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Abstract. For r = (r1, . . . , rd) ∈ Rd the mapping τr : Zd → Zd given by

τr(a1, . . . , ad) = (a2, . . . , ad,−br1a1 + · · ·+ rdadc)
where b·c denotes the floor function, is called a shift radix system if for each a ∈ Zd there
exists an integer k > 0 with τk

r (a) = 0. As shown in Part I of this series of papers, shift
radix systems are intimately related to certain well-known notions of number systems like β-
expansions and canonical number systems. After characterization results on shift radix systems
in Part II of this series of papers and the thorough investigation of the relations between shift
radix systems and canonical number systems in Part III, the present part is devoted to further
structural relationships between shift radix systems and β-expansions. In particular we establish
the distribution of Pisot polynomials with and without the finiteness property (F).

1. Introduction

This is the fourth part of a series of papers that is devoted to the systematic study of so-
called shift radix systems. Shift radix systems are dynamical systems that are strongly related to
well-known notions of number systems. First of all, let us recall their exact definition.

Definition 1.1. Let d ≥ 1 be an integer and r = (r1, . . . , rd) ∈ Rd. To r we associate the mapping
τr : Zd → Zd in the following way: For a = (a1, . . . , ad) ∈ Zd let1

τr(a) = (a2, . . . , ad,−brac),
where ra = r1a1 + · · · + rdad, i.e., the inner product of the vectors r and a. We call τr a shift
radix system (SRS for short) if for all a ∈ Zd we can find some k > 0 with τk

r (a) = 0.

In Part I [2] (cf. also [1], where some preliminary studies are contained) of this series we proved
that SRS form a common generalization of canonical number systems in residue class rings of
polynomial rings (see [9] for a definition) as well as β-expansions of real numbers (which were first
studied in [10] and are defined below). Furthermore, some partial results are given that point out
the difficulty of characterizing all SRS parameters. A thorough study of the SRS parameters in
dimension d = 2 is done in Part II [3], while Part III [4] shows that CNS polynomials can be used
in order to approximate the set of SRS parameters. The present paper is devoted to the relation
between β-expansions and SRS.

The following classes of sets are needed for our studies. For d ∈ N, d ≥ 1 let

Dd :=
{
r ∈ Rd : ∀a ∈ Zd the sequence (τk

r (a))k≥0 is ultimately periodic
}

and(1.1)

D0
d :=

{
r ∈ Rd : ∀a ∈ Zd ∃k > 0 : τk

r (a) = 0
}

.
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Dd is strongly related to the set of contracting polynomials. In particular, let

Ed(r) :=
{
(r1, . . . , rd) ∈ Rd : Xd + rdX

d−1 + · · ·+ r1 has only roots y ∈ C with |y| < r
}

.

In [2, Lemmas 4.1, 4.2 and 4.3] we proved that

(1.2) int (Dd) = Ed(1).

D0
d is the set of all parameters r ∈ Rd that give rise to an SRS.
As β-expansions form a central object in the investigations done in the present paper we give

their exact definition (cf. for instance [6, 8, 10]). Before that we recall the definition of Pisot and
Salem numbers.

Let P (X) = Xd − b1X
d−1 − · · · − bd ∈ Z[X] be an irreducible polynomial over Z.

• If P has a real root greater than one and all other roots are located in the open unit disk
then P is called a Pisot polynomial. The dominant root is called a Pisot number.

• If P has a real root greater than one and all other roots are located in the closed unit
disk and at least one of them has modulus 1 then P is called a Salem polynomial. The
dominant root is called a Salem number.

Let β > 1 be a non-integral real number and let A = {0, 1, . . . , bβc} be the set of digits. Then
each γ ∈ [0,∞) can be represented uniquely as a β-expansion by

(1.3) γ = amβm + am−1β
m−1 + · · ·

with ai ∈ A such that

(1.4) 0 ≤ γ −
m∑

i=n

aiβ
i < βn

holds for all n ≤ m. Since by condition (1.4) the digits ai are selected as large as possible, the
representation in (1.3) is often called the greedy expansion of γ with respect to β.

