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Summary 

Pulse propagation in a layered sphere can be investigated, in an approxi- 
mate way, by what has come to be known as Cagniard's method. Classical 
methods are used in the analysis through the application of the Debye ray 
expansion. At this stage Lamb's observation, that the eikonal is linear in 
the frequency, is employed to bypass the usual methods for evaluation of 
the inverse transform integrals. The transient response for each Debye ray 
is obtained directly. It is estimated that the method can be applied to 
mantle S pulses with periods less than 75 s, and to mantle P pulses with 
periods less than 40 s. Preliminary results on lateral heterogeneity 
beneath North America are presented. 

Extension of generalized ray theory to spherical layers 
The application of generalized ray theory to stratified media has been limited by 

the requirements that the stratification must be represented by homogeneous layers, 
and that the interfaces must be plane-parallel. When these two requirements are met, 
one uses plane-wave reflection and transmission coefficients and time delays to build 
up the solution to the problem (Weyl 1919; Pekeris 1948; Spencer 1960). 

In the Cagniard-de Hoop method the time delay, t, ray parameter, p, velocity, v, 
and horizontal distance, R, are related by the classical formula 

t = pR+ ~(v-'-p')*dz. 

In geometrical ray theory the ray parameter is constant 
value 

p = p i  = sini/v 

(1) 

along a ray and has the 

(2) 
where i is the angle of incidence. The expression (1) for t is stationary for p = pi. 
In generalized ray theory the r.h.s. of (1) is the exponent in a complex integral with 
respect to p. Then p i  is a saddlepoint and t(pJ is the arrival time of the pulse repre- 
sented by the complex integral. Along the path of steepest descent from the saddle- 
point the r.h.s. of (1) is real, because it is real at p i ,  and increasing. Thus t parametrizes 
the path of steepest descent p ( t )  which allows the Cagniard inversion to be performed. 
The synthetic seismogram corresponding to a particular geometrical ray is represented 
by a functionf(p) evaluated on p( t ) .  

* Now at: Seismological Laboratory, Division of Geological Sciences, California Institute of 
Technology, Pasadena, California 91 109. 

t Received in original form 1970 October 29. 
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58 Freeman Gilbert and Donald V. Helmberger 

Generalized ray theory has not been used to study teleseismic phenomena because 
the sphericity of the level surfaces of velocity, u, and density, p, must be considered. 
However, it has been shown by Scholte (1956) and others that, for short pulses, the 
saddle-point method gives a result where plane-wave reflection and transmission 
coefficients appear. 

It is natural to use this result in an attempt to apply the Cagniard-de Hoop method, 
in an approximate way, to spherical layers. In a sphere the classical ray parameter is 
y = r sin i /u  and Scholte (1956) has shown that a reflection coefficient R(p) for plane 
layers is replaced by R(y/r) for spherical layers. In addition, for a sphere (1) becomes 

To convert (3) to (1) we replace y/r by p and y e  by pR. The horizontal distance 
R is identified as the distance re. For short pulses, the problem of constructing a 
generalized ray theory appears to offer no conceptual difficulties. We begin with the 
plane layer theory. The ray parameter, p ,  for plane layers is replaced by y / r ;  the 
horizontal range R is replaced by re; geometrical spreading is taken into account 
by the factor (O/sinO)*; and the same reflection and transmission coefficients are 
used. 

For example, suppose the Laplace transformed response for the ray path shown 
in Fig. 1 is given by 

(4) 
- 1 
u = - 1  ai KO(spR) 9(p) T 3 2 ( p ) R 2 1 ( p )  T23(p)exp ( - '+ldp 

r 
where r is the initial path from p = -ioo to p = + im and where 

$ = 2[(U3-Z-p2)* ( z 3 - Z 2 ) + ( u 2 - 2 - p Z ) *  ( z 2 - z J .  

Then the approximation to C, for short pulses, for the ray path shown in Fig. 2 is 

where 

In both (4) and (5 )  9 is the combined source and receiver directivity function, 

23 

(3) 

2 2  

(2 ) 

4 
( 1 )  

FIG. 1. Schematic diagram of the ray path that corresponds to the integral in 
equation (4). 
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Generalized ray theory for a layered sphere 59 

FIG. 2. Schematic diagram of the ray path that corresponds to the integral in 
equation (5). 

assumed to be homogeneous in p .  The Laplace inversion of (4) and (5 )  is discussed 
in Appendix B. 

