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Generalized reduced magnetohydrodynamic equations
S. E. Kruger,a) C. C. Hegna, and J. D. Callen
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~Received 28 July 1998; accepted 24 August 1998!

A new derivation of reduced magnetohydrodynamic~MHD! equations is presented. A
multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time
scales of the problem associated with~1! MHD equilibrium, ~2! fluctuations whose wave vector is
aligned perpendicular to the magnetic field, and~3! those aligned parallel to the magnetic field. The
derivation is carried out without relying on a large aspect ratio assumption; therefore this model can
be applied to any general toroidal configuration. By accounting for the MHD equilibrium and
constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential
quantities on a time scale associated with the parallel wave vector~shear-Alfven wave time scale!,
which is the time scale of interest for MHD instability studies. Careful attention is given in the
derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to
all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow
effects are easily accounted for in this model. Equations for the inner resistive layer are derived
which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson
@Phys. Fluids18, 875 ~1975!#. © 1998 American Institute of Physics.@S1070-664X~98!02012-6#
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I. INTRODUCTION

Reduced descriptions of the magnetohydrodyna
~MHD! equations have a number of attractive features
theoretical and numerical calculations.1–7 The goal of these
descriptions is a reduced set of equations that embody
most salient physics of MHD stability properties in magn
tized, toroidal plasmas. These reduced models eliminate
fast time-scale magnetosonic waves, which significantly c
strain the computational speed of solving the full MH
equations and do not significantly contribute to instabiliti
Strauss1 introduced these models by reducing the MH
equations using the inverse aspect ratio of the torus as
expansion parameter. Hazeltine and Meiss5 furthered the ba-
sic physics understanding of reduced MHD by giving a de
vation usingki /k' as the expansion parameter, which w
introduced as a means to eliminate the fast time scale a
ciated with motions perpendicular to the magnetic field. T
Hazeltine and Meiss derivation is a superset of the orig
derivation in Ref. 1 since in large aspect ratio devices,
expansion parameter scales as

ki

k'

;
a

Rq
!1, ~1!

wherea, R, andq are the plasma minor radius, major radiu
and safety factor, respectively, which is formally small in t
large aspect ratio tokamak ordering.

Despite the success in heuristically explaining the fu
damental physics of reduced MHD equations, some asp
of the derivation given by Hazeltine and Meiss are unsa
factory. A separation between the equilibrium length sc
and parallel length scale is not made, which makes the id
tification of the MHD equilibrium conditions difficult. More

a!Electronic mail: kruger@cptc.wisc.edu
4161070-664X/98/5(12)/4169/14/$15.00
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seriously, however, their form of the perturbed magne
field is not divergence free and energy is not conserved to
orders. The goal of the present work is to derive a set
reduced equations which do not have these inadequacies
to further clarify the physics of reduced MHD.

A recent derivation of reduced equations by Strauss6 has
many similarities to the derivation by Hazeltine and Me
and the derivation in this work. In Ref. 6, an expansion
made around a large ‘‘vacuum’’ magnetic field that is dive
gence and curl-free. The expansion parameter used is
ratio of the induced field to the vacuum magnetic field whi
can be shown to be consistent withki /k' being small. Con-
trary to what is stated in the paper, however, this derivat
is not valid for low-aspect ratio tokamaks because such
vices typically have induced magnetic fields comparable
the vacuum magnetic field.8,9

We also note that the same length-scale ordering u
here has recently been applied to the ideal MHD Lagrang
for studying ballooning modes in three-dimension
configurations.10 Although the motivations are different
there are many parallels to this work and it provides a use
contrast to this paper.

In this paper, a set of reduced MHD equations, which
valid at any aspect ratio, are derived usingki /k' as a small
expansion parameter. In Sec. II, the ordering is introdu
and shown to naturally lead to a multiple time- and leng
scale expansion. Then it is applied to the MHD equatio
The fundamental assumptions of reduced MHD are elu
dated by examining the behavior on the fastest time scale
Sec. III, equations having the same structure as other red
equations are derived that evolve only scalar quantities
satisfy the constraints required to eliminate the fast motio
Energy conservation and the procedure for maintainin
divergence-free magnetic field are shown. An additional
vantage to the model introduced here relative to previ
9 © 1998 American Institute of Physics
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reduced MHD models is the ability to introduce addition
physics. In this section, we also discuss two additional ph
ics effects: the self-consistent incorporation of sub-Alfve
equilibrium flow profiles and neoclassical closures. In S
IV, we develop a linear stability analysis for resistive mod
using the reduced equations derived in this paper based
thin-layer width approximation. Finally, in Sec. V we discu
and summarize the findings.