Schmidt [11] proved that in order to get ultimately periodic expansions for all γ ∈ Q ∩ (0, 1) it
is necessary for β to be a Pisot or a Salem number. We are interested in base numbers β which
give rise to finite β-expansions for large classes of numbers. Let Fin(β) be the set of positive real
numbers having finite greedy expansion with respect to β. We say that β > 1 has property (F) if

Fin(β) = Z[1/β] ∩ [0,∞),

that is, all reasonable candidates admit finite β-expansions. It is shown in [6, Lemma 1] that
(F) can hold only for Pisot numbers β. In [2, Theorem 2.1] property (F) is related to the SRS
property. We recall this in more detail.

Associated to Pisot and Salem numbers with periodic β-expansions and with property (F),
respectively, we define for each d ∈ N, d ≥ 1 the sets

Bd := {(b1, . . . , bd) ∈ Zd : Xd − b1X
d−1 − · · · − bd is a Pisot or Salem polynomial} and

B0
d := {(b1, . . . , bd) ∈ Zd : Xd − b1X

d−1 − · · · − bd is a Pisot polynomial with property (F)}.
We obviously have B0

d ⊆ Bd. Let us consider the map ψ : Bd → Rd−1 defined as follows. If
(b1, . . . , bd) ∈ Bd then let β be the dominant root of the (Pisot or Salem) polynomial

Xd − b1X
d−1 − · · · − bd.

Now let
ψ(b1, . . . , bd) = (rd, . . . , r2),

where
rj = bjβ

−1 + bj+1β
−2 + · · ·+ bdβ

j−d−1 (2 ≤ j ≤ d).
In other words, the numbers r2, . . . , rd are defined in a way that they satisfy the relation

Xd − b1X
d−1 − · · · − bd = (X − β)(Xd−1 + r2X

d−2 + · · ·+ rd).

As (b1, . . . , bd) ∈ Bd, the polynomial Xd−1 + r2X
d−2 + · · ·+ rd has all its roots in the closed unit

circle. Together with (1.2) this implies that

ψ(Bd) ⊆ Dd−1.
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Moreover Theorem 2.1 of [2] implies that

ψ(B0
d) ⊆ D0

d−1.

We push the relation between Pisot numbers, property (F) and SRS further in the present paper
and show that ψ(Bd) and ψ(B0

d) are excellent approximations of Dd−1 and D0
d−1, respectively. To

formulate our main results we need some notation. For M ∈ N>0 we set

(1.5) Bd(M) :=
{
(b2, . . . , bd) ∈ Zd−1 : (M, b2, . . . , bd) ∈ Bd

}

and

(1.6) B0
d(M) :=

{
(b2, . . . , bd) ∈ Zd−1 : (M, b2, . . . , bd) ∈ B0

d

}
.

With these notations we are able to state the following theorem.

Theorem 1.2. Let d ≥ 2. We have

(1.7)
∣∣∣∣
|Bd(M)|
Md−1

− λd−1(Dd−1)
∣∣∣∣ = O(M−1/(d−1)),

where λd−1 denotes the (d− 1)-dimensional Lebesgue measure.

As we do not have enough information about the structure of D0
d, we are not able to prove an

asymptotic estimate for the error term for B0
d(M). However, we are able to establish the main

term, more precisely we prove:

Theorem 1.3. Let d ≥ 2. We have

(1.8) lim
M→∞

|B0
d(M)|

Md−1
= λd−1(D0

d−1).

These results are analogous to [4, Theorems 4.1 and 6.1], where corresponding results are proved
for canonical number system polynomials. Notice that λd(Dd) is equal to 2, 4, 16

3 , 64
9 and 1024

135 for
d = 1, 2, 3, 4 and 5, respectively. This is trivial for d = 1 and 2, while the other three values were
computed by Paul Surer, to whom we are much indebted for this information.

2. Properties of two auxiliary mappings

In all what follows let d ≥ 2. For M ∈ Z define the mapping χM : Rd−1 7→ Zd such that if
r = (rd, . . . , r2) ∈ Rd−1 then let χM (r) = b = (b1, . . . , bd), where b1 = M , bi = bri(M + r2) −
ri+1 + 1

2c, i = 2, . . . , d− 1, bd = brd(M + r2) + 1
2c. It is easy to check that if b = (b1, . . . , bd) ∈ Bd,

then χb1(ψ(b)) = b, i.e., χb1 is one of the left inverses of the mapping ψ. We pointed out above
that ψ(Bd) ⊆ Dd−1 and ψ(B0

d) ⊆ D0
d−1. To prove the main theorem we need some properties of

the sets
Sd(M) := χM (Dd−1) and S0

d(M) := χM (D0
d−1)

as well as
Sd :=

⋃

M∈Z
Sd(M) and S0

d :=
⋃

M∈Z
S0

d(M).

