
Article

The International Journal of

Robotics Research

2015, Vol. 34(12) 1501–1514

� The Author(s) 2015

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0278364915576234

ijr.sagepub.com

Generalized reciprocal collision avoidance

Daman Bareiss1 and Jur van den Berg2

Abstract

Reciprocal collision avoidance has become a popular area of research over recent years. Approaches have been devel-

oped for a variety of dynamic systems ranging from single integrators to car-like, differential-drive, and arbitrary, linear

equations of motion. In this paper, we present two contributions. First, we provide a unification of these previous

approaches under a single, generalized representation using control obstacles. In particular, we show how velocity

obstacles, acceleration velocity obstacles, continuous control obstacles, and LQR-obstacles are special instances of our

generalized framework. Secondly, we present an extension of control obstacles to general reciprocal collision avoidance

for non-linear, non-homogeneous systems where the robots may have different state spaces and different non-linear equa-

tions of motion from one another. Previous approaches to reciprocal collision avoidance could not be applied to such sys-

tems, as they use a relative formulation of the equations of motion and can, therefore, only apply to homogeneous, linear

systems where all robots have the same linear equations of motion. Our approach allows for general mobile robots to

independently select new control inputs while avoiding collisions with each other. We implemented our approach in simu-

lation for a variety of mobile robots with non-linear equations of motion: differential-drive, differential-drive with a trailer,

car-like, and hovercrafts. We also performed physical experiments with a combination of differential-drive, differential-

drive with a trailer, and car-like robots. Our results show that our approach is capable of letting a non-homogeneous

group of robots with non-linear equations of motion safely avoid collisions at real-time computation rates.

Keywords

Collision avoidance, multi-robot system, decentralized control, mobile robot navigation, motion control

1. Introduction

Collision avoidance is a fundamental problem in robotics.

The problem can generally be defined in the context of an

autonomous mobile robot navigating in an environment

with obstacles and/or other moving entities, where the robot

employs a continuous sensing-control cycle. In each cycle,

the robot must compute an action based on its local obser-

vations of the environment, such that it stays free of colli-

sions with the moving obstacles and the other robots, and

progresses towards a goal. Many works in robotics have

addressed the problem of collision avoidance with moving

obstacles (Fox et al., 1997; Fiorini and Shiller, 1998; Hsu

et al., 2002; Petti and Fraichard, 2005). Typically, these

approaches predict where the moving obstacles might be in

the future by extrapolating their observed trajectories, and

let the robot avoid collisions accordingly. Velocity obstacles

(VO) (Fiorini and Shiller, 1998) formalize this principle by

characterizing the set of velocities for the robot that result

in a collision at some future time. Continually selecting a

velocity outside of this set will then guarantee collision-free

navigation for the robot.

However, such approaches are insufficient when the

robot encounters other robots that also actively make deci-

sions based on their surroundings: considering them as

moving obstacles overlooks the fact that they react to the

robot in the same way the robot reacts to them, and inher-

ently causes suboptimal and oscillatory motion (Kluge and

Prassler, 2004; Van den Berg et al., 2008).

This has lead to the development of reciprocal collision

avoidance techniques, which specifically account for the

reactive nature of the other robots without relying on coor-

dination or communication among robots. The earliest

approaches were direct extensions of VO, in which each

robot is given half the responsibility of avoiding pairwise

collisions (Van den Berg et al., 2008, 2009). Since this

1Department of Mechanical Engineering, University of Utah, UT, USA
2School of Computing, University of Utah, UT, USA

Corresponding author:

Daman Bareiss, Department of Mechanical Engineering, University of

Utah, 50 S. Central Campus Dr., 2110 MEB, Salt Lake City, UT 841412,

USA.

Email address: daman.bareiss@utah.edu

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


approach only applies to robots with very simple dynamics

that allow the robots to change their velocity instanta-

neously, most subsequent research on the topic has focused

on extending the approach to robots with more complex

dynamic constraints, such as differential-drive (Alonso-

Mora et al., 2010; Snape et al., 2010), car-like (Alonso-

Mora et al., 2012), double-integrator (Lalish and

Morgansen, 2012; Van den Berg et al., 2012), arbitrary

integrator (Ruffli et al., 2013), and robots with linear quad-

ratic regulator (LQR) controllers (Bareiss and van den

Berg, 2013). A major limitation of these approaches

though is that all robots are assumed to have exactly the

same equations of motion, in other words, they apply to

homogeneous systems only. Moreover, in all these

approaches the assumed equations of motion are linear, as

these approaches rely on the ability to express the relative

motion of pairs of robots in terms of the relative control

input (i.e. the difference between the control inputs) of the

robots. Hence, they do not apply to non-homogeneous or

non-linear systems, where robots have different and/or

non-linear equations of motion, which limits their applic-

ability to real-world robots and in real-world applications.

In this paper, we address this shortcoming by presenting

a new reciprocal collision avoidance method with two main

contributions (see Table 1):

� First, we provide a unification of all previous

approaches to reciprocal collision avoidance under a

single, generalized representation using control obsta-

cles. We will show specifically that approaches such as

VO (Fiorini and Shiller, 1998), acceleration velocity

obstacles (AVO) (Van den Berg et al., 2012), continu-

ous control obstacles (CCO) (Ruffli et al., 2013), and

LQR-obstacles (Bareiss and van den Berg, 2013) are

each a special instance of our generalized framework.

Moreover, we will show that our formulation is gener-

ally applicable to all homogeneous systems with linear

equations of motion, and as such covers that entire

class of systems.
� Second, we present an extension of control obstacles to

reciprocal collision avoidance for general non-linear

and/or non-homogeneous systems where the robots

may have different state spaces and different non-linear

equations of motion. No previous approaches to

reciprocal collision avoidance could be applied to these

categories of systems, even though some previous work

has shown how specific instances of non-linear systems

can be turned into a linear system formulation to which

one of the previous approaches could be applied (see

the next section for a more thorough discussion).

We implemented our approach in simulation for a vari-

ety of mobile robots with non-linear equations of motion:

differential-drive, differential-drive with a trailer, car-like,

and hovercrafts. We also performed physical experiments

with a combination of differential-drive, differential-drive

with a trailer, and car-like robots. Our results show that our

approach is capable of letting a non-homogeneous group of

robots with non-linear equations of motion safely avoid col-

lisions at real-time computation rates.

The remainder of the paper is structured as follows.

Section 2 reviews previous approaches to reciprocal colli-

sion avoidance. Section 3 formally defines the problem of

reciprocal collision avoidance. Section 4 presents our gen-

eralized approach for homogeneous systems with linear

equations of motion using control obstacles. Section 5

shows how the previous reciprocal collision avoidance

approaches can be represented in our generalized approach.

In Section 6 we explore the potential of our approach to

non-homogeneous systems with non-linear equations of

motion. Section 7 presents our results and Section 8 sum-

marizes and concludes.

2. Previous work

One of the early developments in collision avoidance was

the velocity obstacle (VO) (Fiorini and Shiller, 1998). The

VO is defined as a cone in the velocity space based on rela-

tive positions and geometries which defines all relative

velocities which will result in a collision. To avoid a colli-

sion, the robot needs to select a new velocity that lies out-

side the VO.