II. FUNDAMENTALS OF REDUCED MHD

The ordering used in this derivation is designed to lo
at modes whose wavelengths are small compared to the
nor radius a~equilibrium scale length! and to the parallel
wavelength, i.e.,

l'

l i
;e and

l'

a
;e, ~2!

wheree!1, and the wavelength ordering is defined for d
rections relative to a large-scale magnetic field. Since m
netic shear localizes modes in the perpendicular direct
many MHD instabilities are characterized by this orderin
These perturbations are called ‘‘flute’’5,10 perturbations be-
cause the magnetic surfaces of such perturbations resem
fluted column.

To formally obtain the ordering of Eq.~2!, we order the
space and time dependencies of first-order quantities as

Q15Q1S xW'

e
, xW i ,

t'
e

, t i D , ~3!

where the notationxW'(xW i) denotes spatial dependence of p
turbed quantities in the direction perpendicular~parallel! to
the zeroth-order magnetic field, andt' and t i are the time
scales associated with their respective spatial scales. W
applying the gradient operator to a perturbed quantityQ1 ,
this ordering of the spatial scales gives the desired sm
ki /k' :

¹W Q15S 1

e
¹W '1¹W i DQ1~xW' , xW i!. ~4!

The time scales have the same ordering as the spatial sc

]Q1

]t
5S 1

e

]

]t'
1

]

]t i
DQ1 . ~5!

The terms parallel and perpendicular here are defi
with respect to a zeroth-order magnetic field such that

¹W i[b̂0~ b̂0•¹W !; BW 0•¹W 'Q150, ~6!

where b̂0[BW 0 /B0 . Because the expansion is performed
terms of anisotropic, spatially dependent operators, wh
introduces subtleties in the derivation, further properties
the perpendicular and parallel gradient operators are give
Appendix A. The expansion parameter is given by the
isotropy of the perturbed response; therefore the zeroth-o
quantities are ordered as

Q05Q0~xW ,t !, ~7!
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so that their spatial scales (xW ) and time scales~t! are not
separated by direction.

The MHD variables are ordered then as

r5r0~xW ,t !1er1S xW'

e
, xW i ,

t'
e

, t i D ;

p5p0~xW ,t !1ep1S xW'

e
,xW i ,

t'
e

,t i ,D ;

VW 5eVW 1S xW'

e
,xW i ,

t'
e

,t i D ;

BW 5BW 0~xW ,t !1eBW 1S xW'

e
,xW i ,

t'
e

,t i D , ~8!

P5eP0~xW ,t !1eP1S xW'

e
,xW i ,

t'
e

,t i D ;

Pe5e2P0e
~xW ,t !1e2P1e

S xW'

e
,xW i ,

t'
e

,t i D ,

wherer,p,BW ,VW ,P, andPe are the plasma density, pressur
magnetic field, flow velocity field, total stress tensor, a
electron stress tensor, respectively. Note that no assump
are made on the zeroth-order quantitiesa priori ~i.e., it is not
assumed that they satisfy the usual MHD equilibrium for
balance!. This derivation most significantly differs from pre
vious derivations of reduced equations by explicitly keep
the zeroth-order and the perpendicular time scales. They
kept here because the multiple-time-scale analysis all
one to observe the behavior of motions on these time sc
as well as the desiredt i time scale. The stress tensorP is the
sum of both the ion and electron contributions and is orde
e. The electron stress tensorPe and the resistivity,h, are
ordered ase2.

We apply the ordering of Eq.~8! to the MHD equations
including the anisotropic stress tensor, but neglecting h
flows:

]r

]t
1~VW •¹W !r1r~¹•VW !50,

]p

]t
1~VW •¹W !p1Gp~¹•VW !

5~G21!FhJ22P:¹W VW 2
1

ne
Pe :¹W Ve

W G ,
~9!

