null distribution and to set the rejection region in all cases.

Figure 2 shows power comparisons for eight functional relationships. We set the sample size
to n = 225 and performed 1000 replications for each relationship and each G2

Y |X value. For the
sake of clarity, here we plot only Pearson correlation, distance correlation, the method of Heller
et al. (2016), TICe, G2

m and G2
t . For any method with tuning parameters, we chose the parameter

values that resulted in the highest average power over all the examples. Due to computational
concerns, we chose K = 3 for the method of Heller et al. (2016). It can be seen that G2

m and
G2

t performed robustly, and were always among the most powerful methods, with G2
t being

slightly more powerful than G2
m in nearly all the examples. They outperformed the other meth-

ods in cases such as the high-frequency sine, triangle and piecewise-constant functions, where
piecewise-linear approximation is more appropriate than other approaches. For monotonic exam-
ples such as linear and radical relationships, G2

m and G2
t had slightly lower power than Pearson

correlation, distance correlation and the method of Heller et al. (2016), but were still highly
competitive.

We also studied the performances of these methods for n = 50, 100 and 400, and found that
G2

m and G2
t still had high power regardless of n, although their advantages were much less obvious

when n was small. More details can be found in the Supplementary Material.

4. DISCUSSION

The proposed G-squared statistic can be viewed as a direct generalization of the R-squared
statistic. While maintaining the same interpretability as the R-squared statistic, the G-squared
statistic is also a powerful measure of dependence for general relationships. Instead of resorting
to curve-fitting methods to estimate the underlying relationship and the G-squared statistic, we
employed piecewise-linear approximations with penalties and dynamic programming algorithms.
Although we have considered only piecewise-linear functions, one could potentially approximate
a relationship between two variables using piecewise polynomials or other flexible basis func-
tions, with perhaps additional penalty terms to control the complexity. Furthermore, it would be
worthwhile to generalize the slicing idea to testing dependence between two multivariate random
variables.
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Fig. 2. The powers of G2
m (black solid), G2

t (grey solid), Pearson correlation (grey circles), distance
correlation (black dashed), the method of Heller et al. (2016) (black dotted) and TICe (black cir-
cles) for testing independence between X and Y when the underlying true functional relationships
are linear, quadratic, cubic, radical, low-frequency sine, triangle, high-frequency sine, and piece-
wise constant. The horizontal axis represents G2

Y |X , a monotone function of the signal-to-noise ratio,
and the vertical axis is the power. We chose n = 225 and performed 1000 replications for each

relationship and each G2
Y |X value.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of the theorems, soft-
ware implementation details, discussions on segmented regression, a study of equitability, and
more simulation results.
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