The approach of the VO was initially developed for a

single active agent avoiding collisions with passive agents

or moving obstacles. The approach was extended to per-

form reciprocal collision avoidance between two active

agents in reciprocal velocity obstacles (RVO) (Van den

Berg et al., 2008). In RVO, the concept of the VO is used

but each robot must take half the responsibility to avoid

collisions rather than the entire responsibility as in the VO

algorithm. However, as the number of agents increases

RVO tends to result in oscillatory motions. Optimal reci-

procal velocity obstacles (ORCA) (Van den Berg et al.,

2009) was developed to address this issue. In ORCA, the

set of safe velocities is evenly divided between two robots

by defining halfplanes of safe, possible velocities. These

halfplanes are defined with respect to the VO and are the

sets of individual velocities for two robots that result in

relative velocities outside of the VO, thus avoiding colli-

sions. Each robot selects a new velocity from the set of

Table 1. Classification of reciprocal collision avoidance approaches.

Homogeneous Non-homogeneous

Linear VO/ORCA Control obstacles

AVO
CCO
LQR–obstacles

Control obstacles
Non-linear Control obstacles Control obstacles

1502 The International Journal of Robotics Research 34(12)

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


safe, possible velocities that is as close as possible to a tar-

get velocity.

These algorithms all have the limitation that they are

only guaranteed to provide safe, collision-free motion for

robots with the linear equation of motion _p= v where the
position p defines the state and the velocity v defines the

control input. This model is not practical for most real-

world robots. Several extensions of these earlier

approaches were introduced to address this issue and

present reciprocal collision avoidance for more compli-

cated dynamics. AVO (Van den Berg et al., 2012) were

defined for robots with states consisting of position and

velocity x = [pTvT]T with acceleration control inputs u =

k(vH 2 v) where k is some proportional gain, vH is some

target velocity, and v is the current velocity. The

approach in AVO was further generalized to apply to

arbitrary-degree integrators through CCO by Ruffli et al.

(2013). Further extension was provided by Bareiss and

van den Berg (2013) for robots with arbitrary, homoge-

neous, linear equations of motion.

Table 1 summarizes the types of multi-robot system that

have been considered in reciprocal collision avoidance

based on a high-level categorization along two axes:

� Homogeneous versus non-homogeneous systems:

Homogeneous teams of robots consist of robots that all

have exactly the same state space and equations of

motion, for example all robots are single-integrators

with directly controllable velocity. Non-homogeneous

teams of robots on the other hand may include robots

with different state spaces and equations of motion, for

example a single-integrator interacting with a double-

integrator (a robot with directly controllable

acceleration).
� Linear versus non-linear equations of motion: For sys-

tems with linear equations of motion, the derivative of

the state is a linear function of the state and the control

input, as is the case with single and double integrators

for example. Differential-drive and car-like robots are

examples of systems with non-linear equations of

motion.

It turns out that all existing approaches to reciprocal col-

lision avoidance are limited to specific instances of homo-

geneous systems with linear equations of motion, as these

approaches are reliant upon the ability to express the equa-

tions of motion in terms of their current relative states and

relative control inputs, which is generally not possible for

non-homogeneous and/or non-linear systems. Our approach

extends this previous work and is generally applicable

across this two-dimensional spectrum.

There have been some developments for reciprocal col-

lision avoidance for non-linear equations of motion.

Reciprocal collision avoidance for differential-drive robots

was performed by Snape et al. (2010) where the center of

the robots was shifted and the bounding radius was

increased in order to model the robots as holonomic with

linear equations of motion. In Alonso-Mora et al. (2010),

non-holonomic ORCA (NH-ORCA) was developed. NH-

ORCA increases the radius of the robot based on the error

in a tracking controller which allows non-holonomic robots

to track holonomic trajectories as demonstrated for

differential-drive robots. The NH-ORCA algorithm is

applied to car-like robots by Alonso-Mora et al. (2012). In

Van den Berg et al. (2012) it was shown how car-like

robots can be represented as double integrators, to which

AVO can be applied. These approaches all have in common

that they transform specific instances of non-linear equa-

tions of motion into a linear formulation to which recipro-

cal collision avoidance can be applied. Our approach, in

contrast, will apply directly to any general non-linear equa-

tions of motion.

Our work has some similarities to non-linear velocity

obstacles (NLVO) (Shiller et al., 2001) and generalized

velocity obstacles (GVO) (Wilkie et al., 2009). The NLVO

algorithm expands the VO algorithm to allow for a robot

with linear equations of motion to avoid collisions with

passive obstacles moving with known, possibly non-linear

trajectories. The self-motion velocity obstacle (SMVO) is

another approach that utilizes the NLVO while considering

more general robot trajectories (Shiller et al., 2008). The

GVO algorithm does basically the opposite of the NLVO

by defining a ‘‘control obstacle’’ for robots with non-linear

equations of motion to avoid a passive obstacle moving

along a linear trajectory. This approach samples the space

of possible control inputs to determine if a collision will

occur in the future. Neither of these approaches can be tri-

vially extended to reciprocal collision avoidance.

3. Problem statement

3.1. Notation

We use the following notational conventions in this paper.

Vector sets A are denoted using calligraphics, vectors a are

denoted using boldface, matrices A are denoted using

upper-case italics, and scalars a are denoted by lower-case

italics. Scalar and matrix multiplication, and Minkowski

sums of sets, are defined as

aX = faxjx 2 Xg, AX = fAxjx 2 Xg
X � Y= fx+ yjx 2 X , y 2 Yg

It follows that A� fag denotes a translation of a set A
by a vector a.

3.2. Problem setup

We consider multiple mobile robots sharing a common

workspace where the robots have potentially different, non-

linear equations of motion and state spaces. Let the state

Bareiss and den Berg 1503

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


space of robot i be X i � R
ni . Let Rd be the robots’ physi-

cal workspace, where d = 2 or d = 3 typically. We assume

the position pi 2 R
d of robot i can be derived from its state

xi 2 X i by some potentially non-linear projection function

qi 2 X i ! R
d :

pi(t)= qi(xi(t)) ð1Þ

Let Oi � R
d be the geometry of robot i relative to its

position. We assume that the geometric shape of the robot

is determined only by its position and not its orientation, in

other words, it is rotationally invariant. More specifically,

we consider the robot geometry as its bounding circle simi-

lar to the approach in the original VO (Fiorini and Shiller,

1998). This is a reasonable assumption for most mobile

robots that greatly simplifies the development of our

approach. See Giese et al. (2014) for work specifically

including the orientation dimension in reciprocal collision

avoidance.

We further assume that the dimension of the control

input is equal to the dimension of the workspace, where

U i � R
d is the valid control input space, which is assumed

to be convex. Let the continuous-time equation of motion

for robot i be given by a potentially non-linear function

fi 2 X i ×U i ! R
ni :

_xi(t)= fi(xi(t), ui(t)) ð2Þ

where xi(t) is the state and ui(t) is the control input at time t

for robot i. It is important to remember that X i, qi, and fi
may be different for every robot i.