]BW

]t
1~VW •¹W !BW 1BW ~¹•VW !2~BW •¹W !VW

52¹W 3h¹W 3BW 2¹W 3
1

ne
¹W •Pe ,

rS ]VW

]t
1~VW •¹W !VW D 52¹W ~p1B2/2!1~BW •¹W !BW 2¹W •P,

in which we have setm051. The O~1! equations are
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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2
]r0

]t
5

]r1

]t'
1r0¹W '•VW 1 ,

2
]p0

]t
5

]p1

]t'
1Gp0¹W '•VW 1 ,

~10!

2
]BW 0

]t
5

]BW 1

]t'
1BW 0¹W '•VW 1 ,

2¹W ~p01B0
2/2!1~BW 0•¹W !BW 05r0

]VW 1

]t'
1¹W '~p11BW 0•BW 1!.

We assume that the zeroth-order quantities do not v
on the perpendicular time scale and assume wavelike s
tions for the first-order quantities:

r1 ,p1 ,VW 1 ,BW 1;ei ~k'
W

•xW'2vt'!. ~11!

A perpendicular time-scale average is introduced and gi
by

^Q& t'
[

1

T'
E

0

T'

Q dt' . ~12!

This averaging operator is applied to Eqs.~10! to yield the
longer time-scale behavior of these leading-order equati
After taking this average, the terms on the right side van
and leave

K ]r0

]t L
t'

5
]r0

]t
50,

K ]p0

]t L
t'

5
]p0

]t
50,

~13!K ]BW 0

]t L
t'

5
]BW 0

]t
50,

^2¹W ~p01B0
2/2!1~BW 0•¹W !BW 0& t'

52¹W ~p01B0
2/2!1~BW 0•¹W !BW 050,

which shows that the zeroth-order quantities satisfy
MHD equilibrium equations exactly.

The equilibrium equation shows the need for a sepa
tion between the equilibrium length scale (xW ) and the parallel
length scale (xW i), which was not done in the Hazeltine an
Meiss derivation which usedQ05Q0(xW i). The nontrivial
projection of the last equation is in the perpendicular dir
tion: ¹W '(p01B0

2/2)5B0
2kW , wherekW [(b̂0•¹W )b̂0 is the cur-

vature vector associated with the lowest order magnetic fi
The formulation of Hazeltine and Meiss would give¹W 'p0

50. Conceptually, such a separation of equilibrium and p
allel length scales is desirable because the expansion pa
eter is then based on the anisotropy of the perturbation
sponse, rather than the scale lengths of the equilibrium.

Equation~13! is used to eliminate zeroth-order quan
ties. Then the perturbed parts of Eqs.~10! can be written as
Downloaded 07 Mar 2007 to 128.104.198.190. Redistribution subject to AI
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S ]2

]t'
2 2~VS

21VA
2 !¹W '

2 D ~p11BW 0•BW 1!50,

]2VW 1

]t'
2

2¹W '~VS
21VA

2 !¹W '•VW 150,

~14!
]2r1

]t'
2 2¹W '

2 ~p11BW 0•BW 1!50,

]2BW 1

]t'
2

2
BW 0

r0
¹W '

2 ~p11BW 0•BW 1!50,

whereVS
25Gp0 /r0 andVA

25BW 0
2/r0 . These are the leading

order equations for fast magnetosonic waves that justifies
wavelike behavior assumed. Magnetosonic wave motions
not significantly contribute to linear MHD stability,11 but
place a severe Courant–Friedrichs–Lewy~CFL! numerical
constraint12 on numerical solutions of the full MHD equa
tions. To eliminate the fast, perpendicular time scale in
equations~i.e., to obtain]Q1 /]t'50), one chooses

¹W '•VW 15O~e!, p11BW 0•BW 15O~e! ~15!

as constraints on our equations. These constraints form
basis of the reduction of the MHD equations, and explici
show the reduced MHD assumption corresponds to fast m
netosonic waves equilibrating to the ideal MHD equilibrium
Eqs.~13!.

With these constraints, theO(e) equations become

2S ]r2

]t'
1r0~¹W '•VW 2! D

5
]r1

]t i
1~VW 1•¹W '!r11~VW 1•¹W !r01r0~¹W i•VW 1!,

2S ]p2

]t'
1Gp0~¹W '•VW 2! D

5
]p1

]t i
1~VW 1•¹W '!p11~VW 1•¹W !p01Gp0~¹W i•VW 1!