Our first lemma shows that if |M | is large enough then the polynomials associated to the ele-
ments of Sd behave in some sense similar as Pisot or Salem polynomials. However, the example r =
(−0.9999, 2.99970001,−2.9998) shows that the polynomial associated to χM (r) is not necessarily
a Pisot or Salem polynomial if r ∈ Dd. Indeed, we have χ1800(r) = (1800,−5394, 5391,−1797) and
the polynomial X4−1800X3 +5394X2−5391X +1797 has two real roots 1.084..., 1796.9999997...,
which are larger than one.

Lemma 2.1. There exist constants M0 > 0, c1 = c1(d) and c2 = c2(d) such that the following is
true: Let M ∈ Z, (b1, . . . , bd) ∈ Sd(M) and P (X) = Xd − b1X

d−1 − · · · − bd. If |b1| = |M | ≥ M0

then P (X) has a real root β for which the inequalities

|β − b1| < c1 and(2.1) ∣∣∣∣β − b1 − b2

b1

∣∣∣∣ <
c2

|b1| + O

(
1
b2
1

)
(2.2)

hold.
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Proof. In this proof the constants implied by the O-notation depend only on d.
There exists (rd, . . . , r2) ∈ Dd−1 such that b = (b1, . . . , bd) = χM (rd, . . . , r2). It is easy to see

that |ri| ≤ 2d−1. Thus bi = Mri + O(1), i = 2, . . . , d. Put Q(X) = b2X
d−2 + · · · + bd, i.e., let

P (X) = Xd −MXd−1 −Q(X). Then P (M) = −Q(M) and

(2.3) P (M + t) = t(M + t)d−1 −Q(M + t).

Assume that M > 0 and Q(M) > 0 for M large enough. As |Q(M +t)| ≤ d2dM(M +t)d−2 we have
P (M +t) > 0 provided that t ≥ d2d. Thus P (X) has a real root in the interval (M, M +d2d). Now
we assume that Q(M) < 0 for all large enough M . By (2.3) we have P (M + t) < 0 if t ≤ −d2d.
Thus P (X) has again a real root, this time in the interval (M − d2d,M).

The cases M < 0 can be handled similarly. Thus we proved (2.1) with c1 = d2d.
The relation P (β) = 0 implies

β = b1 +
b2

β
+

b3

β2
+ · · ·+ bd

βd−1
.

Thus

β − b1 − b2

b1
=

(b1 − β)b2

b1β
+

b3

β2
+ · · ·+ bd

βd−1
.

Using this expression, inequality (2.1), b1 = M and the estimates |bi| ≤ 2d|M |, i = 2, . . . , d we get
∣∣∣∣β − b1 − b2

b1

∣∣∣∣ ≤ c12d−1

|b1| − c1
+

2d|b1|
(|b1| − c1)2

+
d−1∑

j=3

2d|b1|
(|b1| − c1)j

<
c2

|b1| + O

(
1
b2
1

)
,

which proves the second assertion of the lemma. ¤

Now we are in the position to extend the definition of ψ from the set Bd to Sd. Indeed, for
(b1, . . . , bd) ∈ Sd \ Bd consider the polynomial

P (X) = Xd − b1X
d−1 − · · · − bd.

Select a real root β of P (X) in the following way:
• if |b1| < M0 then choose β to be some root of P (X),
• otherwise choose β to be a root of P (X) that satisfies (2.1) and (2.2) of Lemma 2.1.

Then let
ψ(b1, . . . , bd) = (rd, . . . , r2),

where the real numbers r2, . . . , rd are defined in a way that they satisfy the relation

Xd − b1X
d−1 − · · · − bd = (X − β)(Xd−1 + r2X

d−2 + · · ·+ rd).

We also introduce another mapping, which yields vectors with rational coordinates approximating
ψ(b1, . . . , bd) good enough provided that (b1, . . . , bd) ∈ Sd. It is easy to see that there exists a
constant M1 = M1(d) > 0 such that b2 6= −b2

1 holds for each

(b1, . . . , bd) ∈ S̃d

where
S̃d := {(b1, . . . , bd) ∈ Sd : |b1| ≥ M1}.

