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Propagation characteristics of Gaussian Schell-model fields through first-order optical systems 
and in free space are analyzed by the method of generalized rays. This allows the development of a 
simple geometrical description of these processes. The invariance of the degree of global coherence 
is established in full generality. Asymptotic behavior under free propagation and the emergence of 
a far-zone universal structure are analyzed. New invariants associated with incoherent superposi- 
tions of such fields are found. 

I. INTRODUCTION 

Recently, there has been much interest in the radiation 
field generated by partially coherent planar (scalar) 
sources and several useful results have been established, 
particularly regarding the radiometric properties of such 
sources. As rightly noted by Wolf,’ Walther’s’ classic pa- 
per of 1968 has acted as the nucleus for most of these 
 development^.^ In these situations the source is adequate- 
ly described by the source-plane cross-spectral density. 
Many model sources have been studied in detail; the 
Gaussian quasihomogeneous sources4 and the Gaussian 
Schell-model sources5 have received particular attention. 

More recently, the notion of generalized light rays has 
been introduced in statistical wave optics.6 This notion 
leads to a ray picture of wave optics which is exact at the 
level of the two-point correlation function and is applic- 
able equally well to coherent, partially coherent, and in- 
coherent fields. In paraxial situations the generalized rays 
behave in an extremely simple way both under free propa- 
gation and action by optical systems.’ 

In the present paper we use the method of generalized 
rays to analyze the behavior of Gaussian Schell-model 
(GSM) fields under the action of first-order systems 
(FOS). A first-order system is an optical system which 
changes input ray parameters of location and direction 
into output parameters by a simple matrix transformation 
according to Eq. (3.2). It can also be defined via the gen- 
eralized Huyghens representation.’ We begin in Sec. I1 by 
extending the notion of the GSM field to include a quad- 
ratic phase front. When the generalized rays correspond- 
ing to these fields are computed, the following fact 
emerges in a natural and basic way: There exists a one- 
to-one correspondence between the family of GSM fields 
and the set of 2 x 2 symmetric positive-definite matrices 
whose determinant is bounded above by unity. These ma- 

 

trices are explicitly written in terms of the GSM field pa- 
rameters. 

In Sec. I11 we undertake the study of the behavior of 
GSM fields under passage through FOS. The generalized 
rays map this problem into that of studying the linear 
transformations of the parameter matrix leading to a rep- 
resentation of the group SL(2,R). This immediately shows 
that the action of an FOS induces a one-to-one map on the 
GSM family. The ratio of the transverse coherence length 
to the intensity width is left invariant in this process; it 
follows that the GSM family breaks into nonintersecting 
subfamilies each of which is closed under action by FOS. 
It is further shown that for every GSM field there exists a 
one-parameter subgroup of FOS which leaves it invariant. 
In Sec. IV we develop a graphical representation of GSM 
fields and FOS based on a three-dimensional Minkowski 
space and Lorentz transformations, which makes the main 
results easy to visualize. It helps us answer the following 
question: For a given FOS, are there any GSM fields left 
invariant by it? It allows generalizing the Kogelnik “abcd 
law” to partially coherent GSM fields. In Sec. V we spe- 
cialize our analysis to free propagation and show that the 
pencils associated with the GSM fields exhibit a universal 
structure in the far zone. Section VI contains some con- 
cluding remarks. 

11. GAUSSIAN SCHELL-MODEL FIELDS 
AND THE ASSOCIATED GENERALIZED RAY 

DENSITY DISTRIBUTIONS 

We will be interested in the action of axially symmetric 
FOS on time-stationary wave fields. For such fields, dif- 
ferent frequency components of the ensemble can be 
analyzed completely independently.6 Hence, we present 
our analysis for a fixed frequency o which we suppress. 
Let us choose a Cartesian coordinate system (x,y,z) such 

  



that the z axis is along the system axis. We will specify 
the field through its cross-spectral density in a transverse 
plane z=zo. If suppressing zo and denoting by e the 
transverse two-vector part ( x , y )  of the three vector (x ,y ,z )  
the cross spectral density factors in the form 

