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Generalized recovery algorithm for 
3D super-resolution microscopy 
using rotating point spread 
functions
Bo Shuang1, Wenxiao Wang2, Hao Shen1, Lawrence J. Tauzin1, Charlotte Flatebo1, 

Jianbo Chen2, Nicholas A. Moringo1, Logan D. C. Bishop1, Kevin F. Kelly2 & Christy F. Landes1,2

Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. 
Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still 
missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks 
generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are 
further refined by least squares fitting. Overfitting is suppressed using a machine learning determined 
threshold. Preliminary results on experimental data show that our algorithm can be used to super-
localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase 
masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the 
processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the 
ultimate limit of real-time processing is possible. Our program is the first open source recovery program 
for generalized 3D recovery using rotating point spread functions.

Single-molecule and super-resolution imaging1–5 have changed our understanding of biological processes6,7, 
dynamics at interfaces8–12, and functions of catalysts at the single molecule level13–15. Molecular motors are now 
known to move hand-over-hand5,16. Stochastic ligand clusters complicate chromatographic protein separa-
tions17,18. Cheaper and higher resolution gene mapping is made accessible19,20. �e inner functions of live bacteria 
are unveiled21,22.

Underpinning each new piece of super-resolved knowledge are similarly revolutionary advancements in 
image analysis algorithms. For example, using 2D Gaussian �tting instead of the center of mass is critical to 
achieve nanometer scale resolution23. In order to speed up the analysis process, fast �tting algorithms that address 
both mathematical analysis24,25 and computational resources26 have been proposed. Algorithms focused on 
high-density imaging such as DAOSTORM27, compressed sensing interpolation28 and FALCON29, have inspired 
the development of super-resolution imaging with better time resolution. Today, we have a variety of sophisti-
cated algorithms for recovery under di�erent measurement conditions in 2D super-resolution imaging.

More recently, 3D super-resolution imaging is �nding increased applications. Cells and organelles all have 3D 
structures30,31, and many biological processes32 and separation processes are 3D processes17. It is urgent to develop 
3D super-resolution techniques with time and space resolution comparable to 2D techniques. One approach is 
to scan over di�erent z positions and record multiple 2D images, with Ober’s group demonstrating simultaneous 
multiple detection planes to image 3D motion in living cells33. One advantage of such hardware-based methods is 
that the generated image can be analyzed by 2D processing algorithms.

Another popular method is to encode the phase information (which is related to the z position of the emitter) 
in the intensity distribution by using a cylindrical lens (astigmatism)30 or phase mask34–36 in the detection path so 
that 3D information is recorded in a single 2D image. Di�erent phase masks generate di�erent 3D point spread 
functions (PSFs), as shown in Supplementary Fig. S1 and references35,37–39. �e advantages of astigmatism-based 
methods are that they are cheaper and have lower hardware requirements making them accessible to a broader 
group of researchers. However, data analysis becomes a challenge because, for most phase-based measurements, 
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the PSF cannot be simply approximated and �t by simple equations like the 2D Gaussian function40,41. Algorithms 
such as 3D DAOSTORM can analyze astigmatism-based 3D images42. 3D FALCON43 can be used to analyze 
astigmatic images, biplane images, as well as hybrid images that combine astigmatic and biplane methods43. 
However, PSFs recorded in these types of 3D microscopies can be well-�t by Gaussians or elliptical Gaussians, 
which is usually not possible for phase mask engineered PSFs. Easy-DHPSF is a useful algorithm to analyze 3D 
single-particle tracking data using a double-helix phase mask41, but it requires the recorded PSFs to have no over-
lap, which, as we discuss below, is a serious challenge for most 3D recovery algorithms. Barsic et al. introduced 
an algorithm to analyze such 3D imaging data44, but the algorithm is not open source and thus not generalizable. 
Despite the promise of phase mask-based 3D imaging and isolated successful implementation, there is still a need 
for algorithms to analyze broad types of experimental images, as well as to provide reliable test-data for compar-
ing performance between di�erent phase masks.

A major challenge in phase mask based 3D super-resolution imaging is recovering accurate 3D localizations 
from a range of analyte densities45–47. As mentioned earlier, when using a phase mask, 3D information is projected 
onto 2D images with overlapped PSFs that are individually more complicated than a simple Gaussian. O�en, 
the resulting overlapping PSFs can prevent accurate localization unless the distribution of the excited emitters is 
sparse in the space domain28,29. Extracting accurate 3D localizations with higher emitter densities is preferred, but 
this experimental requirement increases the challenges of subsequent image recovery. �erefore, the processing 
e�ciency of 3D super-resolution recovery algorithms is important in practice.