For a wide reflection, beyond the critical angle, the precursive head wave appears 
to travel along the curved interface, or refraction horizon. Another ray, a straight 
line, or chord, just below the interface, has been neglected in our approximation. 
In the limit, as the radius of the sphere approaches infinity, but layer thicknesses and 
horizontal distance, a& are preserved, our approximate result approaches the exact 
result for plane layers. The contribution from the chord ray vanishes. Our approxi- 
mation is asymptotic in reciprocal fractional powers of ka, and, in this respect, 
large ka can arise either from large a or large s. Consequently, since the contribution 
from the chord ray vanishes as a + a, it vanishes as s+ a and represents a ' blunter ' 
pulse than the head wave. The contribution from the chord ray is always neglected 
in our approximations. 

In principle, there is no more difficulty in evaluating (5 )  than (4) by the Cagniard- 
de Hoop method. In Appendix A we present the problem of the reflection of an 
SH pulse by a sphere to illustrate that ( 5 )  is, indeed, the correct approximation to the 
solution for short pulses. The question of determining the region of validity for the 
approximation is a difficult one and we have no quantitative answer. However, the 
work of Nussenzweig (1965) and others shows that not only ku = 2nu/vT but also 
(ka)* must be large. For certain diffraction phenomena (e.g. the rainbow effect) even 
(ka)* must be large. In an expression x B 1 it is never clear whether x > 10 or 
x > 100, or some other figure is adequate. In scattering and diffraction problems 
x > 3 is frequently sufficient (Keller 1957, 58). If we take (ka)* 2 3 we have ku 2 30. 
Taking a = 3000 km and u = 8 km s-' (for S waves) we have 

6a 18000 - 2 30 or - 2 T  
vT 240 

so S pulses in the mantle with periods less than 75 s could reasonably be expected to 
be well represented by expressions such as (5). For P pulses we take v = 15 km s-l 
and find T d 40s .  

Thus we have some qualitative justification to expect that our approximate 
generalized ray theory is valid for mantle P pulses shorter than 40 s and for mantle 
S pulses shorter than 75 s. 

As an initial application of our theory we shall calculate the theoretical seismo- 
grams for some recently proposed models of the upper mantle. 
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Synthetic seismograms for the upper mantle 
In recent years several velocity profiles have been proposed for the upper mantle. 

(We arbitrarily restrict our attention to depth less than 800km.) Although the 
proposed models vary considerably, they can be classified into two types: those that 
have abrupt changes in velocity and those that are relatively smooth. The former 
have travel-time triplications and are favoured by Julian & Anderson (1968) and 
Johnson (1967). The latter are, in a sense, traditional models. 

We investigate different models by computing synthetic seismograms, using 
generalized ray theory, and comparing them with observations. This use of amplitude 
information as an additional criterion in model making should decrease our un- 
certainty about the structure of the upper mantle. For the present we present results 
of studying NTS events. 

A map of recording sites used in this study is given in Fig. 3. The observations 
are the short period vertical responses to the various NTS events. A profile of 
observations running NE, from the AARDVARK event, is ,given in Fig. 4. The 
four letter station code is given to the left of each seismogram. A similar plot running 
SE composed from a number of events is given in Fig. 5. The travel times of the 
first arrival for the two profiles are similar but the locations and amplitudes of later 
arrivals appear to be quite different. This discordant behaviour reflects lateral 
changes in the upper mantle. With the use of generalized ray theory we hope to 
elicit the nature of these lateral variations. 

Using information derived from LRSM recordings of the type given in Figs 4 
and 5, Julian & Anderson (1968) were able to produce a velocity profile that agrees 
with both first and second arrival times. Two simplified profiles containing the most 
prominent features are given in Fig. 6 as models B and C. In addition, a traditional 
model, model A, is given. It is based on a smooth upper mantle model taken from 
Dowling & Nuttli (1964). 

In Fig. 6 only the P velocity is shown. The S velocity is obtained by multiplying 
the P velocity of each model by Gutenberg’s S to P velocity ratio. The density 
profile is the same for all three models and is based on the standard Bullen Model A. 

Freeman Gilbert and Donald V. Helmberger 

FIG. 3. Location of LRSM stations and Nevada Test Site (NTS), 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/27/1/57/597745 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Generalized ray theory for a layered sphere 61 
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FIG. 4. NE record section for the AARDVARK event. 
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Fro. 5. SE composite record section. 
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FIG. 6. Upper mantle models. 