2~G21!FhJ22P:¹W VW 12
1

ne
Pe :¹W VW eG ,

~16!

2S ]BW 2

]t'
1BW 0~¹W '•VW 2! D

5
]BW 1

]t i
1~VW •¹W '!BW 12~BW 1•¹W '!VW 12~BW 1•¹W !VW 0

1h¹W 2B11¹W 3
1

ne
¹W •Pe ,

2S r0

]VW 2

]t'
1¹W '~p21BW 0•BW 2! D

5r0S ]VW 1

]t i
1~VW 1•¹W '!VW 1D 1¹W '

B1
2

2
1¹W i~BW 0•BW 1!1¹W ip1

2~BW 0•¹W i!BW 12~BW 1•¹W '!BW 12~BW 1•¹W !BW 01¹W •P.
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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As before, the left side of these equations describes fast m
netosonic waves for the second-order quantities. These
tions can again be eliminated using the averaging operato
Eq. ~12!, and one is left with averages of the right side ov
the fast (t') time scale. As discussed later, parts ofVW 2 will
be kept in the derivation which cause¹W '•VW 25” 0 so that
energy conservation is guaranteed; however,]Q2 /]t'50
will be assumed.

The remaining equations have eight variables. Equati
~15! and ¹W •BW 50 introduce three constraints which leav
five fundamental variables. In the following section, Eq
~16! are used to derive five equations to evolve five sca
quantities.

III. REDUCED MHD EQUATIONS

A. Derivation

In this section evolution equations for five scalar va
ables are derived using the information deduced from
lowest order equations of the previous section:

~1! If the constraints of Eq.~15! are satisfied, quantities d
not vary on the perpendicular time scale.

~2! Zeroth-order quantities satisfy an equilibrium equati
and do not vary with time.

Before beginning the derivation, energy conservation
briefly considered. Energy conservation for the MHD equ
tions is shown by casting the equations in the form13

]w

]t
1¹W •sW50, ~17!

wherew is the energy density andsW is the energy flux. Such
an equation is integrated over all space to show t
(]/]t) *w dV50 in the absence of energy flow through t
boundary. Terms likeBW 1•¹W ' in our O(e) equations will
cause the energy conservation equation to be in the form

]w

]t
1¹W •s1

W1¹W '•s2
W50. ~18!

When integrated over all space, this equation will not sati
energy conservation to all orders ine because the¹W ' opera-
tor is spatially dependent and terms containing it will n
vanish. To correct this, we need to include¹W i terms that are
formally lower in the ordering~such asBW 1•¹W i) to produce
complete divergences. However, for simplicity the lowe
order terms which are kept will not be shown explicitl
Keeping lower-order terms to satisfy energy conservation
this work is similar to the derivation of reduced equatio
given by Drake and Antonsen.3

Beginning with the right side of Eq.~16! and keeping the
lower-order terms as mentioned, the pressure equation
comes
Downloaded 07 Mar 2007 to 128.104.198.190. Redistribution subject to AI
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dp1

dti
1~VW 1•¹W !p01GpT~¹•VW 1!

5~G21!FhS JTi

2 1
u¹W pTu2

B0
2 D 2P:¹W VW 11

1

ne
Pe :¹W

JW

neG ,

~19!

which can be written in a form useful for showing ener
conservation as

]

]t i

p1

G21
1¹W •

GpT

G21
VW 12~VW 1•¹W pT!

5hS JTi

2 1
u¹W pTu2

B0
2 D 2P:¹W VW 1

1

ne
Pe :¹W

JW

ne
, ~20!

where

d

dti
5

]

]t i
1~VW 1•¹W !,

b̂T[b̂01b̂15
BW 0

B0
1

BW 1

B0
5

BW T

B0
,

~21!
BW T[BW 01BW 1 , pT5p01p1 ,

JTi
5Ji01Jĩ5b̂0•¹W 3BW 01b̂0•¹W '3BW 1 .