(2.1) 

we then have a Schell-model field.' Clearly, g is the nor- 
malized degree of coherence and, from Eq. (2.11, we see 
that it is translation invariant for Schell-model fields. 
When both I, the intensity distribution, and g are Gauss- 
ian 

r(e 1,e 2 ) = [ I ( e  1 )1(p2)I'/~g(e 1 -e 2 )  , 

~ ( e )  = ( A  / 2 4  )exp( -e 2/2u:  , 
(2.2) 

then the field is said to be a Gaussian Schell-model 
(GSM). Here A is a constant independent of e. By in- 
tegrating Ice) one finds that A is the total irradiance of 
the field. It is useful to rewrite the cross-spectral density 
of the GSM field in the following form: 

2 2  
g(e l -ed=exp(-  lel-e2l /2ug) 

I 

(2.3) 

where 

(2.4) 

y is an effective parameter which controls the diffraction 
properties of this field.g 

Some well-known families of Gaussian fields are special 
cases of the GSM fields: When ug <<uI we have the 
Gaussian quasihomogeneous field, and the coherent 
Gaussian field obtains when ug-+ co . Thus, the results of 
the analysis to follow contain, as special cases, the corre- 
sponding results for these limiting families. 

When a GSM field is acted on by a lens, it picks up a 
quadratic phase front. For this and other reasons, it is 
useful to generalize the GSM field to allow for a phase 
curvature; by GSM field we will mean, henceforth, one 
whose cross-spectral density is of the form" 

(2.5) 

When R > 0 (R <O) we have a diverging (converging) 
phase front. 

From the defining equation (2.5) it is clear that the 
GSM fields form a three-parameter family, uI, ug, and R 
or, equivalently, uI, y ,  and R ,  being the three parameters. 
We suppress the parameter A for our interest is in the 
behavior of GSM fields under the action of systems for 
which the total irradiance A remains invariant. 

Next we compute the generalized rays6 generated by the 
GSM field. They are related' to the cross-spectral density 
through the Wigner-Moyal transform:' ' 

(2.6) 

The Wolf function W ( e , s )  represents the intensity of the 
generalized pencil of rays going in the direction ( S ,  
Sz=(1-S2)'/2) through the point (e,zo). By virtue of r 
being Hermitian, W is real, but it is not pointwise positive 
definite. Thus, the generalized pencils consist of both 
shining and dark rays.12 Both types of rays travel along 
straight lines in free space. 

Since Eq. (2.6) is invertible it follows that the cross- 
spectral density in any transverse plane can be recon- 
structed, in an exact way, from knowledge of the general- 
ized pencils. Thus, it becomes clear that the generalized 
rays offer an exact ray picture of wave optic phenomena 
involving only the two-point (and no higher-order) corre- 
lation function. 

The generalized rays corresponding to the GSM field 
are easily computed owing to the elementary nature of 

I 
Gaussian integrals. Substitution of Eq. (2.5) in Eq. (2.6) 
yields 

We find that the ray pattern at every point is Gaussian 
with its peak in the direction of ( p , R ) .  

As in conventional ray optics, it is useful to treat p, S as 
a column vector 

(2.8) 

Now Eq. (2.7) can be readily rewritten in a compact form 

A W ( e , S ) =  W(q)=-det(G)exp( -kqTG9) , (2.9) 

where q is the transpose of q and the GSM field parame- 
ter ma&x G is given by 

- 2  
- 

It has the following properties: 

- G T = G ,  

t rG>O,  

O < d e t G < l .  

(2.1 la) 

(2.1 lb) 

(2.1 lc) 



That is, G is symmetric and positive definite with its 
determinant bounded from above by unity. The ratio 
U,/UI is known as the degree of global ~oherence.'~ It is 
related to G in a simple way: 

(2.12) 

We have made use of Eq. (2.4) in obtaining Eqs. (2.1 lc) 
and (2.12). 

By virtue of Eq. (2.6) for a given fixed k there is a one- 
to-one correspondence between GSM fields and Wolf 
functions of the form (2.9), which in turn are in one-to- 
one correspondence with 2 x 2 real matrices satisfying Eq. 
(2.11). We have established the following result: There is 
a one-to-one correspondence between the GSM family of a 
fixed irradiance and the family of 2x2 real symmetric 
positive definite matrices whose determinant is bounded 
from above by unity. Given the GSM field one can im- 
mediately construct the parameter matrix G through Eq. 
(2.10). Conversely, given G one can compute the field pa- 
rameters through 

y2=2G22/k, 1/R = -G12/G22 , 
(2.13) 

111. TRANSFORMATION OF GSM FIELDS 
BY FIRST-ORDER SYSTEMS 

An axially symmetric FOS can be specified through its 
ray-transfer matrix S: 

S =  d ,  a d - b c = 1  la  b 1  (3.1) 

i.e., SESL(2,R). Its action on the Wolf function is to 
produce the following map:' 

wo,(g)= Win(S-'g) (3.2) 

where Win and W,,, are, respectively, the input and out- 
put Wolf functions. 