Given a current state xi = xi(0) of robot i and some con-

stant control input ui = ui(0), the state of the robot at a

given time t . 0 is given by

xi(t)= gi(t, xi, ui) ð3Þ

where gi 2 R×X i ×U i ! X i is the solution to the differ-

ential equation of equation (2), which can be obtained

numerically, for example through a Runge–Kutta

integration.

3.3. Problem statement

The problem of reciprocal collision avoidance we are

addressing can now be defined as having each robot i inde-

pendently compute a change Dui 2 U i � f�uig of its cur-

rent control input ui given the current states xj and control

inputs uj of all other robots j6¼i, such that the robots do not

collide within a time horizon t:

8(j 6¼ i, 0� t\t) :: (Oi � fqi(gi(t, xi, ui+Dui))g)\

(Oj � fqj(gj(t, xj, uj+Duj))g)= ;
ð4Þ

3.4. Challenges and assumptions

The challenge of reciprocal collision avoidance is that

robot i does not know the change in control input Duj the

other robots are going to choose. Therefore, we rely on the

assumption that all robots use the same algorithm in order

to select their change of control input. In this paper we dis-

cuss the design of an algorithm to compute changes in con-

trol inputs such that collision avoidance is achieved. In

doing so, we make the following assumptions:

(I) When computing a control input, we assume that it

remains constant over finite time t into the future.

The actual sensing-action cycle is much shorter than

t and a new control input is computed in every

sensing-action cycle.

(II) We assume that the robots can fully observe each oth-

er’s state and control input.

(III) We assume that the robots have the same type of con-

trol input, for example desired velocity, which is equal

in dimension to the dimension of the workspace.

4. Generalized reciprocal collision avoidance

for homogeneous, linear equations of motion

In this section we introduce the general concept of control

obstacles that applies to general linear and homogeneous

systems. The control obstacle generalizes all previous

approaches on reciprocal collision avoidance, as we will

show in Section 5. In Section 6 we present the extension to

non-linear, non-homogeneous systems.

4.1. Control obstacles

In this section, we consider a system of robots that all have

the same linear equations of motion, that is, a linear, homo-

geneous system. Equation (1) can be expressed for all

robots i in a linear, homogeneous system as

pi(t)= q(xi(t))=Cxi(t)+ d ð5Þ

where the matrix C 2 Rd× n and the vector d 2 Rd map a

robot’s state to its position and are identical for all robots.

Let the state space X i=X � R
n be identical for all

robots i. Equation (2) can be expressed for all robots i as

_xi(t)= f(xi(t), ui(t))=Axi(t)+Bui(t)+ c ð6Þ

where A 2 Rn× n, B 2 Rn× d , and c 2 Rn.

Given a current state xi = xi(0) and a constant control

input ui = ui(0), solving the differential equation in equa-

tion (6) gives

xi(t)= g(t, xi, ui)=F(t)xi+G(t)ui+ h(t) ð7Þ

where F(t) 2 R! R
n× n, G(t) 2 R! R

n× d , and

h(t) 2 R! R
n are identical for every robot and are given

as

F(t) G(t) h(t)
0 I 0

0 0 1

2
4

3
5= exp t

A B c
0 0 0

0 0 0

2
4

3
5

0
@

1
A ð8Þ

1504 The International Journal of Robotics Research 34(12)

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


Remember that for homogeneous systems with linear

equations of motion, q, f, and g are the same for all robots.

A unique property for these systems is that

g(t, xi, ui)� g(t, xj, uj) = g(t, xi � xj, ui � uj)
= g(t, xij, uij)
=F(t)xij+G(t)uij+ h(t)

ð9Þ

where xij = xi 2 xj and uij = ui 2 uj are the relative initial

states and relative control inputs, respectively. This prop-

erty has been exploited by all previous work on reciprocal

collision avoidance. However, it does not hold for homoge-

neous systems with non-linear equations of motion, non-

homogeneous systems with linear equations of motion, or

non-homogeneous systems with non-linear equations of

motion. We will discuss these cases in Section 6.

Substituting equation (7) into equation (5) for a given

control input ui + Dui, where ui is the current control

input and Dui is the change in control input, gives

pi(t)= p̂(t, xi, ui)+ J (t)Dui ð10Þ

where p̂(t, xi, ui) 2 R
d and J (t) 2 Rd× d are

p̂(t, xi, ui)=C(F(t)xi+G(t)ui+ h(t))+ d ð11Þ

J (t)=CG(t) ð12Þ

Given equation (10), we now define the control obstacle

UOij for a robot i avoiding collisions with robot j. In order

for the robots to avoid collision, their relative position

pij(t) = pi(t) 2 pj(t) must remain outside of the Minkowski

sum of the robots’ geometries Oij=Oj ��Oi:

pij(t) 62 Oij ð13Þ

Substituting equation (10) into equation (13) and solving

for the relative change in control input Duij gives

p̂(t, xij, uij)+ J (t)Duij 62 Oij ) Duij 62 J (t)�1

(Oij � f�p̂(t, xij, uij)g)
ð14Þ

Equation (14) represents a constraint on the change in

relative control input Duij such that robots i and j do not

collide at time t. We define the control obstacle as the union

of equation (14) for all time t less than the time horizon t:

UOij=

[

0� t\t

J (t)�1(Oij � f�p̂(t, xij, uij)g) ð15Þ

In other words, a collision will not occur between robot

i and robot j within t time into the future when their rela-

tive change in control input Duij lies outside the control

obstacle:

Duij 62 UOij ð16Þ

The geometry of UOij can be seen as a union of copies

of the relative geometry Oij, each translated to

�p̂(t, xij, uij), that is, the nominal trajectory of robot j

relative to robot i, and then transformed by J21. If the geo-

metries of the robots are discs, UOij is hence a union of

ellipsoids.

4.2. Avoiding collisions with passive robots

For a passive robot or environmental object, we can assume

that Duj = 0. That is, we assume the other robot does not

change its control input. Avoiding collisions with that robot

or object can then be performed simply by selecting a

change in control input Dui outside the control obstacle:

Dui 62 UOij ð17Þ

For the case where it cannot be assumed that Duj = 0,

in other words, both robots are actively avoiding collisions,

reciprocal collision avoidance must be performed, which

we discuss next.

4.3. Reciprocal collision avoidance using control

obstacles

Equation (16) gives the constraint on the relative change in

control input Duij for two robots to avoid collisions. When

it cannot be assumed that Duj = 0, robot i has to consider

the change in control input Duj robot j is going to select in

order for robot i to select a safe change in control input Dui
for itself. The challenge is that Duj is unknown to robot i

and the robots are not allowed to communicate. Hence, our

approach is that robot i computes sets RCAij and RCAji of

possible safe changes of control inputs for robot i and robot

j, respectively, that satisfy the constraint

((RCAij \ ~Ui)��(RCAji \ ~Uj)) \ UOij= ; ð18Þ

where eUi=U i � f�uig is the set of feasible changes in

control input for robot i given the control input constraints.

If robot i selects a change in control input Dui from RCAij

and robot j selects a change in control input Duj from

RCAji, which each satisfy their respective control input

constraints, then it is guaranteed that Duij 62 UOij and the

robots will not collide within t time in the future. We will

let robot i compute RCAij and RCAji in such a way that if

robot j were to apply the same algorithm to its situation, it

would compute the same sets RCAji and RCAij. Robot i is

then free to choose any change in control input from the

set RCAij to avoid collisions with robot j.