Let ψ̃ : S̃d 7→ Qd−1 be defined by

ψ̃(b1, . . . , bd) =

(
bd

b1 + b2
b1

,
bd−1

b1 + b2
b1

+
bd

b2
1

, . . . ,
b2

b1 + b2
b1

+
b3

b2
1

)
.

The next lemma shows that if (b1, . . . , bd) ∈ Sd with |b1| large enough then ψ̃(b1, . . . , bd) is a good
approximation of ψ(b1, . . . , bd). We actually prove
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Lemma 2.2. Let (b1, . . . , bd) ∈ Sd and assume that |b1| is large enough. Then

∣∣∣ψ̃(b1, . . . , bd)− ψ(b1, . . . , bd)
∣∣∣
∞

<
c3

b2
1

+ O

(
1
|b1|3

)
,

where c3 as well as the implied constant depend only on d.

Proof. Using Lemma 2.1 we estimate the distance of the coordinates starting by the first one.
∣∣∣∣∣
bd

β
− bd

b1 + b2
b1

∣∣∣∣∣ =
|bd|
|β|

1∣∣∣b1 + b2
b1

∣∣∣

∣∣∣∣β − b1 − b2

b1

∣∣∣∣

<
2d|b1|

(|b1| − c1)(|b1| − 2d)

(
c2

|b1| + O

(
1
b2
1

))

<
c31

b2
1

+ O

(
1
|b1|3

)
.

We proceed with the second coordinate and get
∣∣∣∣∣
bd−1

β
+

bd

β2
− bd−1

b1 + b2
b1

− bd

b2
1

∣∣∣∣∣ <
|bd−1|
|β|

1∣∣∣b1 + b2
b1

∣∣∣

∣∣∣∣β − b1 − b2

b1

∣∣∣∣ +
|bd|
β2b2

1

∣∣β2 − b2
1

∣∣

<
2d|b1|

(|b1| − c1)(|b1| − 2d)

(
c2

|b1| + O

(
1
b2
1

))
+

2d

|β|b2
1

c1(2|β| − c1))

<
c32

b2
1

+ O

(
1
|b1|3

)
.

Finally we turn to the general case. In the next inequalities we have 2 ≤ j ≤ d− 2.
∣∣∣∣∣
bj

β
+

bj+1

β2
+ · · ·+ bd

βd+1−j
− bj

b1 + b2
b1

− bj+1

b2
1

∣∣∣∣∣

<
|bj |

|β|(|b1| − c1)

∣∣∣∣β − b1 − b2

b1

∣∣∣∣ +
|bj+1|
β2b2

1

∣∣β2 − b2
1

∣∣ +
|bj+2|
|β|3 +

d∑

k=j+3

|bk|
|β|k+1−j

<
2d

|b1| − c1

(
c2

|b1| + O

(
1
b2
1

))
+

c12d(2|β| − c1)
|β|b2

1

+
2d

(|b1| − c1)2
+ O(|b1|−3)

<
c33

b2
1

+ O

(
1
|b1|3

)
.

Putting c3 = max{c31, c32, c33,M1} we proved the statement. ¤

In the next lemma we show that the set ψ̃(S̃d) is lattice-like. More precisely we prove

Lemma 2.3. Let b = (b1, . . . , bd),b′ = (b′1, . . . , b
′
d) ∈ S̃d such that there exists a j ∈ {1, . . . , d}

such that bi = b′i, i 6= j and b′j = bj + 1. Then

|ψ̃(b1, . . . , bd)k−ψ̃(b′1, . . . , b
′
d)k| =





0, if j > 2 and k 6= d− j + 1, d− j + 2,
1
|b1| + O(b−2

1 ), if j > 2, k = d− j + 1 or j = 2, k = d− 1,

O(b−2
1 ), if j > 2, k = d− j + 2 or j = 2, k < d− 1,

|bd−k+1|
(

1
b21

+ O(|b1|−3
)

, if j = 1.

Here vk denotes the k-th coordinate of the vector v. The implied constants depend only on d.
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Proof. If j > 2 then ψ̃(b) and ψ̃(b′) differ only in the (d− j +1)-st and (d− j +2)-nd coordinates.
Comparing these coordinates we obtain

∣∣∣∣∣
b′j

b1 + b2
b1

− bj

b1 + b2
b1

∣∣∣∣∣ =

∣∣∣∣∣
1

b1 + b2
b1

∣∣∣∣∣ =
1
|b1| + O(b−2

1 ) for the (d− j + 1)-st coordinate and

b′j
b2
1

− bj

b2
1

=
1
b2
1

for the (d− j + 2)-nd coordinate.