To derive the transformation of GSM fields by FOS we 
substitute Eq. (2.9) in Eq. (3.2) and obtain 

where 

(3.3) 

(3.4) 

This is a useful result. The use of generalized rays has 
mapped the problem of transformation of GSM fields by 
FOS to one of studying the transformation of symmetric 
positive-definite 2 x 2 matrices under SL(2,R) by the rule 
(3.4), thus circumventing elaborate calculations involving 
integrals. 

Since p in is symmetric, so also is 
G 

Let us examine p 
By virtue of S being unimodular, 

detG = detG in , 

0 < detG I 1 . 
(3.5) 

Further, since S-'(S-'IT and G in are both positive defi- 
nite 

t r ~ o , = t r [ ~ i n ~ - ' ( ~ - ' ) T ] > ~  . (3.6) 

Thus, from Eq. (2.1 1) we see that G out is a bonafide GSM 
field parameter matrix and, hence, from Eq. (3.3) and Eq. 
(2.91, Wout(q 1 corresponds to a GSM field with irradiance 
A,,, =Ain. Also, since detG is an invariant of this map we 
see from Eq. (2.12) that the degree of global coherence is 
preserved by this map. 

We have the following result: The action of an FOS in- 
duces a one-to-one map on the family of GSMfields; the 
degree of global coherence is an invariant of this map. 

A special case of this result is already known in the 
work of Collett and Wolfa4 They studied the behavior of a 
Gaussian quasihomogeneous field (a special case of GSM 
field) under free propagation (a special case of FOS) and 
found that the degree of global coherence was an invari- 
ant. Our analysis using generalized rays has led to a two- 
fold generalization of this result. 

In the light of our last result it is easily seen that the ac- 
tion of FOS divides the three-parameter GSM family into 
nonintersecting two-parameter subfamilies, each subfami- 
ly being characterized by a fixed value of ug/uI or, 
equivalently, of detG. Each subfamily is closed under ac- 
tion by FOS in the strong sense that an FOS transforms it 
onto itself in a one-to-one fashion. Consequently, a GSM 
field belonging to one subfamily cannot be transformed 
into one belonging to a different subfamily by any FOS. 
In particular, a GSM field which is not quasihomogene- 
ous cannot be transformed into a quasihomogeneous field 
using FOS alone. 

First-order systems form a three-parameter group 
SL(2,Iw) [which is the same as Sp(2,R)I. But our last re- 
sult shows that they effect only a two-parameter transfor- 
mation on the GSM family. The reason for this can be 
traced to the following fact: For every GSM field there 
exists a one-parameter subgroup of FOS which leaves it 
invariant. 

Proof: Again, let G be the parameter matrix of the 
given GSM field. Write detG =y2/4u! = K ~ .  By virtue of 
our last result there exists an FOS So which transforms G 
into the following special form: 

(3.7) 

We shall call Go the standard form of G. In fact, So can 
be explicitly constructed in the following way. Let us 
denote by S,( f )  and S,(p), respectively, a thin lens of fo- 
cal length f and a magnifier of linear magnification p. 
Their ray-transfer matrices are 

Choosing f =R and m = ( k u I y  we have 



 

’ i ( a 2 + b 2 + c Z + d 2 )  1 $ ( a 2 - b 2 + c 2 - d z )  -ab -cd 

A ( S ) =  + ( a 2 + b 2 - c 2 - d z )  + ( a Z - b 2 - c 2 + d 2 )  cd -ab 
-ac -bd bd -ac ad +bc , 

 

. 

S, ( ( k a1 y ) - ” ) : G ’ -+ Go = (5’; 1 TG’S; ’ = 

We have thus found an FOS So which casts 4: into its 

(3.10) 

of FOS 

(3.11) 

From Eqs. (3.10) and (3.11) it follows that the one- 
parameter subgroup of FOS 

(3.12) 

leaves G invariant. This completes the proof. 
For the special case of a coherent Gaussian field with 

no phase curvature, as = CO, R = co , and the GSM matrix 
becomes 

s;, =s;lses0, 0 I e 5 2a 

(3.13) 

Our last result specialized to this case shows that 

is the one-parameter subgroup which leaves an equiphase 
Gaussian field invariant. Of special interest is a particular 
element of this subgroup corresponding to 8=1~/2.  This 
is a scaled Fourier transform operation and we recover the 
familar result: an equiphase Gaussian function is invari- 
ant under an appropriately scaled Fourier transformation. 