The calculations presented in this paper are much more sensitive to the P velocity 
profile than to either the S velocity profile or the density profile. 

We begin our discussion of synthetic seismograms by computing the response, 
u(t), for model A at a range of 20 degrees. We assume that the source is a pressure 
step. That is, we assume that the rise time of the pressure in the source cavity is 
short compared to periods of interest and that the decay time is long. We consider 
only those generalized rays that represent once reflected P pulses. In generalized 
ray theory a reflected pulse has a precursor when the angle of critical reflection is 
exceeded. We call a wide angle reflection, one beyond the critical angle, a postcritical 
reflection. The beginning of the precursor is the head wave. The shape of the reflected 
pulse is altered to include not only its precritical shape but also its Hilbert transform. 
For example, if the precritical shape is a step, the postcritical shape will be composed 
of a step and a logarithmic singularity. The logarithmic singularity shows up as a 
' spike ' on the synthetic seismogram. 
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64 Freeman Gilbert and Donald V. Helmberger 

The synthetic seismogram for displacement as a function of time is denoted SS(t) .  
It is related to the response u(t) and the pressure source function S( t )  by a convolution 
operation 

SS(s) = s2 S(s)E(s)  (6) 
where a typical expression for E is given by (5).  The response u(t)  is, then, the time 
integrated displacement for a unit pressure step. This identification is forced on us 
by the degree of homogeneity in s of the Cagniard-de Hoop integrand. No arbitrari- 
ness is involved in (6). 

In (6) no account is taken of the fact that actual observations are made with a 
band limited instrument. We augment (6) by including the instrumentation response 
IO) 

SS(s) = s2 S(s) E(s )  I(s)  (7) 
As a practical matter we have found it convenient to evaluate (7) as follows. First, 
S ( t )  and I ( t )  are convolved and the result differentiated to obtain a combined source- 
instrumentation function, 

(8) 
d 
dt 

T ( t )  = -((s(t)*Z(t)) 

(a 1 

, 
Z I  0.0 279.6 281.2 282.8 284.4 

278.0 279.6 281.2 282.8 284.4 
Time (s) 

, 
'8.0 279.6 281.2 282.8 284.4 

I I I I I 
'8.0 279.6 281.2 282.8 284.4 

Fm. 7. Generalized ray summations, displaying the generation of a step function 
response. 
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Generalized ray theory for a layered sphere 65 

Second, u(t)  is calculated by evaluating the relevant Cagniard-de Hoop expressions, 
convolved with T ( t )  and the result differentiated to obtain the synthetic seismogram 
for displacement 

d 
d t  

S ( t )  = -(u(t)* T(t ) ) .  (9) 

To see how the generalized ray response, u(t), is built up, we refer to Fig. 7. In 
Fig. 7(a) there are four spikes. The first is the contribution from the ray reflected at 
a depth of 410 km. The next three represent the reflections from depths of 390, 370 
and 350 kn;, respectively. All four rays are postcritical. In Fig. 7(b) we have included 
two more rays, from depths of 330 and 310 km, respectively. Fig. 7(c) and (d) show 
the effect of including more rays from successively shallower depths, and, therefore, 
rays that successively exceed their critical angles from the postcritical side. This 
accounts for the diminution in amplitude and the broadening of the spikes associated 
with the later arriving rays. 

When a synthetic response such as that shown in Fig. 7(d) is filtered to reject high 
frequencies the result is a smooth, step-like function. Also, when the layering thick- 

R=36.7" 
GREELEY 
HN-ME 

R.37.7" 
CORDUROY 
SV3 -QB 

R =365 
CORDUROY 

HN-ME 

FIO. 8. Teleseismic recordings of NTS events GREELEY and CORDUROY, 

5 
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66 Freeman Gilbert and Donald V. Helmberger 

ness is decreased, the amplitude of each spike decreases but the number per unit time 
increases, so that the frequency, below which the response looks like a step, increases. 
That is, a smooth mantle transmits a pulse without distortion, a well known and, 
consequently, unsurprising fact. 

Model A, whose synthesized response at 20" is shown in Fig. 7, has a homogeneous 
crust. Such a model is too simple and we must, somehow, find a way to take into 
account crustal effects. There are two ways. We could consider a more complicated 
crustal model and, thereby, calculate a more complicated u(t). 