In contrast, if j ∈ {1, 2} then all coordinates are changing. Consider first the case j = 2, i.e.,
b′2 = b2 + 1 and b′j = bj , j 6= 2. If k = 1 then we get

∣∣∣∣∣∣
b′d

b′1 + b′2
b′1

− bd

b1 + b2
b1

∣∣∣∣∣∣
=

∣∣∣∣∣
bd

b1 + b2+1
b1

− bd

b1 + b2
b1

∣∣∣∣∣

=
bd

|b1|
(
b1 + b2

b1

)(
b1 + b2+1

b1

)

= O(b−2
1 ).

If 1 < k < d− 1 then
∣∣∣∣∣∣

b′k
b′1 + b′2

b′1

+
b′k+1

b
′2
1

− bk

b1 + b2
b1

− bk+1

b2
1

∣∣∣∣∣∣
=

∣∣∣∣∣
bk

b1 + b2+1
b1

− bk

b1 + b2
b1

∣∣∣∣∣

= O(b−2
1 ).

Finally, if k = d− 1 then
∣∣∣∣∣∣

b′2
b′1 + b′2

b′1

+
b′3
b
′2
1

− b2

b1 + b2
b1

− b3

b2
1

∣∣∣∣∣∣
=

∣∣∣∣∣
b2 + 1

b1 + b2+1
b1

− b2

b1 + b2
b1

∣∣∣∣∣

=
|b1|∣∣∣b1 + b2

b1

∣∣∣
∣∣∣b1 + b2+1

b1

∣∣∣

=
1
|b1| + O(b−2

1 ).

If j = k = 1 then we have
∣∣∣∣∣∣

b′d
b′1 + b′2

b′1

− bd

b1 + b2
b1

∣∣∣∣∣∣
=

∣∣∣∣∣
bd

b1 + 1 + b2
b1+1

− bd

b1 + b2
b1

∣∣∣∣∣

=
bd∣∣∣b1 + b2

b1

∣∣∣
∣∣∣b1 + 1 + b2

b1+1

∣∣∣

∣∣∣∣
b2

b1
− 1− b2

b1 + 1

∣∣∣∣

= |bd|
(

1
b2
1

+ O(|b1|−3)
)

.

The estimates for the other coordinates in the case j = 1 are obtained in the same way as in the
case j = 2. ¤

3. Proof of Theorem 1.3

We start with the proof of Theorem 1.3. An essential fact is that the region D0
d can be approx-

imated by a finite union of rectangles

∆ = [a1, b1)× [a2, b2)× · · · × [ad, bd)
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with arbitrarily small error from above and from below. This means that D0
d is Jordan measurable.

Before we prove this fact we recall that a set X in Rd is Jordan measurable if for any positive ε
there exists finite set of rectangles Pi (i = 1, . . . , p) and Qj (j = 1, . . . , q) satisfying

⋃

j

Qj ⊂ X ⊂
⋃

i

Pi

and µd((
⋃

i Pi) \ (
⋃

j Qj)) < ε. Here µd is the Jordan measure, a finitely additive measure that
satisfies

µd(∆) =
d∏

k=1

(bk − ak).

Obviously Jordan measurability of X implies Lebesgue measurability and µd(X) = λd(X) holds
where λd is the d-dimensional Lebesgue measure. It is well known that X is Jordan measurable
if and only if ∂(X) is Jordan measurable and µd(∂(X)) = 0, i.e., the boundary of X has measure
zero. It is easy to prove the following result

Lemma 3.1. D0
d is Jordan measurable, i.e., µd(∂(D0

d)) = 0.

Proof. We use the same terminology as in [4]:

Dd,ε =
{
r ∈ Rd : ρ(r) < 1− ε

}

for ε ∈ (0, 1) where ρ(r) is the maximal modulus of all the roots of Xd + rdX
d−1 + · · ·+ r1 with

r = (r1, r2, . . . , rd). We put D0
d,ε = Dd,ε ∩ D0

d. Then we have essentially shown in [2] that D0
d,ε is

Jordan measurable. In fact, ∂(Dd,ε) is a finite union of algebraic sets and therefore Dd,ε is Jordan
measurable. D0

d,ε is also Jordan measurable because it is a subset of Dd,ε that emerges from
Dd,ε by removing finitely many convex polyhedra. Since Ed(1) is Jordan measurable, for a given
positive ε, there is a finite union ∆ of rectangles such that ∂(Ed(1)) ⊂ int (∆) with µd(∆) < ε/2.
There exists a positive κ such that

Ed(1 + κ) \ Ed(1− κ) ⊂ ∆.