There are infinitely many pairs of sets of changes in

control inputs RCAij and RCAji that satisfy equation (18).

Therefore, we choose to find a pair of sets that divides the

responsibility of avoiding collisions equally between both

robots. Let us define a convex set C of safe relative changes

in control inputs such that

C \ ~Uij

� �
\ UOij= ; ð19Þ

where ~Uij=
~Ui �� ~Uj represents the feasible relative

changes in control inputs. Any relative change in control

Bareiss and den Berg 1505

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


input Duij that does not violate control input constraints

and that is within C, in other words any Duij 2 (C \ eUij),

will avoid collisions between robots i and j within t

time.

Since for convex sets it holds that X = 1

2
X � 1

2
X , the

set C can be ‘‘halved’’ to determine sets of safe changes in

control input for both robot i and robot j as

RCAij=
1

2
C, RCAji= �

1

2
C ð20Þ

where the desire to divide the responsibility for collision

avoidance equally between the two robots motivates halv-

ing of the set C for each robot. We will define the convex

set C more concretely below, but if it satisfies the condition

of equation (19), we can prove that our definition of RCAij

and RCAji in equation (20) satisfies our constraint on

RCAij and RCAji of equation (18):

((RCAij \ ~Ui)��(RCAji \ ~Uj)) \ UOij

=
1

2
C \ ~Ui

� �
�� �

1

2
C \ ~Uj

� �� �
\ UOij

�
1

2
C �

1

2
C

� �
\ ~Ui �� ~Uj

� �� �
\ UOij

= C \ ~Uij

� �
\ UOij

= ; ð21Þ

where we use the fact that

ðW \ XÞ � ðY \ ZÞ= ðW � YÞ \ ðW � ZÞ\

ðX � YÞ \ ðX � ZÞ

� ðW � YÞ \ ðX � ZÞ

What remains is choosing the convex set C of safe rela-

tive changes in control inputs. Ideally C should be the larg-

est set of safe relative changes in control input, but such a

set can be difficult to compute exactly. Therefore, we define

C to be the halfspace tangent to the convex hull of the set of

feasible relative control inputs that will result in a collision,

that is, CH(UOij \ ~Uij), at the point w on the convex hull’s

boundary closest to the origin:

w= argmin

u2∂CH(UOij\ eU ij)

uk k ð22Þ

C=
fuj(u� w) � w 	 0g if 0 2 CH(UOij \ eUij)

fuj(u� w) � w� 0g if 0 62 CH(UOij \ eUij)

(
ð23Þ

where ∂ refers to the boundary of a set. By construction,

this definition of C satisfies equation (19).

This is illustrated in Figure 1. The set of feasible relative

changes in control input eUij (i.e. those that adhere to control

input constraints) is represented by the light gray hexagon.

The dark gray region represents the convex hull of the inter-

section of the feasible relative changes in control input and

the control obstacle, that is, CH(UOij \ eUij). The set C is

shown located tangent to this convex hull at the point clo-

sest to the origin. Placing the set C at the closest point to

the origin represents the desire to keep the relative changes

in control input as small as possible and, therefore, allow

the robots to maintain their current, desired control input as

closely as possible.

Since C is a halfspace, it follows that RCAij and RCAji

are halfspaces as well. If the robots are currently on a colli-

sion course, that is, Duij 2 UOij, the vector w represents the

smallest relative change in control input required to avoid a

collision. Given that the two robots share the responsibility

for avoiding collisions equally, the sets RCAij and RCAji

are halfspaces located at 1

2
w and � 1

2
w from the origin of

their respective control input spaces, as shown in Figure 1.

It is important to note that each robot i and j can inde-

pendently compute their halfspacesRCAij andRCAji since

the construction of the control obstacle from robot j’s per-

spective UOji results in the same sets RCAji and RCAij

since UOij= � UOji.

If both robots desire to keep their changes in control

inputs as small as possible while ensuring they avoid colli-

sions, each robot selects a change in control input as

∆u
ij0

∆u
ij1

ij

ij

w ∆u
i0

∆u
i1

i

w/2 ∆u
j0

∆u
j1

j

-w/2

ij

ji

˜

˜

Fig. 1. On the left, a control obstacle UOij is given by its outline. The set of feasible relative changes in control input ~Uij (i.e. those

that adhere to the control input constraints) is shown as the light gray hexagon. The minimum change in relative control input required

to avoid collision is shown as the vector w which defines the position of the halfspace C. The vector w is defined as the closest point

to the origin outside the convex hull (dark gray region) of the intersection of the control obstacle and the feasible changes in control

input UOij \ ~Uij: Each robot constructs a set of safe changes in control input, RCAij for robot i and RCAji for robot j, at w/2 and 2w/

2 respectively as shown in the middle and right images.

1506 The International Journal of Robotics Research 34(12)

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


Dumin
i = argmin

Dui2RCAij

Duik k ð24Þ

Given the symmetry of RCAij and RCAji, it follows that

Dumin
j = � Dumin

i ð25Þ

We use this observation later in the extension of the reci-

procal collision avoidance approach to non-linear systems.

4.4. Avoiding collisions with multiple robots

A control obstacle is defined for pairwise collision avoid-

ance but can easily be extended to more than two robots

with an approach similar to Van den Berg et al. (2009).

Each robot i creates a control obstacle and determines its

set of safe potential changes in control input RCAij with

respect to every other robot j, as in Figure 2. After consid-

ering every robot j, the change in control input for robot i

is selected that is safe from all collisions:

Dui 2 ~Ui \
\

j6¼i

RCAij ð26Þ

where Dui can be found with a convex optimization method

in the d-dimensional space of control inputs similar to the

method by Van den Berg et al. (2009).

Given a preferred change in control input, the convex

optimization will result in a change in control input that is

as close as possible to some preferred input while not vio-

lating equation (26). However, there can be cases in which

the set of safe changes in control input may be empty, that

is, ~Ui \
T

j 6¼iRCAij= ;. When this occurs, a convex opti-

mization in a (d + 1)-dimensional space will select the

change of control input that will least violate the con-

straints. See Van den Berg et al. (2009) for full details.

This potentially results in a collision within t time if the

control inputs truly remain constant, but given that a new

control input is selected in each sensing-action cycle, in

practice this turns out to typically result in safe motion.

However, the fact that collision avoidance can only be theo-

retically guaranteed in some cases remains a limitation of

our approach.

5. Generalization of previous reciprocal

collision avoidance approaches

Above, we have developed a method for reciprocal collision

avoidance for a homogeneous system of multiple robots

with general, linear equations of motion. We did so through

a new method of control obstacles. Previous approaches of

reciprocal collision avoidance can be shown to be special

cases of control obstacles. As shown in the previous sec-

tions, the control obstacle is fully defined for a system if

given A, B, and c from equation (6) and C and d from equa-

tion (5). We will now show how previous methods of reci-

procal collision avoidance can be represented as control

obstacles using these terms.