Alternatively, we can take advantage of the fact that teleseismic rays are nearly 
vertical near the source and the receiver. The crustal effect in this case is effectively 
that of an attenuating delay line. We could pretend that the crustal structure is 
simple but that the actual source function S ( t )  is more complicated. If a receiving 
station could be found, under which the crustal structure is simple, and if u(t) is 
nearly a step, as it is for model A, then the station's observed pulse shape is a good 
approximation to T ( t )  in (8). The problem is to find a simple (transparent) crustal 
structure, or, nearly equally acceptable, a crustal structure common to two or more 
stations. The later problem can be solved by viewing recordings from one event at 
several stations. 

An example is given in Fig. 8 for two stations and two events. In the upper two 
traces, for the GREELEY event, it is clear that the station in Quebec and the station 
in Maine have virtually identical pulse shapes for at least the first 5 s of the record. 
In the lower two traces, for the CORDUROY event, the pulse shape correspondence 
is equally obvious. We conclude that the two stations have a common crustal structure. 
The two events had different source depths and slightly different locations, which 
explains, at least partially, the difference in pulse shape. 

If we adopt the approach just outlined, then we regard T ( t )  as the combined 
representation of source function, instrumentation response, and crustal structure 
at both source and receiver. This simplifies our work because u(t)  is far easier to 
calculate for simple crusts than for complicated ones. 

To illustrate the effect of a thin crustal layer above the source, we present Fig. 9. 
A layer of thickness 0.45 km, P velocity 2.0 km s-', S velocity 1.2 km s- '  and 
density 2.4 g cm-3 overlies a medium whose parameters are a P velocity of 5.2 km s- ', 
S velocity 2.2 km s-' and density 2.6 g ~ m - ~ .  This medium contains an idealized 
pressure point source, denoted by the asterisk in the figure, at a depth of 0.30 km 
below the interface. We pick a point in the lower medium whose horizontal distance 
away from the source and vertical distance below the source correspond to the angle 
of incidence appropriate for emergence as a first arrival at a range of 3000 km. We 
refer to u(t )  calculated at this point as the ' downgoing response '. 

The upper portion of Fig. 9 shows the downgoing response. In this calculation 
we have included all generalized rays beginning less than 4s after the first arrival. 
The first arrival is, of course, the direct pulse. The reflection from the interface reduces 
the amplitude; this is followed by the surface p P  reflection. Successive arrivals 
correspond to multiple reflections within the layer. For the purposes of illustration 
we have chosen I ( t )  from the work of Carpenter (1967, Fig. 4, T/Q = 0.75). The 
source function, S7t), is that of Toksoz & Clement (1967) for the BILBY event. The 
convolution of u(t), Z ( t ) ,  and S ( t )  is shown in the lower half of Fig. 9. For a trans- 
parent path to the receiver this pulse shape should be the observed one. It is not unlike 
the pulse shapes in Fig. 8, and is a reasonable T ( t )  to use for N T S  events. 

We turn our attention now to a discussion of models B and C, two simplified 
profiles containing abrupt changes in velocity in the upper mantle. Synthetic seismo- 
grams for model B are shown in Fig. 10. The function T ( t )  used in the calculations 
is shown in the box. It is the observed response for the BILBY event at station 
HNME. For this station the calculated u(t), for the first few seconds after onset, is 
virtually a step so that the observed pulse is a good approximation to T ( t J  Station 
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FIG. 9. Synthetic effective source function. 

HNME is about 36.5" from the source, and its first arriving ray bottoms at a depth 
well below the discontinuities of model B and is, therefore, little affected by them. 

Model B contains only four layers with discontinuities at depths of 200, 380 and 
600 km. Reflections, whether precritical or postcritical, from these boundaries are 
denoted 2, 4 and 6,~espectively~ in Fig. 10. Only generalized P rays are included in 
the calculations. First multiple reflections are included but primary reflections 
dominate the motion. The critical angles for the 2, 4 and 6 reflections are ll", 13", 
and 17", respectively. The seismograms become relatively complex at the critical 
angles even though the motion is represented, for the most part, by only two or 
three generalized rays. Beyond the critical angle for a particular generalized ray, one 
can see the onset of the precursive head wave, or refraction, that arrives before the 
postcritical reflection. It is important to emphasize, once again, that the postcritical 
reflection and its precursive head wave represent the response of a single generalized 
ray. 