IV. GEOMETRICAL REPRESENTATION 
AND ANALYSIS 

In the preceding sections it has been shown that there is 
a one-to-one correspondence between GSM fields and 
two-dimensional real matrices G with the properties 

(2.1 11, such that the effect of an FOS on the former can be 
expressed by the change (3.4) in G. (Here and in the fol- 
lowing the value of the wave number k is to be held fixed.) 
In the present section we develop a transparent geometri- 
cal representation of the transformation law (3.4), which 
makes it very easy to understand the origin of the various 
results already obtained. In particular, it shows us how to 
define a complex parameter 0 for any GSM field, which 
changes according to the well-known Kogelnik abcd law 
under the action of any FOS. 

The basic fact to be used is that SL( 2, R) is the spinor 
group corresponding to the group SO(2,l) of proper 
Lorentz transformations in a three-dimensional “space 
time.”15 Since G transforms linearly in S according to 
(3.4), one expects to be able to construct a three- 
component real column vector out of the elements of G, 
such that they undergo a three-dimensional Lorentz 
transformation determined by S. To realize this, we ex- 
press G in (2.10) as a real linear combination of the unit 
matrix and the Pauli matrices 01,03: 

(4.1) 

(Because of the symmetry of G the Pauli matrix a2 does 
not appear.) This parametrization of G is related to the 
earlier one by 

I *  xo -x 1 x2 
x2 XO+Xl I - G = x ~ - x ~ c T ~ + x ~ u ~ =  

x l= -  1 [kY2 [ 1-+]-&]  , 
4 

(4.2) 

x 2 = - W  
2R ‘ 

Evaluating the determinant of (4.11, we see that the degree 
of global coherence is related to the Minkowski squared 
length of z: 

detG = K ~ = X  -x f -x = (4.3) 

The conditions (2.1 la) and (2.1 1 b), characterizing G, ap- 
pear as 

O < K 5 1 ,  X o > o .  (4.4) 

This leads to the following statement: For a fixed k, there 
is a one-to-one correspondence between the family of all 
GSM fields and the set of positive timelike vectors in a 
fictitious three-dimensional space-time, with Lorentz- 
invariant length K lying in (0,1]. The appropriateness of 
this description is seen when (3.4) is stated in terms of x: 
The effect of an FOS corresponding to the matrix S in 
SL(2,R), Eq. (3.11, is to take x into x’ according to16 

(4.5) 



 

XO 

X l  

x2 

 

, 

Here x_ is a three-component column vector 

and similarly for x’. It is straightforward to derive (4.5) 
and also to check that A(S)  is a proper Lorentz transfor- 
mation belonging to the group SO(2,l). Further, for any 
two FOS S,S’ESL(2,R) acting in succession, it can be 
seen that 

A(S’)A(S)=A(S’S) . (4.6) 

This description of the family of all GSM fields can be 
depicted diagramatically as in the figure. The region of 
interest is enclosed by the (positive) branch of the timelike 
hyperboloid K =  1 and the (positive) light cone K=O; it in- 
cludes the former but not the latter. completely coherent 
GSM fields, corresponding to ug = 0 0 ,  are represented by 
vectors x_ lying on the hyperboloid K =  1. As one ap- 
proaches the quasihomogeneous limit ( ( T I  /ag 1- co , one 
comes closer and closer to the cone K=O. A general GSM 
field corresponds to an x_ lying on a general hyperboloid 
with O < K  5 1; this is shown as an intermediate hyper- 
boloid in the figure. The action of an FOS S is to move 
an x_ on a hyperboloid with a certain value of K to another 
point x_’ on the same hyperboloid. The basic results of Sec. 
I11 become obvious in this representation: (a) Each 
Lorentz transformation belonging to S0(2,1), and 
representing some FOS, maps the region of x_ space 
relevant to us onto itself in a one-to-one invertible way; (b) 
each point of this region represents, in a one-to-one way, 
some GSM field; (c) the mappings x_+x_’=A(S)x_ 
preserve the hyperboloid corresponding to each allowed 
value of K ;  (d) thus the GSM fields corresponding to 
points on each hyperboloid form a two-parameter subfam- 
ily with a common degree of global coherence, transform- 
ing into each other and not taken into a GSM field “be- 
longing” to a distinct hyperboloid, under the action of any 
FOS. To these may now be added the remark that the 
matrices S and -S in SL(2,R) must be identified as 
representing one and the same FOS. 