5.1. VO

The VO algorithm assumes the robot’s equations of motion

are a single integrator kinematic model:

_p= v ð27Þ

where x = p and X � R
2 is the space of positions, u = v

and U � R
2 is the space of velocities. For equation 27 we

find

A= 0, B= I , c= 0, C= I , d= 0

Solving equation (7) for these, we find

F(t)= I , G(t)= tI , h(t)= 0

When Oij is a circle or sphere, the control obstacle is

equivalent to the VO translated by the negative of the cur-

rent relative input 2vij as in Figure 3. This discrepancy

arises from control obstacles being developed based on

changes in control input rather than the absolute control

input.

5.2. AVO

The AVO algorithm is presented by Van den Berg et al.

(2012) as an alternative to the VO. One of the major prob-

lems with the VO is the assumption that instantaneous

changes in velocity are possible. However, as this is not the

case for physical systems, the AVO algorithm was

developed.

In AVO, the robots have four state variables (the two-

dimensional position and velocity) x 2 R4 and two control

inputs (the two-dimensional acceleration) u 2 R2. The con-

trol inputs are driven by a proportional controller:

_v=
1

d
(vH � v) ð28Þ

where v
H is the desired velocity, v is the current velocity,

and d is a controller parameter.

Integrating equation (28) twice to obtain the system’s

trajectory gives

Fig. 2. A scenario for a group of seven robots avoiding

collision. Robot 1 creates a safe set of changes in control inputs

RCA1j for every other robot j. The intersection of the union of

these planes and the space of possible changes of control input
~Uij is shown as CA, which is the set of changes in control input

that avoid collisions with every other robot while adhering to

control input constraints.

Bareiss and den Berg 1507

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


v(t)= vH � e�t=d vH � v(0)
� �

ð29Þ

p(t)= p(0)� d(e�t=d � 1)v(0)+ t+ d(e�t=d � 1)
� �

vH

ð30Þ

Hence, we can represent the AVO with a control obstacle

by choosing the state x = [pTvT]T, the control input u = vH,

and

A=
0 I

0 � 1

d
I

� 	
, B=

0

1

d
I

� 	
, c= 0

C= I 0½ 
, d= 0

Solving equation (7), we find

F(t)=
1 �d(e�t=d � 1)

0 e�t=d

� 	
, G(t)=

t+ d(e�t=d � 1)

1� e�t=d

� 	
,

h(t)= 0

5.3. CCO

CCO (Ruffli et al., 2013) generalizes the previously men-

tioned AVO algorithm by defining the (n + 1)th derivative

of position as the low-level control input where

p(n+ 1)
= � cnp

(n) � . . .� c2€p+ c1(v
H � _p) ð31Þ

where the superscript (n) represents the nth derivative of the

term and vH is the target velocity that is a high-level control

input.

The low-level control input is an input given directly to

the robot which determines the next state through the equa-

tions of motion. The high-level control input abstracts the

low-level control input to velocity through a controller. This

abstraction to velocity as a control input is common in reci-

procal collision avoidance and we discuss its use in our

method in Section 6.1.

For example, controlling the jerk of a robot p(3) is shown

in full in Ruffli et al. (2013).

The state is x= ½pT _pT . . . (p(n))T
T and the control input

is u = vH. Solving for the state equation gives

A=

0 I 0

.

.

.
.
.

.

0 0 I

0 �c1I . . . �cnI

2
66664

3
77775
, B=

0

.

.

.

0

c1

2
66664

3
77775

c= 0

C= I 0 . . . 0½ 
, d= 0

5.4. LQR-obstacles

LQR-obstacles by Bareiss and van den Berg (2013) provide

a method for reciprocal collision avoidance for homoge-

neous systems of robots with the same arbitrary linear equa-

tions of motion. The equations of motion of each robot are

_x= ~Ax+ ~Bu+ec ð32Þ

An LQR controller is used to obtain the low-level input

from the high-level input vH using the control law

u= � Lx+EvH+ ‘ ð33Þ

By substituting equation (33) into equation (32), the

closed-loop equations of motion are given as

_x=Ax+BvH+ c ð34Þ

where

A= ~A� ~BL,B= ~BE, c= ~B‘+ec ð35Þ

Along with equation (34), the control obstacle is fully

defined for a given C and d that extract the position from

the state, similar to equation (5).

6. Non-homogeneous, non-linear equations

of motion

The previous discussion defined a generalized method for

reciprocal collision avoidance using control obstacles UOij

for sets of robots with the same linear equations of motion.

We present the extension of these methods for robots in

x

y

r
i

r
j

v
i

v
j

Δv
x

Δv
y –p

ij
–v
ij

–p
ij
–v
ij

r
ij

–v
ij

Δv
x

Δv
y

r
ij

–p
ij
/τ–v

ij

r
ij
/τ

Fig. 3. Left: a pair of robots with equation of motion _p= v where their current velocities will lead to a collision course with each other.

Middle: an infinite time horizon control obstacle is given for the robot configuration on the left. As can be seen, the control obstacle

contains the origin, meaning that the robots will indeed collide if they continue with their current control input. Right: the same control

obstacle is shown, except now it is bounded by a finite time horizon t. This control obstacle is equivalent to the VO for the single-

integrator dynamics except it is shifted by the negative of the current relative velocity 2vij. This discrepancy between the control

obstacle and VO arises because the control obstacle is defined in terms of the change in velocity rather than the absolute velocity.

1508 The International Journal of Robotics Research 34(12)

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


non-homogeneous systems, that is, different types, with

possibly non-linear equations of motion.

Given the equations of motion of robots i and j (see

equation (2)), we can approximate the relative position pij(t)

given each robot’s current state xi and xj as well as constant

control inputs ui and uj through a first-order Taylor approx-

imation about the current control input:

pij(t)’qi½gi(t, xi, ui)
 � qj½gj(t, xj, uj)


+
∂(qi 8 gi)

∂ui
(t, xi, ui)Dui �

∂(qj 8 gj)

∂uj
(t, xj, uj)Duj

ð36Þ

In the spirit of equation (25), we make the assumption

that Dui’Duij/2 and Duj’2Duij/2 such that each robot is

required to take half the responsibility for avoiding pairwise

collisions. For this assumption to be realistic, we require

that the control input of both robots be of the same ‘‘type’’,

for example a desired velocity, which we will discuss in

Section 6.1. We can then re-write equation (36) as

pij(t)’p̂ij(t, xi, ui, xj, uj)+ Jij(t, xi, ui, xj, uj)Duij ð37Þ

where

p̂ij(t, xi, ui, xj, uj)= qi½gi(t, xi, ui)
 � qj½gj(t, xj, uj)
 ð38Þ

Jij(t,xi, ui, xj, uj)=
1

2

∂(qi 8 gi)

∂ui
(t, xi, ui)+

∂(qj 8 gj)

∂uj
(t, xj, uj)

� �

ð39Þ

Given the definitions of equations (38) and (39), the

control obstacle can be given similar to before as

UOij=

[

0\t\t

Jij(t, xi, ui, xj, uj)
�1(Oij�f�̂pij(t, xi, ui, xj, uj)g)

ð40Þ

The methods for performing reciprocal collision avoid-

ance with this new control obstacle formulation (equation

(40)) are identical to those defined in Sections 4.3 and 4.4.