Now
D0

d = D0
d,1−κ ∪ (D0

d \ D0
d,1−κ)

implies
∂(D0

d) ⊂ ∂(D0
d,1−κ) ∪∆.

Therefore there is a finite union ∆′ of rectangles such that ∂(D0
d) ⊂ ∆′ with µd(∆′) < ε. ¤

Now we are in a position to prove Theorem 1.3. For some rectangle ∆ = [u2, v2) × [u3, v3) ×
· · · × [ud, vd) in Rd−1 let

AM := {(b2, . . . , bd) ∈ Zd : ψ(M, b2, . . . , bd) ∈ ∆}.
To prove (1.8) it is enough to show that

lim
M→∞

|AM |
Md−1

=
d∏

i=2

(vi − ui),

when ∆ ⊂ E( 3
2 ). Indeed, by the above Lemma 3.1 one can approximate D0

d by a finite disjoint
union of rectangles ∆ ⊂ E( 3

2 ) from below and from above with an arbitrarily small error.
We note that ψ : Bd → Rd−1 is obviously injective. Thus when we fix b1 = M > 0, each

lattice point ( b2
M , . . . , bd

M ) with (M, b2, . . . , dd) ∈ Bd is in one to one correspondence with a point
ψ(M, b2, . . . , bd) which is close to ( b2

M , . . . , bd

M ). Therefore instead of counting the points of the
shape ψ(M, b2, . . . , bd) contained in ∆ we count the number of points in ∆ ∩ 1

MZ
d−1. Lemma 2.2

implies that rj = bj

b1
+ O( 1

b1
), j = 2, . . . , d, we see that this causes an error O(Md−2) and we get

|AM | =
∣∣∣∣
{

(b2, . . . , bd) ∈ Zd−1 :
(

b2

M
, . . . ,

bd

M

)
∈ ∆

}∣∣∣∣ + O(Md−2).
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Indeed, the term O(Md−2) estimates the number of lattice points of the form ( b2
M , . . . , bd

M ) which
have distances O(M−1) from ∂∆. Here the implied constants depend only on d.

Combining this with the trivial observation

lim
M→∞

1
Md−1

∣∣∣∣
{

(b2, . . . , bd) ∈ Zd−1 :
(

b2

M
, . . . ,

bd

M

)
∈ ∆

}∣∣∣∣ =
d∏

i=2

(vi − ui),

we get the assertion.

4. Auxiliary lemmata

In order to show Theorem 1.2 we need two preliminary lemmata which are stated and proved
in the present section. We start with a lemma that quantifies the continuous dependence of the
roots of a polynomial from its coefficients.

Lemma 4.1. Let d ∈ N and ρ, ε ∈ R>0. Then there exists a constant c4 > 0 depending only on d
and ρ with the following property: if all roots α ∈ C of the polynomial P (X) = Xd + pd−1X

d−1 +
· · ·+ p0 ∈ R[X] satisfy |α| < ρ and Q(X) = Xd + qd−1X

d−1 + · · ·+ q0 ∈ R[X] is chosen such that
|pi− qi| < ε, i = 0, . . . , d− 1 then for each root β of Q(X) there exists a root α of P (X) satisfying

(4.1) |β − α| < c4ε
1/d.

In particular, all roots β of Q(X) satisfy |β| < ρ + c4ε
1/d.

Proof. Let α1, . . . , αd denote the roots of P (X) and fix an arbitrary root β of Q(X). Let k ∈
{1, . . . , d}. Then

|pd−k| ≤
∑

1≤i1<···<ik≤d

|αi1 | . . . |αik
| ≤ ρk

(
d

k

)
.

This implies

|qd−k| ≤ ρk

(
d

k

)
+ ε.

By a well-known theorem of Cauchy ([7, Corollary 2.5.4]) we get

|β| ≤ max
1≤k≤d

{
(d|qd−k|)1/k

}
≤ c5ρ

with a constant c5 depending only on d.
Choose the root α of P (X) such that |β − α| is minimal among the differences |β − αj |. Then

on one hand

|Q(β)− P (β)| ≤
d∑

j=0

ε|β|j ≤ ε

d∑

j=0

(c5ρ)j ≤ c6ε.