The process of taking a GSM field G to its standard 
form G 0 corresponds to Lorentz transforming a general 
vector x to the “rest frame” value (K,O,O). The FOS 
denoted by So, 0 5 8 I 2 7 ~  in (3.11) are represented by pure- 
ly “spatial rotations” in the xl-x2 plane leaving xo unaf- 
fected. For a general GSM field x_ the FOS S leaving it 
invariant are the Lorentz transformations in SO(2,l) “with 
x as axis.” The converse question can now be answered: 
If an FOS S is given, are there any GSM fields which are 
invariant under action by S? Since the points x_ which we 
use are all positive timelike, the answer is as follows: If S 
is equivalent, by conjugation with a suitable element of 
SL(2,R), to So for some 8, then there exist GSM fields in- 
variant under S, otherwise not. In the former case, if S is 
given we can calculate these GSM fields by the converse 
to the calculations in Sec. 111. Examples of FOS which 
definitely alter every GSM field are the SL(2,R) matrices 

I 

I 
I 
I 

Coherence 

K=~:PUASIHOMOGENEOUS 
LIMIT 

, . 
I ,< FIG. 1.  &-space representation of GSM fields. 

cosha sinha [y e’a]’ [sinha cosha] ’ [L y ]  ’ (4.7) 

for any real a. These are, respectively, the magnifier, 
“boost,” and free propagation one-parameter subgroups. 
The physical realizations of the boosts using lenses and 
free propagations, which are quite different for a > 0 and 
a < 0, are described in Sec. VI. 

As a final application, we show how to generalize the 
Kogelnik abcd law” from the fully coherent case to a gen- 
eral partially coherent GSM field. If we define a complex 
parameter p in terms of x by 

(4.8) 

then when x is changed to x’ by Eq. (4.51, we find that f l  
changes to p’ via 

p’=-, a p + b  
cp+d 

A more transparent way to express f l  is to use (4.2): 

(4.9) 

(4.10) 

This generalizes the well-known expression” in the 
coherent case. The point, of course, is that the three- 
dimensional representation of this section makes it clear 
that such a generalization must necessarily exist. 

V. FREE PROPAGATION: ASYMPTOTIC BEHAVIOR 
OF THE GENERALIZED PENCILS 

Now we specialize our analysis to a special class of 
first-order systems, namely, free propagation through a 
distance D whose ray-transfer matrix is 

s,= [; ;I. (5.1) 



 R. SIMON, E. C. G. SUDARSHAN, AND N. MUKUNDA 

Let us denote by G, ‘ the input and output GSM field 
parameter matrices and by A the invariant detG. Then 
substitution of Eq. (5.1) in (3.4) yields 

(5.2) 

We find that under free propagation Gl l  is invariant in 
addition to A. To see the significance of this new invari- 
ant, we first note that the transverse plane 

I - IG12-DG11 G22-2G@+GllD2 * 

Gll Gl2 -DG11 

D = G12/Gll (5.3) 

is an equiphase plane, i.e., R’-+ co . We further note from 
(2.13) and (5.2) that this is the plane where a: (and also 
ui 1 as a function of D assumes its minimum value. Thus, 
we find that the GSM beam has a “waist” at a distance D 
from the input plane; the waist is to the right (left) of the 
input plane accordingly as (G12) and, hence, R < O  (>O).  
Denoting by u, the intensity width at the waist we im- 
mediately obtain the significance of the invariant G1 : 

, 
(5.4) 

To examine the asymptotic behavior of the ray density 
function W z ( e , s )  after propagation through a large dis- 
tance Z from the waist, it is useful to renormalize the ob- 
servation plane transverse coordinates in the following 
way: 

(5.5) 

Evidently! represents the angular position of the obser- 
vation point with respect to the beam waist. Using ( 5 . 5 )  
and (5.2) in (2.9) we have 

WZ(e,s)G PD(E,s) 

(5.6) 
Here we made use of the well-known result 

(5.7) 