Here, the term¹W •VW 1 is ¹W i•VW 11¹W '•VW 2 and the perturbed
parallel current has been denoted with a tilde rather tha
subscript 1 because it is of order unity. The density equa
when ordered is similar to Eq.~19! in form:

dr1

dti
1rT¹•VW 150, ~22!

where rT[r01r1 . Taking the parallel component of th
momentum equation given in Eq.~16! gives

rT

dVi

dti
52b̂0•¹W p12b̂1•¹W pT2b̂0•¹W •P, ~23!

whereVi[VW 1•b̂0 .
To derive equations for the perpendicular components

the magnetic induction equation and the momentum equa
of Eqs. ~16!, it is easier to recast the ordering process
terms of the the electrostatic and magnetic potentials. Th
are ordered as

F5e2f, AW 5AW 01e2AW 2 , ~24!

such that the electric and magnetic fields are

EW 52¹W F2
]AW

]t
5e~2¹W 'f!1e2S 2¹W if2

]AW 2

]t i
1EW AD ,

~25!
BW 5¹W 3AW 5¹W 3AW 01e¹W '3AW 2 ,

whereEW A is the applied electric field which is ordered to b
consistent with the transport time-scale Ohm’s law. Since
have eliminated motions on the perpendicular time scaleEW

is electrostatic to first order~i.e., ]AW 2 /]t'50).
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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We now look at Ohm’s Law and recall that the resist
ity is ordered ash;e2. The first order Ohm’s Law isEW 1

1VW 13BW 050, which allows us to write

VW 15
BW 03¹W f

B0
2

1Vib̂0 . ~26!

The perpendicular divergence is~see Appendix A!

~27!

which satisfies the needed constraint in Eq.~15! to the de-
sired order.

Looking at the Ohm’s Law in the next order to get a
expression forVW 2 , we find

VW 2'
5

2Bi1b̂03¹W f

B0
2

1Vib̂12h
¹W pT

B0
2

2
BW 03~1/ne!¹W •Pe

B0
2

1
]

]t i

BW 03AW 2

B0
2

2
Bi1

B0
Vib̂0 .

~28!

The last term in this expression, as well as the parallel co
ponent ofVW 2 , enter in at lower order when considering¹W '

•VW 2; thus they will be dropped. Including the fifth term
makes it difficult to satisfy energy conservation because
do not evolve the perpendicular component ofAW 2; hence, it
will be dropped. The effect on linear stability of droppin
this term will be discussed in Sec. IV. Even though the¹W '

•VW 2 term in the pressure and density equations are the
terms containingVW 2 , it is necessary for energy conservatio
that the convective derivative in the pressure equation
contain VW 2; thus, the first four terms of Eq.~28! will be
added to our definition ofVW 1 .

The definition of VW 1 gives us the salient informatio
about the component of Ohm’s Law perpendicular to
magnetic field. To obtain the information from the comp
nent of Ohm’s Law along the magnetic field, the paral
component of Ohm’s Law is ordered:

O~e0! 0,

O~e1! BW 0•EW 152BW 0•¹W 'f50, ~29!

O~e2! BW 0•EW 21BW 1•EW 15hBW 0•~¹W 3BW 01¹W '3BW 1!

2
1

ne
BW 0•¹W •Pe .

The last equation can be written as an evolution equation
the parallel vector potential:
Downloaded 07 Mar 2007 to 128.104.198.190. Redistribution subject to AI
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]C

]t i
2b̂T•¹W f5hJĩ2

1

ne
b̂0•¹W •Pe , ~30!

where C[2Ai[2AW 2•b̂0 , and hJi0 has been cancelled
with EW A

•b̂01b̂0 /(ne)•¹W •Pe0 .
As discussed in Sec. II, the physics of fast magnetoso

waves appears in the lowest-order momentum balance. S
the goal is to eliminate these motions, an annihilator is
plied to the momentum equation to eliminate the rapid m
tions which preserve the MHD equilibrium. The customa
operator isBW •¹W 3, which will yield an evolution equation
for the plasma vorticity. Here we derive the vorticity equ
tion from the quasineutrality condition, which is formall
equivalent to applying the above annihilator but yields
form from which it is easier to show energy conservatio
From ¹W •JW50, we have

~BW •¹W !
Ji

B
52¹W •JW' . ~31!

Ordering JW' which is obtained from the momentum equ
tion, we find

JW'5
BW

B2
3S r

dVW

dt
1¹W p1¹W •P D

5
BW 03¹W 'p1

B0
2

1eFBW 13¹W 'p1

B0
2

1
BW 13¹W p0

B0
2

1
BW 13¹W p0

B0
2 S 22Bi1B0

B0
2 D 1

r0

B0
2

d

dti
VW 1

3BW 01
BW 0

B0
2

3¹W •PG . ~32!