On the other hand

|Q(β)− P (β)| =
d∏

j=1

|β − αj | ≥ |β − α|d.

Comparing the last two inequalities we get (4.1) with c4 = c
1/d
6 for the chosen β. But since β was

an arbitrary root of Q(X) this proves the result. ¤

The next lemma contains a refinement of Lemma 4.7 of [4] for Dd.

Lemma 4.2. Let 0 < η < 1. Then we have

λd (Ed (1 + η) \ Dd) ≤ 2d(d+1)/2λd(Ed(1))η

and
λd (Dd \ Ed (1− η)) ≤ 2d(d+1)/2λd(Ed(1))η.
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Proof. First we express Ed(t) with the help of Ed(1) for any positive real number t. Indeed let
(r1, . . . , rd) ∈ E(1). This means that the roots of the polynomial P (X) = Xd + rdX

d−1 + · · ·+ r1

lie in the open unit circle. Then the roots of P (X
t )td = Xd + rd

t Xd−1 + · · · + r1
td are of absolute

value at most t, i.e., the point (r1t
d, . . . , rdt) belongs to Ed(t). Obviously this mapping is bijective,

which means we have Ed(t) = diag(td, . . . , t)Ed(1), where diag(v1, . . . , vd) denotes the d-dimensional
diagonal matrix with entries v1, . . . , vd. This implies

(4.2) λd(Ed(t)) = td(d+1)/2λd(Ed(1)).

We prove only the first relation, because the second one can be done similarly. Let 0 < η < 1.
Setting t = 1 + η in (4.2) we get immediately

λd(Ed(1 + η) \ Dd) = λd(Ed(1 + η) \ Ed(1))
= λd(Ed(1 + η))− λd(Ed(1))

=
(
(1 + η)d(d+1)/2 − 1

)
λd(Ed(1))

≤ 2d(d+1)/2λd(Ed(1))η.

This proves the first assertion. The second one follows similarly. ¤

5. Proof of Theorem 1.2

It is possible to prove Theorem 1.2 without error term following the line of the Section 3.
However, we are able to give a bound for the error term in this case. This makes the proof of
Theorem 1.2 much more involved. Before starting with this proof we introduce some notation.
Let M > 0 and put

W (x, s) = {y ∈ Rd−1 : |x− y|∞ ≤ s/2} (x ∈ Rd−1, s ∈ R)

and
Wd−1(M) =

⋃

x∈Bd(M)

W (ψ(x),M−1).

Then we claim

(5.1) λd−1(Wd−1(M)) =
|Bd(M)|
Md−1

(
1 + O

(
1
M

))
.

Indeed, let M be large enough and x,y ∈ Bd(M) such that x− y = ej for some j ∈ {2, . . . , d}.
Then by Lemmata 2.2 and 2.3

|ψ(x)k − ψ(y)k| = |ψ(x)k − ψ̃(x)k + ψ̃(x)k − ψ̃(y)k + ψ̃(y)k − ψ(y)k|

=

{
1
M + O

(
1

M2

)
, if j ≥ 2, k = d− j + 1

O
(

1
M2

)
, otherwise.

Thus

(5.2) λd−1(W (ψ(x), M−1) ∩W (ψ(y),M−1)) = O

(
1

Md

)
.

As x has at most 2d neighbors we get

λd−1




⋃
x,y∈Bd(M)

x6=y

(
W (ψ(x),M−1) ∩W (ψ(y), M−1)

)

 = O

( |Bd(M)|
Md

)

and the claim is proved.
Now we are in the position to give a lower bound for λd−1(Dd−1). Let x ∈ Bd(M) such

that ψ(x) ∈ Ed−1

(
1− c4(2M)−1/(d−1)

) ⊆ Dd−1. Let y ∈ W (ψ(x),M−1). Then ρ(ψ(x)) <

1− c4(2M)−1/(d−1) and as |ψ(x)− y|∞ ≤ 1
2M we get ρ(y) < 1 by Lemma 4.1. Thus

(5.3)
⋃

x∈Bd(M)

ρ(ψ(x))<1−c4(2M)−1/(d−1)

W (ψ(x),M−1) ⊆ Dd−1.
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Putting η = c4(2M)−1/(d−1), Lemma 4.2 implies that the measure of the set