6 ‘ 2 ’ ( ~ )  being the two-dimensional Dirac delta function. 
The far-zone pencils are radial and have a universal struc- 
ture controlled by a single parameter A/Gll. We deduce 
that all GSM fields having the same value of A/G 11 will 
result in the same far-zone pencil structure. This 
equivalence statement is about the far-zone pencils and, 
hence, it is more general than the paraxial version of the 
Wolf-Collett’* equivalence theorem which is for the far- 
zone intensity distribution. The latter obtains when one 
integrates (5.6) over S, 

(5.8) A kA 
nZ2 Gii 

- ---exp [ -2 [$]’I , 

and makes use of the fact that 

A/G11=k&/2, (5.9) 

where yut is the value of y at the waist. Even Eq. (5.8) is 
a generalization of the Wolf-Collett theorem for the fol- 
lowing reason: Whereas their formulation assumes the 
“source plane” to be an equiphase surface, our treatment 
does not place any such requirement and, in fact, explicit- 
ly allows for a phase curvature in the “source plane.” 

Finally, we note that the approximation leading to Eq. 
(5.7) conserves the total irradiance as can be seen by in- 
tegrating (5.8) over 

VI. CONCLUDING REMARKS 

We have analyzed the passage of GSM fields through 
FOS using the method of generalized rays. This method, 
while staying exact within wave optics, reduces the prob- 
lem of otherwise dealing with complicated integrals into 
one of multiplying 2 x 2  matrices. This aspect, combined 
with the geometrical picture of viewing this process as 
Lorentz transformation in 2 + 1 Minkowski space, helps 
one find a complete answer to any question related to this 
class of problems, much more easily than will be possible 
using the conventional wave optic methods. Thus, we 
found that the GSM family is closed under action by 
FOS. We have further shown that, given any GSM field, 
there always exists a one-parameter subgroup of FOS 
which leaves it invariant. 

In Eq. (4.7) we identified three subgroups of FOS which 
definitely modified every GSM field. While the magnifier 
and free propagation subgroups are well known, the boost 
subgroup is not as commonly known in the context of 
first-order optics. It turns out that they, and in fact any 
FOS, can be synthesized using thin lenses separated by 
free propagation sections. Let us denote by SD and S f ,  
respectively, the ray-transfer matrices for free propagation 
through a distance D and action by a thin lens of focal 
length f. Then the “antiboosts” ( a  > 0) can be synthesized 
even in the simple configuration sD,sfsD, involving one 
concave lens with 

D1= D2 = (cosha - 1 )(sinha )-I  , 
f =-(sinha)-’ . 

But the boosts (a <O) as FOS are qualitatively different 
and cannot be synthesized even in any configuration in- 
volving two lenses. They can, however, be realized in the 
three-lens configuration. l9 

with 

D = D 1 = 2 ~ > 0 ,  f i = X ,  

f =x  sinha(sinha-x cosha--x)-’, D2= -sinha, 

f2=-sinha(cosha+1)-‘ . 
Our analysis can be simply extended to fields which are 
incoherent superpositions (convex combinations) of GSM 
fields.20 For such fields, it is clear from the geometrical 



  

picture presented in Sec. IV that there will exist, in addi- 
tion to the invariant norm of each three-vector represent- 
ing the individual GSM fields, new invariants correspond- 
ing to the Lorentz inner products of these vectors. For in- 
stance, if the input field is an  incoherent superposition of 
two GSM fields with parameters u I , y  and a;, u;,y' the 
input plane being the equiphase plane (the waist plane) for 
either field, then the additional invariant corresponding to 
the inner product is, from Eq. (4.21, 

y2  I (y'I2 
0: * 

Thus, if we are dealing with convex combination of n 
GSM fields then there will be n ( n  + 1) /2  invariants. I t  
should be emphasized that the derivation of such invari- 
ants will at best be quite tedious if one uses the traditional 

methods. 
There already exists rich literature on the behavior of 

coherent Gaussian beams under action by FOS and the as- 
sociated abcd law. Our geometrical picture in Sec. IV and 
the abcd law brings both coherent and partially coherent 
Gaussian fields under the same fold, rendering this litera- 
ture applicable to all GSM fields. 

For simplicity, the analysis in this paper was restricted 
to axially symmetric GSM fields and axially symmetric 
FOS. We hope to analyze the behavior of anisotropic 
GSM fields in arbitrary FOS elsewhere. 
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