The divergence ofJW' is zero to leading order~this is the
annihilation of the fast magnetosonic waves!. In the next
order, only the parallel component ofBW 1 is left in the pres-
sure term. Substitutingp152Bi1B0 , the vorticity equation
becomes

¹W •S rT

B0

d

dti

¹W f

B0
D

5~BW 0•¹W !
Jĩ

B0
1~BW 1•¹W !

JTi

B0
1¹W •

BW 03¹W p1

B0
2

1¹W •
p1

B0
2

BW 03¹W pT

B0
2

1¹W •
BW 0

B0
2

3¹W •P. ~33!

B. Divergence of the perturbed magnetic field

Up to this point,BW 1 has only been defined byBW 15¹W '

3AW 2 . To make the perturbed magnetic field manifestly
vergence free to all orders, it is necessary to keep a low
order term so thatBW 15¹W 3AW 2 . To relateAW 2 to the scalar
quantities that are being evolved, we introduce the straig
field-line magnetic flux coordinatesc0 ,Q,z which are based
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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upon the axisymetric equilibrium magnetic fieldBW 05(¹W z

2q¹W Q)3¹W c0 , wherec0 is the poloidal flux,Q andz are
the poloidal and toroidal angles, respectively, andq
5q(c0) is the safety factor. For specificity, we express t
magnetic potential using the straight-field-line coordinates
an axisymmetric magnetic field. However, one can ea
generalize this treatment for a different magnetic field co
dinate choice. We first expressAW 2 in terms of two new scala
variables,c ~poloidal flux! andx ~toroidal flux!,

AW 252c¹W z2x¹W Q, ~34!

so that

BW 15¹W z3¹W c1¹W Q3¹W x. ~35!

We now need two equations to relate these new v
ables to the variables we are evolving. By applyingb̂0• to
Eq. ~34!, c andx can be related toC by

C5
J21

B0
~qc1x!, ~36!

whereJ5(¹W z•¹W c03¹W Q)215(BW 0•¹W Q)21 is the Jacobian
of our coordinate system. This relation allows one to wr
the perturbed magnetic field in the form

BW 15BW 0

]c

]c0
2J21R2¹W zS q

]c

]c0
1

]x

]c0
D

1J¹W Q3¹W zF ]

]z
~CB0!2BW 0•¹W cG . ~37!

The next needed equation comes from the constrain
quired to eliminate fast magnetosonic waves,p152BW 0

•BW 1, which only needs to be satisfied to ordere: p152BW 0

•¹W '3AW 2 . From Eq.~37!, this gives an expression forc:

]c

]c0
52

p1

B0
2

1
I

B0
2

]

]c0
~CB0!1

qgcQ

IB0
2

]

]z
~CB0!, ~38!

where the toroidal flux function in an axisymmetric equili
rium is I 5RBtoroidal and gcQ5¹W c0•¹W Q is the off-diagonal
metric element. When numerically solving the reduced eq
tions, it will be necessary to numerically solve Eq.~38! for c
at each time step, which is not a serious performance is
since the equation is linear, and then algebraically solve
x using Eq.~36! to find the perturbed magnetic field give
by Eq. ~35!.

Also note that the method given here to obtain
divergence-free perturbed magnetic field is the first time t
axisymmetry has been used in the derivation. For non
symmetric configurations such as stellarators, this met
can be easily generalized to an appropriate coordinate
tem.

This form of BW 1 is considerably more complicated tha
earlier representations of the perturbed magnetic field
cause of the necessity to keep lower order terms inBW 1 . To
highest order, one only needs the perpendicular compo
of the magnetic field:BW 1•¹W Q1'BW 1•¹W 'Q15BW 1'

•¹W Q1 . For
high-aspect ratio reduced MHD where one expands aro
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the toroidal magnetic field, the perpendicular magnetic fi
is divergence free (BW 1'

5¹W z3¹W c). Also, for an expansion
around a vacuum magnetic field,6 the perturbed, perpendicu
lar magnetic field (BW 1'

5BW vac3¹W c) is divergence-free be
cause the vacuum magnetic field is curl-free. In gene
however, it is not possible to split the perturbed magne
field into parallel and perpendicular components, and h
each component also be divergence free; we solve this p
lem by using the form given by Eq.~35!.