6.1. Higher-level control input

We have presented a method for reciprocal collision avoid-

ance for robots in non-homogeneous systems with general,

non-linear equations of motion. In doing so, we have made

three key assumptions, which are:

(I) The control input remains constant over finite time t;

(II) The robots observe each other’s state and control

input;

(III) The robots have the same type of input, equal in

dimension to the workspace.

Many robots have control inputs which violate some or

all of these assumptions. Let us consider a car-like robot

with control inputs of acceleration at the rear axle and the

steering angle. It is not reasonable to assume that these

remain constant for long periods of time as required by (I).

Of course, it will not remain constant because it changes

every sensing-action cycle, but at least we want the con-

stant assumption to give a reasonable estimate of the future

motion of the other robots. For low-level control inputs that

can change quickly (unlike a goal velocity), it cannot be

assumed that a constant control input gives a reasonable

estimate. It is also unreasonable to assume that these low-

level control inputs can be observed by the other robots,

violating (II). Performing reciprocal collision avoidance

between a car-like robot and a differential-drive robot

would violate (III).

For these reasons, we implement a controller which

abstracts the low-level control inputs to a high-level control

input, such as a target velocity, similar to Van den Berg

et al. (2012), Bareiss and van den Berg (2013), and Ruffli

et al. (2013). Abstracting to a high-level input makes the

assumptions reasonable for most mobile robots. A target

velocity typically remains approximately constant over long

periods of time. A velocity is inherently equal to the dimen-

sion of the workspace. Lastly, it is reasonable to assume the

current velocity of other robots can be observed, and it can

be assumed the target velocity is approximately equal to

the current velocity.

7. Results

We performed both simulations and physical experiments

to verify the performance of the algorithm. In this section,

we present the equations of motion for the robots used in

the simulations and physical experiments as well as the

result from those experiments. Each robot presented uses a

controller to define a target velocity as a higher-level con-

trol input.

7.1. Robot dynamics

7.1.1. Differential-drive robot. We implemented a

differential-drive robot in both simulation and experiments.

We used the kinematic model with a three-dimensional

state consisting of the two-dimensional position and the

orientation (x, y, u). The low-level control inputs are the left

and right wheel velocities (vr, vl). The equations of motion

are given as

_x= (vr+ vl) cos (u)=2 ð41Þ

_y= (vr+ vl) sin (u)=2 ð42Þ

_u= (vr � vl)=‘ ð43Þ

where ‘ is the distance between the wheels.

The low-level control inputs vr and vl are abstracted to a

high-level input vH through a controller where

vr= vH


 

+ ‘k(\vH � u)=2 ð44Þ

Bareiss and den Berg 1509

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


vl= vH


 

� ‘k(\vH � u)=2 ð45Þ

where :v
H is the angle the target velocity makes with the

positive x-axis and k is a controller gain. Substituting the

new high-level control inputs from

‘equations (44) and (45) into equations (41) to (43) gives

_x= vH


 

 cos (u), gt _y= vH



 

 sin (u), gt _u= k(\vH � u)

ð46Þ

7.1.2. Differential-drive with off-axle trailer. We imple-

mented a differential-drive robot pulling a trailer in both

simulation and experiments. The equations of motion were

adapted from Lee et al. (2004) which uses a car with an

off-axle trailer. For the configuration given in Figure 4, the

state is given as (x, y, u0, u1) and the equations of motion

are given as

_x= (vr + vl) cos (u0)=2+ _u0d0 sin (u0) ð47Þ

_y= (vr+ vl) sin (u0)=2� _u0d0 cos (u0) ð48Þ

_u0= (vr � vl)=‘0 ð49Þ

_u1=
vr+ vl

2
sin (u0 � u1)� _u0d0 cos (u0 � u1)

� �
=d1

ð50Þ

where d0, d1, and ‘0 are the parameters shown in Figure 4.

We implemented a controller such that

vr+ vl

2
= vH


 

, _u0d0= k(\vH � u0) ð51Þ

which when substituting equation 51 into equations (47) to

(50) gives

_x= vH


 

 cos (u0)+ k(\vH � u0) sin (u0) ð52Þ

_y= vH


 

 sin (u1)� k(\vH � u0) cos (u0) ð53Þ

_u0= k(\vH � u0)=d0 ð54Þ

_u1= ( vH


 

 sin (u0 � u1)� k(\vH � u0) cos (u0 � u1))=d1

ð55Þ

7.1.3. Car-like robot. We implemented a car-like robot in

simulation and physical experiments. We used a four-

dimensional state consisting of the two-dimensional posi-

tion, the orientation, and the speed (x, y, u, v). The low-

level control inputs are the acceleration at the rear axle and

the steering curvature (a, k) where equations of motion are

defined at the midpoint by

_x= v cos (u)� ‘vk sin (u)=2 ð56Þ

_y= v sin (u)+ ‘vk cos (u)=2 ð57Þ

_u= vk ð58Þ

_v= a ð59Þ

where ‘ is the distance between the front and rear wheels.

Deriving the equations of motion in terms of the midpoint

of the robot, rather than at the midpoint along the rear axle

keeps the enclosing disc as small as possible.

We implemented a proportional controller to determine

the low-level control inputs in terms of the target velocity

vH:

a= k0( vH


 

� v), k= k1‘(\v

H � u)=v ð60Þ

where k0 and k1 are proportional controller gains.

Substituting equation 60 into equations (56) to (59) gives

_x= v cos (u)� k1(\v
H � u) sin (u)=2 ð61Þ

_y= v sin (u)+ k1(\v
H � u) cos (u)=2 ð62Þ

_u= k1(\v
H � u) ð63Þ

_v= k0( vH


 

� v) ð64Þ

7.1.4. Hovercraft. We implemented a simulated hovercraft-

style robot with two thrusters as seen in Figure 5. The

hovercraft’s state is given as the two-dimensional position,

the heading, the two-dimensional velocity, and the rate of

change of the heading (x, y, _x, _y, u, _u). Given the forces

x

x

y

θ
(x,y)

•

•y

f
l

f
r

l

θ
•

Fig. 5. The model of the hovercraft-like robot implemented in

simulation. The two thrusters are shown as fr and fl with the

distance between them as ‘. The center position and orientation

are shown.

l
0

l
1

d
1

d
0

θ
1

θ
0

(x,y)

v
l

v
r

x

y

Fig. 4. The configuration of a differential-drive robot pulling a

trailer with the origin (x, y) considered to be the point of

connection between the robot and the trailer.

1510 The International Journal of Robotics Research 34(12)

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


provided by thrusters (fr, fl), the midpoint equations of

motion are given as

€x= (fr+ fl) cos (u)� bt _xð Þ=m ð65Þ

€y= (fr+ fl) sin (u)� bt _yð Þ=m ð66Þ

€u= (fr � fl)‘=2� br _u
� �

=i ð67Þ

where m is the mass of the robot, i is the robot’s rotational

inertia, bt is the translational friction coefficient, and br is

the rotational friction coefficient.