The main difference between models B and C is that the major discontinuities in 
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68 Freeman Gilbert and Donald V. Helmberger 

FIG. 10. Synthetic seismograms based on model B. 
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FIG. 11. Synthetic seismograms based on model C. 
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B are replaced by gradients, albeit the gradients are themselves modelled as a series 
of steps. Synthetic seismograms for model C are shown in Fig. 11. The function 
T (t) is the same one used for model B in Fig. 10. 

Replacing a discontinuity by a gradient enhances the amplitude near the critical 
angle and reduces it elsewhere. This effect is particularly noticeable for the 4-reflection 
from 11" to 15". The 6-reflection is more difficult to identify in Fig. 11 than in Fig. 10 
because it interferes with the Creflection where the latter is strong. Finally, model C 
has a larger average velocity in the upper mantle, and consequently, its first arrivals 
occur slightly earlier. 

In this preliminary presentation of synthetic seismograms for models of the 
upper mantle, we observe that the rdle of head waves, or refractions, along deep 
interfaces is of minor importance. As we have mentioned in the previous section, we 
have neglected entirely the contribution from a theoretically less significant kind of 
ray-the chord ray. Neglecting the chord ray appears to be justified. 

Comparison of synthetics with observations 

The record section from model C shown in Fig. 11 shows many similarities with 
the NE proiile shown in Fig. 4 at the shorter ranges. The large second arrival occurring 
at 60s is apparent in both the synthetics and observations. This feature appears at 
11" and is strong at 12" as indicated in Fig. 23 of Julian & Anderson (1968). The 
observed first arrival is generally small throughout these ranges, becoming very small 
for ranges greater than 15". The corresponding synthetics tend to grow with range, 
which means the 2-transition, the transition zone at about 200 km depth, is slightly 
deeper than in the model. There appears to be little correspondence between the 
synthetics and observations at ranges greater than 17". The most noticeable difference 
is the large first arrival occuring in the observations between 19" and 21". This is 
absent in the synthetics. This feature of the observations cannot be explained by 
having a smooth mantle between depths of 450 and 600 km. The 6-transition is not 
very apparent in the NE profile. This may be caused by the domination of the 
4-reflection. 

The situation in the SE profile is quite different. In this profile there is little 
evidence of the arrival from the 4-transition before 14". This could be caused by a 
strong first arrival coming from shallow depths or perhaps a smaller 4-transition. If 
the latter is true it would explain why the arrival from the 6-transition is more 
apparent than in the NE profile. 

Comparing the synthetics from model B with the SE profile one sees many 
similarities. In fact it appears that if the bottom interface in model B were lowered 
such that the crossover between 4 and 6 occurred at 21" the correspondence would 
be quite good. A more detailed study of the structure of the upper mantle, using 
more data, including earthquakes, and more refined models is the subject of a paper 
by Helmberger & Wiggins (1971). 
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Appendix A 
In this paper we have shown how to apply generalized ray theory to a sphere 

composed of concentric, homogeneous, spherical shells. We make the traditional 
approximations as if we were preparing to use the saddle-point method to obtain 
the geometrical ray approximation. A simple change of variable, based on Lamb’s 
(1904) observation that the eikonal is linear in the frequency, allows us to apply the 
method of Cagniard (1939, 1962) and de Hoop (1960), so that the transient solution 
is found by inspection. The result is an approximation in the time domain valid for 
pulses of short duration, but more useful than the first-motion approximation 
(Knopoff & Gilbert 1959). As the curvature of the spherical layers approaches zero, 
the approximate transient solution for spherical layers approaches the exact transient 
solution for plane layers. The method is readily illustrated by an example, the 
reflection of an SH pulse by a sphere (Fig. 12). First we consider the sphere to be 
fixed and rigid. 

In spherical polar coordinates (r, 8,+) the equation to be solved is 

( A . 0  
a 2  u 
a t 2  2zr2 sine 

f ( t )d(r  -ro) 6(8-o+)  
pV2 u(r, 8, t )  - p - (r, 8, t )  = - 

For t < 0 we assume f ( t )  = 0, u 3 0, au/dt = 0. The boundary condition is 
u(a, 8, t) = 0. We attack the initial value-boundary value problem in a traditional 
way; we separate variables by a series of transformations. Let 

m 

E(r, 8; s )  = u(r, 8; t )  exp ( - s t ) d t  
0 

and confine s to positive real values. Then the Laplace t r anshm of (A. 1 )  is 

(A * 3)  
S 2  E 

v2ij- - = - 
P2 2zpr2 sine 

f (s)d(r - ro) 6(8-0+) 

where k = s /B ,  fl being the shear velocity. 