In order to address the importance of accuracy, precision, and processing speed, we introduce a 3D 
super-resolution recovery algorithm for emitters imaged with arbitrary 3D phase masks that generate rotating 
PSFs. We use an alternating direction method of multipliers (ADMM)48–51 based algorithm to deconvolute the sam-
ple positions from the 3D measurement, which records a single 2D image with encoded 3D information. We fur-
ther improve the resolution by using a Taylor expansion to calculate the 1st order corrections between these grids29 
using least squares �tting. ADMM is a powerful and e�cient algorithm for convex optimization49,52. Moreover, we 
apply a threshold generated by machine learning (ML) to reject false positive identi�cations. �resholding based on 
machine learning makes use of features from the data that are di�cult to capture based on human observations53–58. 
In addition, we show how the recovery algorithm can be implemented both on a central processing unit (CPU) 
and a graphics processing unit (GPU). By using an a�ordable GPU, it is possible to increase processing speeds by 
an order of magnitude. Further estimation shows that by using a GPU array it would be possible to reach real-time 
data analysis of even dense phase mask data. To our knowledge, our algorithm will serve as the �rst open source 
algorithm for 3D recovery using phase mask imaging. Finally, as a proof-of-concept, we demonstrate that our algo-
rithm can be used to localize single molecules within the 3D structure of a porous polystyrene �lm.

Results and Discussions
One common 3D super-resolution approach is to incorporate a 4f system into the detection path of a traditional 
wide �eld microscope (Fig. 1). �is 4f system is composed of two identical lenses (L1 and L2) separated by twice 
the focal distance and a phase mask mounted in the focal plane35,59,60 between the two lenses. �is plane is called 
the Fourier plane, which is the ideal location to manipulate the phase pattern in the detection path. �e 4f system 
does not change the magni�cation. In x and y dimensions, the magni�cation is:
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Figure 1. Schematic of our 3D super-resolution microscope using a phase mask. FL is the focal lens. For 
a typical wide �eld microscope, the detector is placed at the focal point a�er FL. Lens 1 and Lens 2 are two 
identical lenses forming a 4f system. �e phase mask is mounted in the Fourier plane, which is the center plane 
between Lens 1 and Lens 2. �e detector is placed a�er the 4f system. �e phase mask is made of transparent 
materials with di�erent thicknesses generating di�erent phase delays. �e simulated phase mask pattern shown 
approximates the double helix phase mask reported elsewhere61, and the commercially available phase mask 
(Double Helix LLC) used in the experimental portions of the current work.
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In the z dimension, the magni�cation is:
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where ∆ x1 (∆ x2) and ∆ z1 (∆ z2) are the displacements in the x-y plane and in the z direction on the sample side 
(detector side) respectively, NA is the numerical aperture of the objective, n is the refraction index of the working 
medium for the objective, r is the e�ective beam radius, which should equal to the radius of the phase mask, and 
f is the focal distance of Lens 1 and Lens 2, as shown in Fig. 1.

For a rotating PSF, the orientation (or shape) of the PSF as a response to di�erent z positions is φ∆
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where ∆ φ represents the orientation (or shape) change. Combining with equation  (2), we have: 
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. �is means the orientation (or shape) response of a phase mask is only related to the 

objective. However, based on equation (1), the magni�cation of the PSF in x and y are inversely proportional to 
the ratio of beam radius and focal distance r

f
.

�e imaging process of this 3D microscope can be modeled as the convolution of a 3D PSF (such as the double 
helix PSF as shown in Fig. 2a) with emitters positioned in 3D (Fig. 2b), which generates overlapping 3D PSFs 
(Fig. 2c). �e detector only records the 2D image at z =  0 plane, as shown in Fig. 2d. �is incomplete sampling of 
the imaging space causes di�culty in later deconvolution for super-resolution recovery.