Including a proportional-derivative controller to solve

for control inputs as a function of the target velocity vH

gives

(fr+ fl)= k0m( vH


 

� vk k) ð68Þ

(fr � fl)‘=2= k1i(\v
H � u)� k2 _u ð69Þ

where k0 and k1 are controller gains, v= ( _x, _y) is the velo-

city, and :vH is the angle the target velocity makes with

the x-axis. Substituting equations (68) and (69) into equa-

tions (65) to (67) gives

€x= k0( vH


 

� vk k) cos (u)� bt _x=m ð70Þ

€y= k0( vH


 

� vk k) sin (u)� bt _y=m ð71Þ

€u= k1(\v
H � u)� (k2+ br=i) _u ð72Þ

7.2. Simulation setup and implementation details

We performed simulations on a desktop machine running

Windows 7 Professional 64-bit with an Intel i7-2600 CPU

(3.40 GHz) and 8 GB RAM. The simulations were devel-

oped in a Visual Studio C+ + environment. The fre-

quency of the sensing-action control sequence was 10 Hz.

The equations of motion were discretized using Runge–

Kutta integration at 0.1 s time-steps.

The relative geometry Oij was approximated using a set

of 16 points uniformly sampled around a circle of the

robots’ combined radii. The control obstacle can then be

approximated by performing the operations in equation

(14) on the generated set of points for each time-step up to

the time horizon t. The convex hull of the control obstacle

was computed using the Boost library (Dawes et al., 2009).

Upon determining the halfplanes, the RVO2-2D library

(Van den Berg et al., 2009) was used to compute the new

control input through a convex optimization method.

The differential-drive robots had bounding circle radii

of 0.3 m. The car-like robots had radii of 0.45 m. The

hovercraft robots had radii of 0.47 m. The differential-drive

robots with trailers had radii of 0.45 m. The desired speed

of the robots during the simulations was 0.3 m/s.

Unless otherwise noted, we used a time horizon of

t = 7 s during simulations. This value was determined

experimentally. We found the selection of the time horizon

to have a significant impact on the performance of our

algorithm. Too short a time horizon can lead to a ‘‘late’’

reaction from the robots. This can lead to situations where

a rather large change in control input is necessary to avoid

collisions. If this large input violates the control input con-

straints on the robot, the collision-avoiding input is not

obtainable and a collision can occur. On the other hand,

selecting t to be too large has a negative effect as well. The

halfplanes from equation (18) become more restrictive as t

increases, possibly leading to no solution for equation (26).

The time horizon is an empirical term that is situation-

dependent, which is a limitation of our algorithm. We note

that for the specific case of single integrator dynamics, Gal

et al. (2009) have performed systematic analysis on the

optimal value of the time horizon.

7.3. Simulation results

We performed a variety of simulations to validate our

approach. One set of simulations consisted of groups of

five robots, where each robot type was simulated separately

as shown in Figure 6. We ran simulations with all the robot

types included. One such simulation included two of each

type, eight in total. A selection of screenshots is shown in

Figure 7. We included a simulation where two groups of

four tried to cross the workspace as shown in Figure 8. We

also performed a simulation where a group of four passive

robots cross the workspace in a vertical line while a group

of four active robots cross in the opposite direction. The

four passive robots do not update their control input based

on the positions of the other robots. Selected screenshots

of this are shown in Figure 9. We performed a simulation

Fig. 6. Simulations where five robots avoid collisions while

crossing the workspace. Top left: differential-drive robots. Top

right: car-like robots. Bottom left: hovercraft-like robots. Bottom

right: differential-drive robots with off-axis trailers.

Bareiss and den Berg 1511

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


with 100 robots moving from random starting positions to

random goal positions. This simulation can be seen in the

video found at http://arl.cs.utah.edu/research/grca/.

In physical experiments, it cannot be assumed that the

robots can have perfect state estimation of the other robots.

A series of simulations were performed to demonstrate our

algorithm’s robustness in the presence of noise. A group of

eight differential-drive robots were initialized in a circle

and their goal was to cross to the antipodal position. In

these simulations, we introduced artificial noise by adding

a normal random variable to the position components of xj
in equation (14). Increasing the robot’s radius is a common

practice in reciprocal collision avoidance methods, and

therefore we increased our robots’ radii by 10% (0.03 m).

Using a time horizon of t = 5 s, no collisions were

observed until the standard deviation of the sensed position

was 0.07 m. We repeated the experiments with the radii

increased by 25% (0.075 m) and observed collisions at a

standard deviation of 0.15 m. Similar simulations were run

for the same scenario with two of each robot type (differen-

tial-drive, differential-drive with a trailer, car-like, and

hovercraft). In this case, the algorithm was less robust to

noise with collisions resulting from standard deviations of

0.02 m and 0.04 m for bounding radii increases of 10%

and 25%, respectively. This is likely due to the more con-

strained input space eUij for the more complicated dynamics

as well as our use of very simple controllers for complex

equations of motion. These experiments, as we expected,

suggest that for larger noise values a larger increase in the

bounding circle can be used. However, too large a bound-

ing circle makes for extremely conservative actions which

may be too limiting for a given robot’s control input

constraints.

In order to quantify the speed of our algorithm, we cal-

culated the per-time-step-per-robot average computation

time, that is, the time it takes for one robot to determine its

set of safe changes in velocity with respect to every other

robot in a single sensing-action cycle. As can be seen in

Figure 10, this quantity is linear with respect to the number

of robots, as expected. In simulation, we found that it is

possible for over 100 non-homogeneous, non-linear robots

to perform reciprocal collision avoidance at real-time com-

putational rates for a time horizon of t = 20 s with a simu-

lation frequency of 10 Hz. At higher frequencies, for

example, 20 Hz, the trends in Figure 10 would have a slope

of twice that for 10 Hz, due to the doubled frequency dur-

ing the integration in equation (15). As can be seen, the

computation time also shows a linear trend with the value

Fig. 7. A simulation that contains eight robots: two differential-drive (red discs), two differential-drives with trailers (red and white),

two car-like robots (red rectangles), and two hovercrafts (yellow rectangles). They begin on a circle and cross the circle to finish on

the side opposite their starting positions. Six screen shots from the simulation with the individual robot paths are shown.

Fig. 8. Two groups of four robots crossing the workspace while

avoiding collisions with each other.

Fig. 9. A case where two active car-like robots and two active hovercraft robots cross the workspace from right to left as four passive

differential-drive robots cross from left to right. The paths the robots take are drawn and it can be seen that the car-like and hovercraft

robots make the necessary adjustments to avoid collisions with each other and the differential-drive robots.

1512 The International Journal of Robotics Research 34(12)

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


of the time horizon, as twice as large a time horizon results

in twice as complex a control obstacle (at least in the way

we implemented its construction).

7.4. Experiments

The physical experiments were performed using the Robot

Operating System (ROS) software platform. A motion-

capture environment was used to estimate the positions and

orientations of the robots. Similar to the simulations, the

control obstacles were approximated using sets of 16 points

uniformly sampled around the robots’ bounding circles.

While the state estimates of the robots are performed by

the motion capture system, the algorithm is developed as a

decentralized method where on-board state estimation

could be implemented in the future.