C. Energy conservation

Energy conservation is shown by multiplying Eq.~33!
by 2f, Eq. ~23! by Vi , and Eq.~30! by JTi

. These three
equations are then added to Eq.~20! and an integration ove
all space is performed. Energy fluxes through the bound
of the enclosed volume are assumed to vanish. The nee
keeping terms inVW 2 can be seen by looking at the third ter
of Eq. ~23! and the fifth term of Eq.~33!, both of which
should cancel with the third term of Eq. 20. When formin
the energy integral, only the leading order terms toJĩ must
be kept:

Jĩ5¹2C1O~e!. ~39!

With this definition ofJĩ, one can form a divergence term
that will cancel when integrated over space and assuming
energy flow across the boundary. The integral that is c
served is

E d3xS rTVi
2

2
1

rTu¹W fu2

2B0
2

1
u¹W Cu2

2

1¹W 3AW 0•¹W 3~2Cb̂0!1
p1

G21D . ~40!

This integral avoids the nonstandard conserved energy o
original reduced MHD derivation1 and is similar to that of
Drake and Antonsen3 and Strauss.6 Using the above rela-
tions, the equations can be summarized as:

dr1

dti
1~VW 1•¹W !r01rT¹•VW 150, ~41!

dp1

dti
1~VW 1•¹W !p01GpT~¹•VW 1!

5~G21!FhS JTi

2 1
u¹W pTu2

B0
2 D 2P:¹W VW 11

1

ne
Pe :¹W

JW

neG ,

~42!

rT

dVi

dti
52b̂0•¹W p12b̂1•¹W pT2b̂0•¹W •P, ~43!

]C

]t i
2b̂T•¹W f5hJĩ2

1

ne
b̂0•¹W •Pe , ~44!
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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¹W •S rT

B0

d

dti

¹W f

B0
D

5~BW 0•¹W !
Jĩ

B0
1~BW 1•¹W !

JTi

B0
1¹W •

BW 03¹W p1

B0
2

1¹W •
p1

B0
2

BW 03¹W pT

B0
2

1¹W •
BW 0

B0
2

3¹W •P, ~45!

where

d

dti
[

]

]t i
1~VW 1•¹W !,

BW T[BW 01BW 1 , pT[p01p1 , rT[r01r1 ,

JTi
[Ji01Jĩ5b̂0•¹W 3BW 01¹W 2C, C[2AW 2•b̂0 ,

VW 15
BW 03¹W f

B0
2

1
p1

B0
2

BW 03¹W f

B0
2

1Vib̂T2h
¹W pT

B0
2

2
BW 03¹W •Pe

neB0
2

,

b̂T[b̂01b̂15
BW 0

B0
1

BW 1

B0
.

D. Simplifications of reduced MHD equations

The reduced MHD equations above, which have
same structure as other reduced MHD equations, have
advantage of fully reproducing the stability criterion of fu
MHD ~see Sec. IV!. Often a simplified set of equations
desired~even if the linear properties of the simplified equ
tions are not correct! for numerical solutions where one
typically more interested in the nonlinear behavior of MH
The equations given above can be easily simplified by m
ing a subsidiary ordering based onb[p/B2;dn where d
!1 and n is a rational number. The changes due to
subsidiary ordering are primarily in the vorticity equatio
pressure equation, and the definition of the velocity.

The first ordering of interest isb;d1/2. Keeping terms
of orderd1/2, but dropping terms of orderd, one finds

dr1

dti
1~VW 1•¹W !r01rT¹•VW 150, ~46!

dp1

dti
1~VW 1•¹W !p01GpT~¹•VW 1!

5~G21!FhJTi

2 2P:¹W VW 1Pe :¹W
JW

ne
G , ~47!

rT

dVi

dti
52b̂0•¹W p12b̂1•¹W pT2b̂0•¹W •P, ~48!

]C

]t i
2b̂T•¹W f5hJĩ2

1

ne
b̂0•¹W •Pe , ~49!
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¹W •S rT

B0

d

dti

¹W f

B0
D 5~BW 0•¹W !

Jĩ

B0
1~BW 1•¹W !

JTi

B0
1¹W •

BW 03¹W p1

B0
2

1¹W •
BW 0

B0
2

3¹W •P, ~50!

VW 15
BW 03¹W f

B0
2

1Vib̂T . ~51!