Continuing, we let 
n 

0 

Then, the Legendre transform of (A. 3) is 
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FIG. 12. Ray path and angles used in the geometrical interpretation of saddlepoint 
in the SH reflection problem. 

The solution to (A.5) that satisfies the boundary condition and the radiation 
condition is 

where 1 and K are modified spherical Bessel functions of the first and second kind, 
respectively. 

Once U is known we have 

m 
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X plane 

FIG. 13. Integration contours for the Watson transformation. 

For short pulses (ku $- 1) (A.7) is virtually useless. The series begins to converge 
after L terms where L - (ku)+c(ku)+ and c is a positive constant of order unity. 
The remedy is classical; we rewrite (7) by using the Watson transformation. (A 
simple exposition of this transformation is presented by Titchmarsh (1952, p. 114). 
One of its first applications to mathematical physics was made by Dougall (1900)). 
The identity, 

where C ,  is shown in Fig. 13, is used to convert series, such as (7) into contour 
integrals. Obviously, there is some degree of arbitrariness in the definition of F(L) 
in (A. 8). All that is required is that F ( I )  be an analytic function of L in a domain 
including C ,  and the right real - I  axis. We apply (A. 8) to (7) and use the relation 

P,(cOse) = exp (iln) Pl(cos (n-6)) 
to obtain 

CR 

Expressing the spherical Bessel functions in (A.6) in terms of cylindrical Bessel 
functions we write (A.9) as 

(A. 10) 

where 

For large k (short pulses) the dominant contribution to the integral in (A. 10) 
comes from values of L 9 1, L % ku. Following the traditional approach we replace 
the Bessel functions in (11) by approximations valid for large A. To obtain the 
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classical ray-theoretical results we use the approximations (ErdeIyi et al. 1953) 

I 
I exp (--[I [l + O ( P ) ]  

= (2/i)* (2 + P)* 
I 
1 (A. 12) 

5 = (x2 +12)*-1 sin h-l(I/x) I 
and cut the I plane so that We(x2+12)* > 0. Using (A. 12) in (A. 11) we see that 
X ( I )  becomes an even function of I. That, and the relatian P,(cosO) = P-,,- l(cosO), 
show that the integrand in (A. 10) is an odd function of I. Thus, C ,  can be replaced 
by either C ,  or C,. Parenthetically, we point out that I sec In in (A. lo), an odd 
function, can be replaced by I secLx/[l-2a-2 cos2 zA$'(I++)], an even function, 
so that (A. 10) still leads to (A. 7). In the preceding expression $ is the digamma 
function. Here is but one example of the arbitrariness mentioned following (A. 8). 

Henceforth, we confine our attention to the second term in (A. 11) representing 
the reflected pulse in the geometrical ray region. Using (A. 12) in (A. 10) and (A. 11) 
we have, for the Laplace transform of the reflected pulse, 

I i e + m  

d l  
I secIxP,-t(cos (x -e) )  exp (-a) 

8xip(rro)* '(') s (k2 ro2 +A2)* (k2 r2 +.A2)* 
E =  - 

i e -  m 

(A. 13) 
a = (k2 ro2 +IZ)+ + (k2 r 2  + P)* - 2(k2 u2 + P)* 

-I sin h-' I/kro -I sin h- ' I/kr + 21 sin h- ' I/ka 
kro kr 

= 1 x-'(x2+12)*dx+ 1 x-'(x2+12)*dx. 
ka ka 

Next we make an unnecessary but suggestive change of notation to emphasize more 
strongly the application of the Cagniard-de Hoop method. Let I = iv in (A. 13). 
Applying Schwarz's reflection principle gives 

e + i m  

(A. 14) 

= - '(s) v sechvnPiv-t(cos (a-0)) exp (-Y) 
4 v  (rrdf  
\ 

.Ym 
(k2 ro2 - v2)f (k2 r2 - v2>* 

Y = @(iV) = 7 + Jx-'(x'-v')*dx 

and we require W4(x2-v2)* 0. 

ka ka 

It has been shown by Friedlander (1954) that the v-integral in (A.14) can be 
evaluated by the saddle point method to give E for the reflected pulse. The saddle 
poi.nt occurs on the real v axis, u % 1, v < ka, where the approximations 

sec hvx t 2 exp ( - v x ) [  1 + 0 (exp ( - 2vx))I 

(A. 15) 
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are valid. Substituting (15) into (14) gives 

Freeman Gilbert and Donald V. Helrnberger 

A better approximation than (A. 15) is given by Szego (1934) 

(A. 16a) 

The use of (A. 16a) in the following development leads to the Bessel function Ko(sy8) 
in (5). The cruder approximation (A. 15) is used here for clarity of exposition. 