Recovering a super-resolution 3D image reduces to a convex optimization problem. We assume the emitter 
distribution (like Fig. 2b) is approximated by a 3D matrix x, and the 3D PSF (like Fig. 2a) is represented by the 
3D matrix A. We use a 2D matrix y to store our measured image (like Fig. 2d). To �nd x, we need to solve the 
optimization problem:
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Figure 2. Illustration of the 3D imaging process with a double-helix phase mask (a–c) and the super-
resolution recovery procedures (d–f). (a) A double-helix 3D PSF is generated by a phase mask. Using this 3D 
PSF, the depth information of an emitter is indicated by the relative orientation of the two lobes in the x-y plane.  
(b) Two simulated emitters (dark green crosses) separated in 3D space. �e dashed line is used to guide the eye. 
(c) �e full 3D image space that results from a convolution of the double-helix PSF with the 3D positions of 
the two emitters. (d) A simulated CCD image that would occur from placing a photodetector at the focal plane 
(z =  0 µ m) of the image space described by the convolution of the double-helix PSF and the two emitters.  
(e) �e recovered positions of the emitters in front view (x-y plane) on the grids using ADMM algorithm.  
(f) �e �nal recovered positions using least squares �tting and machine learning to avoid over�tting (magenta 
circles) compared with the ground truth (dark green crosses).
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in which ⊗  means convolution, T is a 1D vector, and ε is the tolerance of the noise. �e minimization is over x. 
�e only non-zero element in T corresponds to the z =  0 image from the convoluted 3D matrix. �e 3D matrix 
A ⊗  x needs to be reshaped into a 2D matrix. �e two horizontal dimensions become the �rst dimension and 
the z dimension is the second dimension. Multiply this reshaped 2D matrix with the 1D vector T selects the 
re-constructed image at z =  0, which can be used to compare with the measured image y. In single molecule 
experiments, the excited emitters in every recorded image are sparse28. Recent developments in compressive sens-
ing and sparse sampling have demonstrated that using the L1 norm can recover sparse signals exactly28,62,63. �e 
constraint in the second line ensures agreement between the measured image and the recovered image. However, 
directly solving this optimization problem requires a large amount of memory and computation resources, mak-
ing this 3D optimization problem infeasible for most personal computers.

Recently published ADMM based deconvolution algorithms50,51 break down the optimization problem into 
multiple sub-problems to accelerate the computation and reduce the memory requirement by using circular con-
volution. Based on variable splitting and Lagrange multipliers, the solution of the optimization problem (eq. 3) 
can be found by solving:
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Here we use u0 (u1) to replace A⊗ x (x) in the �rst (second) term and force them to be the same in the third 
(fourth) penalty term; and η0, η1, µ and ν are related to Lagrange multipliers (for a complete understanding of 
Lagrange multipliers and ADMM, please review reference49). We use µ =  1 and ν =  20 based on ref. 50 for the 
best performance. �e new optimization problem can be solved iteratively by updating one unknown at a time. In 
iteration k +  1, these unknowns can be updated in this way:
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where argmin means argument of the minimum, which means �nding the value of the variable that minimize 
the expression. Equation (5), (6) and (7) can be solved explicitly without any iteration, which is the major reason 
for the state-of-the-art speed of this algorithm. Moreover, A ⊗  x now can be calculated more e�ciently using 
a fast Fourier transform (FFT), and variables like x, η0 and η1 can be updated in the Fourier domain without 
an inverse Fourier transform. �is further reduces the number of required operations. We use 1000 iterations 
for all the analysis in this work. �e sparsity of the solution is guaranteed by so� thresholding (eq. 6), which is 
equivalent to the L1 norm50,51. �is has been shown in ref. 64. An ADMM algorithm handles much larger images 
at a time compared to directly solving the convex optimization problem (eq. 3)28,44. However, solutions resulting 
from ADMM deconvolution are on discrete grids and are vulnerable to over�tting. As shown in Fig. 2e, more 
than two emitters (corresponding to the bright pixels) are identi�ed, meaning there are over�ttings a�er ADMM 
deconvolution.

We further improve the resolution via least squares �tting and suppress over�tting using a machine learning 
determined threshold (Fig. 2f). In the deconvolution algorithm, the 3D PSF is approximated as a discrete 3D 
matrix. By adding the 1st order Taylor expansion in the x, y and z directions, we can approximate the 3D PSF in 
continuous space29 and re�ne the positions of the emitters by solving this least squares problem:
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 are the corresponding 2D PSFs and the 1st order Taylor expansions in x, y, and z in the 

imaging plane for emitter i; Ii is the intensity of emitter i; dxi, dyi, dzi are 1st order di�erentials in x, y and z 
directions.

Least squares �tting alone cannot distinguish true positive emitters and false positive emitters. Research in 
super-resolution recovery frequently focuses on recall rates (the number of identi�ed true positive emitters over 
the number of all true emitters), and focuses less on the false positive rate (the number of identi�ed false positive 
emitters over the number of all the emitters identi�ed by the algorithm). However, the false positive rate is equally, 
if not more, important. A lower recall rate is a matter of measuring time but a higher false positive rate potentially 
distorts the true structure. Usually researchers use pre-selected thresholds (such as 5% of the highest intensity) 
to remove false positives. We instead use labeled data and ML to �nd out a more objective threshold via multiple 
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parameters (see SI for details). As shown in Fig. 3a, using this training data determined threshold, the recall rate 
decreases by a small amount, but the false positive rate decreases signi�cantly.