For the experiments, we used six iRobot Creates. Three

of the Creates were used as differential-drive robots, two

were used to simulate car-like motion by restricting their

minimum turning radius, and the sixth Create had a custom

trailer mounted to it. The Creates have a radius of 0.335 m.

The trailer axle is located 0.25 m behind the center of the

Create. The robots were driven with a desired speed of

0.2 m/s. Their maximum speed possible is 0.5 m/s. The

experiments were performed with a frequency of 50 Hz

and a time horizon of 3.5 s.

Due to the stochastic nature of the experiments from

modeling and sensor error, the robots’ bounding circle was

increased by 25%. Less accurate models or less accurate

sensors could require a further increase in the radius. At

times the robots can be seen moving back and forth

between each other in a form of ‘‘reciprocal dance’’ due to

sensing noise. This phenomenon has been more thoroughly

studied by Conroy et al. (2014).

During the experiments, we recorded the desired velo-

city before the control obstacles algorithm was performed

as well as the collision-free target velocity resulting from

the control obstacles. To further quantify the experimental

results, we determined the Euclidean norm between the

desired and the calculated target velocities, representing the

change in input from the algorithm. From approximately

5500 data points the mean and standard deviation of the set

were found to be 0.0794 m/s and 0.128 m/s, respectively.

We ran experiments similar to the simulations with the

robots crossing through the center of the workspace and

avoiding collisions as shown in Figure 11. We also

Fig. 10. Timing calculations were made for a number of experiments shown above. The data and the first-order fit are shown. For a

sensing-action cycle frequency of 10 Hz, a single time-step is 0.1 s and our algorithm can produce real-time results for over 100 robots.

Fig. 11. An image taken while performing the physical

experiments of our reciprocal collision avoidance algorithm.

Bareiss and den Berg 1513

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


performed experiments of situations more applicable to

real-world scenarios where the robots were divided into

two groups crossing the workspace. Videos of the experi-

ments and simulations can be found at http://arl.cs.uta-

h.edu/research/grca/.

8. Conclusions

Previously, reciprocal collision avoidance has been applied

to a variety of robotic systems with both linear and special

cases of non-linear equations of motion. In these

approaches, the fact that all the robots were the same type

allowed for a relative state formulation to be used.

However, for non-homogeneous systems, that is, systems

of robots that are different types, this is not possible.

In this paper, we presented a unified method for recipro-

cal collision avoidance of non-homogeneous systems of

robots with non-linear equations of motion. In order to do

so, we presented the control obstacle for homogeneous sys-

tems of robots with linear equations of motion. We then

showed how the control obstacle generalizes previous reci-

procal collision avoidance methods and provided examples

of how previous methods fit into our framework. More spe-

cifically, we showed VO (Fiorini and Shiller, 1998), AVO

(Van den Berg et al., 2012), CCO (Ruffli et al., 2013), and

LQR-obstacles (Bareiss and van den Berg, 2013). Finally,

we extended control obstacles for use with non-linear equa-

tions of motion and/or non-homogeneous systems. In our

simulations and physical experiments, we saw that our algo-

rithm was able to provide smooth, collision-free motion for

all robots in the environment.

Funding

This research received no specific grant from any funding agency

in the public, commercial, or not-for-profit sectors.

References

Alonso-Mora J, Breitenmoser A, Beardsley P, et al. (2012) Reci-

procal collision avoidance for multiple car-like robots. In:

IEEE international conference on robotics and automation.

Alonso-Mora J, Breitenmoser A, Rufli M, et al. (2010) Optimal

reciprocal collision avoidance for multiple non-holonomic

robots. In: Proceedings of the 10th international symposium

on distributed autonomous robotic systems.

Bareiss D and van den Berg J (2013) Reciprocal collision avoid-

ance for robots with linear dynamics using LQR-obstacles. In:

IEEE international conference on robotics and automation.

Conroy P, Bareiss D and Beall M (2014) 3-D reciprocal collision

avoidance on physical quadrotor helicopters with on-board sen-

sing for relative positioning. Available at: http://arxiv.org/abs/

1411.3794.

Dawes B, Abrahams D and Rivera R (2009) Boost C++

libraries. Available at: http://www.boost.org.

Fiorini P and Shiller Z (1998) Motion planning in dynamic envir-

onments using velocity obstacles. The International Journal of

Robotics Research 17: 760–772.

Fox D, Burgard W and Thrun S (1997) The dynamic window

approach to collision avoidance. IEEE Robotics & Automation

Magazine 4(1): 23–33.

Gal O, Shiller Z and Rimon E (2009) Efficient and safe on-line

motion planning in dynamic environments. In: IEEE interna-

tional conference on robotics and automation.

Giese A, Latypov D and Amato N (2014) Reciprocally-rotating

velocity obstacles. In: IEEE international conference on

robotics and automation.

Hsu D, Kindel R, Latombe J, et al. (2002) Randomized kinody-

namic motion planning with moving obstacles. The Interna-

tional Journal of Robotics Research 21(3): 233–255.

Kluge B and Prassler E (2004) Reflective navigation: Individual

behaviors and group behaviors. In: IEEE international confer-

ence on robotics and automation.

Lalish E and Morgansen K (2012) Distributed reactive collision

avoidance. Autonomous Robots 32(3): 207–226.

Lee JH, Chung W, Kim M, et al. (2004) A passive multiple trailer

system with off-axle hitching. International Journal of Con-

trol, Automation, and Systems 2(3): 289–297.

Petti S and Fraichard T (2005) Safe motion planning in dynamic

environments. In: IEEE RSJ international conference on intel-

ligent robots and systems.

Ruffli M, Alonso-Mora J and Siegwart R (2013) Reciprocal colli-

sion avoidance with motion continuity constraints. IEEE Trans-

actions on Robotics 29(4): 899–911.

Shiller Z, Large F and Sekhavat S (2001) Motion planning in

dynamic environments: Obstacles moving along arbitrary tra-

jectories. In: IEEE international conference on robotics and

automation.

Shiller Z, Prasanna R and Salinger J (2008) A unified approach to

forward and lane-change collision warning for driver assis-

tance and situational awareness. Technical Report 2008-01-

0204, Society of Automotive Engineers, Warrendale, PA.

Snape J, van den Berg J, Guy S, et al. (2010) Smooth and

collision-free navigation for multiple robots under differential-

drive constraints. In: IEEE international conference on intelli-

gent robots and systems.

Van den Berg J, Guy S, Lin M, et al. (2009) Reciprocal n-body

collision avoidance. In: Proceedings of the international sym-

posium of robotics research.

Van den Berg J, Ling M and Manocha D (2008) Reciprocal velo-

city obstacles for real-time multi-agent navigation. In: IEEE

international conference on robotics and automation.

Van den Berg J, Snape J, Guy S, et al. (2012) Reciprocal collision

avoidance with acceleration-velocity obstacles. In: IEEE inter-

national conference on robotics and automation.

Wilkie D, van den Berg J and Manocha D (2009) Generalized

velocity obstacles. In: IEEE international conference on

robotics and systems.

1514 The International Journal of Robotics Research 34(12)

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

http://arxiv.org/abs/1411.3794
http://arxiv.org/abs/1411.3794
http://ijr.sagepub.com/