The next step in the classical programme is the evaluation of (A. 16) by the 
method of steepest descent, or, more usually, by the saddle-point method. At this 
point we leave the classical programme and make the change of variable v = sy, 
and recall that s is real and positive, 

a n  

= (roZ/b2 - y2)* + (r2/jZ - yZ)* - 2(u2//iiZ - y2)* 

+y(sin-' yp/rO+sin-' yblr-2 sin-' yp/u). 

In (17) let 
m 

m 

ij = J u(r, 8, t )  exp (- s t )  dt. 
0 

Then 

(A. 17) I 
(A. 18) 

(A. 19) 

u(t)  = w(t)*  v ( t )  

and our task becomes to solve (19) for u(t). We must find a curve in the first quadrant 
of the y-plane along which (ye+@) is real so that the two exponents in (19) can be 
equated. Consider Iyl  9 1 and t 9 1. Then from (17), for large IyI 

@ N - i y  log rro/u2 

= ye-iy logrro/a2. 
(A. 20) 
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Therefore, for large y and t, the curve sought is 

y = t/(e - i log rro/a2) (A.21) 

a straight line in the first quadrant of the y-plane. The curve ye+$ = t is asymptotic 
to the line (21) for large t .  Although we make no use of it in this paper, we remark 
that the asymptote (21) exists regardless of whether the observation point (r, 0) is 
in the region of the geometrical ray (the lit or illuminated region), or in the shadow 
zone. This suggests the interesting possibility that diffraction phenomena can be 
examined by generalized ray theory. 

Another important property of the curve ye+$ = t is the point yo where it 
touches the real - y axis. In the classical programme the saddle point lies on the 
real axis where the exponent is real (y < alp). Along the path of steepest descent the 
imaginary part of the exponent has a constant value equal to its value at the saddle 
point; namely, zero. Therefore, the curve ye++ = t is the path of steepest descent 
and it touches the real axis at yo where 

(A. 22) 

From (17) we find 

- dlk = sin-'y/l/ro+sin-'y/3/r-2 sin-'yfl/a. (A. 23) 
dY 

The usual geometrical interpretation of the saddle point is made by regarding yo as 
a ray para eter (see Fig. 12) P 

yo = B-'ro sin(, = /?-' r sin( = B- 'a  sini. (A. 24) 

Summing the angles of the two triangles in Fig. 12 shows that (24) satisfies (22). 
Let to = yod+$(yo) .  For t = ?,+at, d t  4 to, a short calculation shows that the 
solution to ye+$ = t is 

] + +0(6t). (A. 25) 2a rr, cos i cos 5 cos lo 
B(R0 r cos ( + Rr, cos Co) y = yo+i(dt)+ [ 

Thus, the Cagniard path, as it is customarily called, is perpendicular to the real axis 
at the saddle point yo and approaches the line (21) asymptotically for large t (Fig. 14). 
It is now clear how to solve (19) for u(r, 8, t). Since S(y) is real for 0 Q y < a/B we 
can set C = yo without loss of generality. From (20) we see that L&(yO+$) > 0 for 
large y in the first quadrant. Invoking Jordan's lemma, we replace the y-integration 
variable from y to t 

(A. 26) i ij = -9m S(y(t)) exp (-st)(dy/dt)dt .  
t o  

Comparing (26) to the second part of (19) we have 

-9m J'S(y(t)) exp ( -s t ) (dy/dt)dt  = u(t)  exp ( - s t )d t  (A.27) 
t o  0 J' 
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FIG. 14. Typical Cagniard-deHoop contour and its asymptote. 

for all real positive s. Lerch's theorem assures us that 

(A. 28) dY 
d t  

u( t )  = 9 m  [ - S(y(t)) -1 H ( t  - t o )  

where y ( t )  is the solution in the first quadrant to ye+$ = t. According to (253 u(t)  
has a first motion proportional to ( t - to)-*.  Convolution with w ( t )  in (18) shows 
that u(r, 8, t) has a first motion proportional to f (t). 