Based on our simulations (simulation details are explained in the SI), the optimal emitter density in 3D imag-
ing can be determined. As shown in Fig. 3a,b, as the emitter density increases, the recall rate decreases and false 
positive rate increases, and the �tting error in every dimension increases. �e �tting error as a function of emitter 
density increases in a linear trend, but the recall rate shows a gradual decrease when the emitter density is greater 
than 0.7 µ m−2. �e false positive rate for emitter density larger than 0.8 µ m−2 is larger than 10%, meaning a larger 
possibility of identifying misleading structures. As illustrated in Fig. 3c, at lower emitter densities, we can recover 
almost all of the emitters with no over�tting. At higher densities (Fig. 3d), false positive emitters are more likely to 
be identi�ed. Based on this simulation, we suggest keeping emitter density smaller than 0.7 µ m−2 in 3D imaging 
measurements. Under these guidelines, simulations have shown we can correctly recover 3D structures with high 
labeling density with ~10 nm resolutions (Supplementary Fig. S4). Our choice of emitter densities range within 
commonly used in the �eld of super-resolution microscopy using a visible light laser65 and widely discussed 
in other works28,44. �ese general guidelines are consistent for a range of di�erent phase masks other than the 
double-helix (Supplementary Fig. S2). �is simulation test on a di�erent phase mask also proves the performance 
of the machine learning determined threshold and further demonstrates that our algorithm can be used to eval-
uate the performance of new phase mask designs. �is program can be downloaded from our website: http://lrg.
rice.edu/Content.aspx?id=96.

Despite our e�cient and generalizable algorithm, more than one hour is required to analyze a 512 ×  512 image 
on a typical personal computer with a standard CPU (Intel i7-4770, 3.40 GHz). To optimize the processing time, 
we need to parallelize the computation. Such parallelization is easily possible using a GPU. If an algorithm can 
break down the problem into multiple independent �oating point operations, parallel computation on a GPU has 
been shown to accelerate the processing by 10–100 times compared to computation on a high-end CPU26. A GPU 
conducts thousands to millions of independent �oating point operations simultaneously. Image processing is an 
ideal application for GPUs. Each pixel of the image can be assigned to a thread and di�erent threads can perform 
similar operations simultaneously.

Figure 3. Performance of the algorithm. (a) Recall rate (recall %, le� axis, in red color) and false positive 
rate (false %, right axis, in blue color) with or without the ML step. �e standard deviation of each point 
is shown in Supplementary Fig. S3. (b) �e standard deviation of the �tting error distribution in x (blue 
square), y (green circle) and z coordinates (red diamond). (c) Example recovery result of an image with 15 
emitters (emitter density =  0.4 µ m−2) in a 3D plot. �e recovered vs. simulated true positions are indicated 
in magenta circles and cyan crosses, respectively. �e simulated measured image is shown in the bottom of 
the 3D space. All the emitters are located with no over�tting. (d) Example recovery result of an image with 40 
emitters (emitter density =  1.06 µ m−2) in a 3D plot. �ere are many incorrect identi�cations, which can lead to 
misrepresentations about the sample.

http://lrg.rice.edu/Content.aspx?id=96
http://lrg.rice.edu/Content.aspx?id=96
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ADMM based image deconvolution is accelerated by an order of magnitude through computation on a GPU 
(Table 1). Operations in ADMM algorithms are primarily related to 3D FFT and matrix-matrix element wise 
operations, in which the 3D FFT is the most time consuming part. �e parallel computing platform created 
by NVIDIA, which is called compute uni�ed device architecture (CUDA), provides a library for FFT on GPUs 
(http://www.nvidia.com/). We make use of this FFT library for fast convolution and deconvolution computa-
tions and distribute all other element wise operations to millions of threads. Parallel computation speeds up 
our algorithm by 10 times using a GeForce GTX 645 GPU (576 CUDA cores, 1GB global memory), as shown 
in Supplementary Fig. S5 and Table 1. �e limits of achievable acceleration are the number of CUDA cores, 
which decides the number of threads being processed at a time, and the amount of global memory, which limits 
the amount of data being processed at a time. Usually, the number of CUDA cores is the only limiting factor. If 
we use a high-end GPU, such as the NVIDIA Tesla K80 with 4992 CUDA cores, the speed of our computation 
can increase by an additional factor of ten (Table 1). For a typical single-molecule measurement, we can record 
1000 images in 30 s, and the data size is approximately 1 GB. �e NVIDIA Tesla K80 has 24 GB of memory with 
480 GB/s bandwidth, so data transfer time is instantaneous and we won’t face the limitation of the memory. 
�erefore, data analysis speed increases linearly as the number of Tesla K80 to be used in parallel. With the cur-
rent development of parallel computation, one can envision that in the not-so-distance future, real-time analysis 
will be possible and a�ordable with the extension to parallel GPU processing.