Dd−1 \ Ed−1

(
1− c4(2M)−1/(d−1)

)

is bounded by O(M−1/(d−1)). Moreover this set satisfies the conditions of the Theorem of H. Dav-
enport [5]. Observe that h and Vm of [5] are in the actual application independent from M .
Thus the number of x ∈ Bd(M) such that 1 − c4(2M)−1/(d−1) ≤ ρ(ψ(x)) ≤ 1 is at most
O(Md−1−1/(d−1)). Combining this with (5.2) and (5.3) we obtain the desired lower bound

(5.4) λd−1(Dd−1) ≥ |Bd(M)|
Md−1

(
1− c7M

−1/(d−1)
)

.

Here, c7 > 0 is a constant.

To prove an upper bound we need some preparation, more precisely we will construct for every
r = (rd, . . . , r2) ∈ Dd−1 and M a large enough integer vector b = (b1, . . . , bd) ∈ Zd such that ψ(b)
is located near enough to r.

Indeed put b = χM (r) and consider

ψ̃(b) =

(
bd

b1 + b2
b1

,
bd−1

b1 + b2
b1

+
bd

b2
1

, . . . ,
b2

b1 + b2
b1

+
b3

b2
1

)
.

We estimate the distance of the coordinates of this vector to r. Putting k = r2
2−r3
M for d > 2 and

k = r2
2+1
M for d = 2 we have k = O(M−1) and

r2 + k − 1
2M

<
b2

b1
=

b2

M
≤ r2 + k +

1
2M

.

As

(M + r2)rd − 1
2

< bd ≤ (M + r2)rd +
1
2

we obtain∣∣∣∣∣
bd

b1 + b2
b1

− rd

∣∣∣∣∣ ≤ max
{∣∣∣∣

(M + r2)rd + 1/2
M + r2 + k − 1/(2M)

− rd

∣∣∣∣ ,

∣∣∣∣
(M + r2)rd − 1/2

M + r2 + k + 1/(2M)
− rd

∣∣∣∣
}

.

This implies after a short computation
∣∣∣∣∣

bd

b1 + b2
b1

− rd

∣∣∣∣∣ ≤
1

2M
+ O

(
1

M2

)
.

A similar calculation proves
∣∣∣∣∣

bj

b1 + b2
b1

+
bj+1

b2
1

− rj

∣∣∣∣∣ ≤
1

2M
+ O

(
1

M2

)

for j = 2, . . . , d− 1. This means

|ψ̃(b)− r|∞ ≤ 1
2M

+ O

(
1

M2

)
.

Applying now Lemma 2.2 we obtain

|ψ(b)− r|∞ ≤ |ψ̃(b)− r|∞ + |ψ(b)− ψ̃(b)|∞ ≤ 1
2M

+ O

(
1

M2

)
.

Thus by Lemma 4.1 (note that ψ(b), r ∈ Ed−1(2)) we get

ρ(ψ(b)) ≤ ρ(r) + 2c4(2M)−1/(d−1) ≤ 1 + 2c4(2M)−1/(d−1)
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for large enough M . This means that if M is large enough then all but one root of Xd− b1X
d−1−

· · · − bd have absolute value at most 1 + 2c4(2M)−1/(d−1) and one root is close to M . We have
further

Dd−1 ⊆
⋃

x∈Zd
ψ(x)∈Ed−1(1+2c4(2M)−1/(d−1))

W (ψ(x), M−1)

=
⋃

x∈Bd(M)

W (ψ(x),M−1) ∪
⋃

x∈Zd
ψ(x)∈Ed−1(1+2c4(2M)−1/(d−1))\Ed−1(1)

W (ψ(x),M−1).

This time we apply Lemma 4.2 with η = 2c4(2M)−1/(d−1) and conclude that the volume of
the set Ed−1(1 + 2c4(2M)−1/(d−1)) \ Dd−1 is at most O(M−1/(d−1)). As the conditions of the
Theorem of Davenport [5] hold again we get that the number of x ∈ Zd such that ψ(x) lies in
Ed−1

(
1 + 2c4(2M)−1/(d−1)

) \ Dd−1 is at most O(Md−1−1/(d−1)). Thus there is a constant c8 > 0
such that

λd−1(Dd−1) ≤ |Bd(M)|
Md−1

(
1 + c8M

−1/(d−1)
)

.

Comparing this inequality with (5.4) we obtain Theorem 1.2.
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