As a second example we consider the case where the material r > a is denoted 
by (pl, p l )  and the material r < a by ( p 2 ,  pz). The result is that (28) is replaced by 

where 

and q = (1/j12 -p2)*, W&) 3 0. If we think of p as a ray parameter (sin i /B)  in a 
plane stratified medium we recognize W ( p )  as the plane-wave reflection coefficient. 

The extension of this theory to multi-layered media parallels that for plane 
layers. The reflection and transmission coefficients for a plane interface can be used; 
a slowness factor such as (jl-2 - p Z P ,  where p is the ray parameter for plane layers, 
is replaced by ( j l -2-y2/r2)*,  where y is the ray parameter for spherical layers and r 
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is the radius of the interface to which the reflection or transmission coefficient is 
assigned. The exponent $ in a plane stratified medium can be written 

while for a spherically stratified me3um 
c 

and these two expressions are directly related to (1) and (3) in the main text. 

Appendix B 

The Laplace inversion of integrals such as (B .4) or (B. 5 )  in the main text is 
clarified by the use of operational methods. Consider the expression for the Laplace 
transform of the displacement associated with a typical generalized ray 

5(s) = x i  7 K,,(spR) exp (- s$) dp. (Be 1) 
F 

In (B.l) U ( p )  is an algebraic function of p and q where q = ( ~ - ~ - p ~ ) * .  Let 
c = min (v - l ) .  Then U ( p )  is real when p is real, - c  < p < c. A typical expression 
for $ is given in the equation following (B.4) in the main text. Because of the 
symmetry of the integrand we can replace (B. 1) by 

5(s) = - f m  U ( p )  K,(spR) exp (-s$) dp. (B -2) 

In (2) K ,  is proportional to exp ( - s p R )  for large IpI, and Re$ < 0 for large (PI. 
Consequently Re (pR+$) > 0 in the first quadrant of the p-plane and the integrand 
vanishes exponentially as IpI + 00. We use Jordan's lemma to deform the contour 
in (2) onto the contour f m ( p R + $ )  = 0 in the first quadrant. We recognize the 
latter contour as the Cagniard path, which we denote by ~ ( p ) .  The value ~(0) is the 
vertical reflection time, the earliest possible arrival time for the generalized ray 
represented by (B.2). Consequently u(t )  = 0 for t < ~(0). We can, in principle, 
solve the equation 

x 2 i  0 

pR+$  = Z; z 2 ~(0) (B * 3) 
for p as a function of z along the Cagniard path. 

Thus, we change integration variables in (B .2) from complex p to real z 

Equation (4) is easily inverted by operational methods now that the Cagniard path 
has been chosen. The operational image of K,,(spR) exp (-s$) is 
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Now we can use ( 5 )  to write the operational image of (4) 

Freeman Gilbert and Donald V. Helmberger 

It is sometimes helpful to break the integral in (B. 6) into two parts. Let p o  be 
the saddlepoint (d/dp)(pR++)I,, = 0 and let to = z(p0). Let p1 be the branch point 
of U ( p )  nearest the origin, p1 2 c = min (0-I ) .  If p1 2 p o  we replace ~(0) in (B.6) 
by to. There is no head wave. If pI < p o  let t ,  = ~ ( p ~ ) .  There is a head wave and its 
arrival time is t,. Let us write (6) in the form 

t 

u( t )  = [ U(7)dr  
T i O ,  

where U ( T )  is 2 / n  times the imaginary part of the integrand in (B.6). We carry out 
the evaluation of (B .7) as follows: 

u(r) = 0, 

u(t) = 

t < t o  

U ( T ) ~ T ,  t > to, p complex 
to .i 

In the last of (B.8) p is real for z < to and complex for z > to. The separation of 
u(t)  into the part corresponding to the head wave and the part corresponding to the 
reflection facilitates the interpretation and the evaluation of (B .6). 

The evaluation of the integral in (B .6) is a relatively simple problem in numerical 
analysis, but all of the calculations in the main text were made using the approxi- 
mations in Appendix A. This amounts to using the first term in the asymptotic 
approximation of K,(spR) for large argument. Knopoff & Gilbert (1959) have shown 
that such an approximation gives the correct first motion even for R = 0. For pulses 
as short as those calculated in this paper it is a valid approximation to use. However, 
calculations for long period body waves should be made with integrals typified by 
(B .6). 
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