As an example, we show the application of our recovery algorithm to nanoscale 3D structures in porous 
polystyrene �lms (Fig. 4). Engineered polymer �lms are used in chemical and biological separations, and under-
standing analyte/�lm interactions has been of recent interest18. Correlating the connection between the 3D 
morphology of the polymer �lms and the separation e�ciency might provide a means to produce �lms with 
improved separation performance8,11,17,66,67. Previous studies focused on dynamic interactions between analytes 
and clustered-charge ligands imbedded in the support �lm, but also suggested that nanoscale heterogeneities in 
�lm structure are also important17,44,63,65. �e proof-of-concept analysis shown in Fig. 4 suggests that our algo-
rithm can be combined with more complicated analytes and samples to directly relate nanoscale 3D �lm structure 
and dynamic interactions between the analyte and the �lm.

Image size (pixels)

CPU (Intel i7-4770) GPU (GeForce GTX 645, 576 CUDA cores) GPU (Tesla K80, 4992 CUDA cores)

Matlab R2013a CUDA C CUDA C

8 ×  8 12.6 s 0.85 s < 0.1 s

56 ×  56 105 s 8.5 s ~1 s

120 ×  120 439 s 33.1 s ~4 s

192 ×  192 1054 s 98.3 s ~11 s

Table 1.  Computational speed comparison between CPU and GPU.

Figure 4. 3D super-localization of 40 nm orange �uorescent bead adsorption onto porous polystyrene 
�lms. Details about sample preparation can be found in the SI. (a) 3D localization of �uorescent beads on a 
porous polystyrene �lm with (b) correlated bright-�eld image of the corresponding area. �e cross markers in 
(a,b) indicate the 2D positions of identi�ed emitters. �e color of each marker indicates the relative z position 
of each emitter, as shown in the corresponding color bar. �e arrows highlight two emitters at di�erent depths 
corresponding to positions within a pore and on the edge of a pore. (c) A dark-�eld image of the polystyrene 
�lm structure. �e region studied in (a,b) is labelled in the green box. (d) 3D localization is demonstrated on 
another polystyrene �lm with a higher density of beads. �e phase mask used to collect the experimental data 
was purchased from Double Helix LLC.

http://www.nvidia.com/
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We prepared a porous polystyrene �lm and drop casted orange �uorescent beads onto the �lm (see SI for 
details about sample preparation and data acquisition). As shown in Fig. 4a, the local depth of each bead was 
extracted. Figure 4b and c are the bright-�eld (Fig. 4b) and dark-�eld (Fig. 4c) images of the same area. As would 
be expected with a porous �lm, the distribution of super-localized bead depths suggests that some of the beads 
are within pores (e.g. highlighted by the white arrow) whereas some are on the �lm surface (e.g. highlighted 
by the yellow arrow). �e depth localizations of beads agree well with the underlying surface morphology of 
the porous �lm. Moreover, we also used our algorithm to analyze another porous �lm with a higher density 
of beads (Fig. 4d), strongly supporting that our algorithm can be used to perform 3D super-localization and 
super-resolution even when the complex PSFs generated by phase masks are overlapped.

Conclusion
We have demonstrated via simulation that our new algorithm can recover a 3D super-resolution image measured 
by a 3D microscope using phase masks in the Fourier plane. In the development of our algorithm, we leveraged 
state-of-the-art techniques in signal processing and optimization including ADMM and machine learning, as 
well as advanced computation resources to achieve the best possible algorithm performance and with computa-
tions completed in a few seconds via GPU processing. Our algorithm could play an important role in future data 
processing tasks including performance testing for new phase mask development. Our current algorithm still 
requires a good match between the experimental PSF and the simulated PSF. Motion blur in 3D single molecule 
tracking and complicated background in imaging will a�ect the performance of our algorithm. For our future 
work, we will further improve our algorithm for more complicated experimental conditions.
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