The energy integral that is conserved here is the same a
full set of reduced equations, but we note that it is not p
sible to show that the electron stress tensor term in the p
sure equation is positive definite in this case. The equati
in this order still retain sound waves, but are simplified p
marily in the definition ofVW 1 , and the elimination of one o
the curvature terms in the vorticity equation. The equatio
here are similar to the equations recently derived by Strau6

The next ordering of interest isb;d. After eliminating
terms of orderd, the relevant equations are

~52!
dp1

dti
1~VW 1•¹W !p050,

]C

]t i
2b̂T•¹W f5hJĩ2

1

ne
b̂0•¹W •Pe , ~53!

¹W •S rT

B0

d

dti

¹W f

B0
D 5~BW 0•¹W !

Jĩ

B0
1~BW 1•¹W !

JTi

B0

1¹W •
BW 03¹W p1

B0
2

1¹W •
BW 0

B0
2

3¹W •P,

~54!

VW 15
BW 03¹W f

B0
2

, ~55!

where the curvature term is orderedd1/2. Eliminating the
divergence term in the pressure equation at this level eli
nates sound waves. Because the divergence term is e
nated, it is also possible to keep only the highest order te
in the convective derivative,VW'•¹W , and still satisfy energy
conservation. In this case, which we choose for simplic
the parallel momentum equation becomes decoupled f
the other equations leaving only four variables that need
be evolved (r,p,f,C). If it is assumed that the divergenc
term in the density equation can be eliminated at this or
~or thatVi is chosen such that this term is eliminated!, and
that the density is constant in time and space, then ene
conservation can be satisfied without the density equa
and only three variables need to be evolved (p,f,C). This
form of the equations are similar to conventional ‘‘high-b ’’
reduced MHD, and like conventional reduced MHD, the e
ergy conservation relation that it satisfies is non-standa2

due to the elimination of sound waves. The explicit deriv
tion of conventional reduced MHD from these equations
shown in Appendix B.

The final ordering of interest isb;d2. The relevent
equations at this order are
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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]C

]t i
2b̂T•¹W f50, ~56!

¹W •S rT

B0

d

dti

¹W f

B0
D 5~BW 0•¹W !

Jĩ

B0
1~BW 1•¹W !

JTi

B0

1¹W •
BW 0

B0
2

3¹W •P, ~57!

VW 15
BW 03¹W f

B0
2

. ~58!

This ordering eliminates the curvature term in the v
ticity equation which decouples the pressure equation fr
the other equations leaving two variables to be evolv
(f,C). This set most closely resembles the conventio
‘‘low- b ’’ reduced MHD equations.1

E. Equilibrium shear flow

Here we briefly show that it is possible to se
consistently add equilibrium shear flow to the previous eq
tions. To do so, we change the velocity ordering in Eq.~8! to

VW 5eVW 01eVW 1 . ~59!

The equilibrium flow velocity is ordered such that

BW 0

Arm0

•¹W ;VW 0•¹W ' , ~60!

V0

VA
;

ki

k'

;e. ~61!

Equation ~60! is motivated by stability studies, while th
equivalent scaling of Eq.~61! shows that we are using a low
Alfven Mach number approximation, which is valid for ma
netic fusion plasma experiments. Because of this order
terms that contain only equilibrium quantities will appear
lower-order equations. Without loss of consistency, we
able to assume]VW 0 /]t50 and add these terms to the equ
librium equations@Eq. ~13!# so that they become:

¹W •r0VW 050,

VW 0•¹W p01Gp0~¹W •VW 0!50,
~62!

¹W 3~VW 03BW 0!50,

r0~VW 0•¹W !VW 052¹W ~p01B0
2/2!1~BW 0•¹W !BW 0 .

These are the equilibrium equations with shear flow t
were studied by Hameiri.14 As shown in that reference, th
equilibrium shear flow may be written in the form

VW 05
BW 03¹W 'f0

B0
2

1V0i
b̂0 , ~63!

wheref05f0(c0). Because it is possible to write the equ
librium flow velocity field in the same form as the perturb
velocity field, one can add shear flow to Eqs.~41! by chang-
ing f to f01f and dropping any equilibrium terms. In con
Downloaded 07 Mar 2007 to 128.104.198.190. Redistribution subject to AI
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trast to conventional reduced MHD~whereVW 15¹W z3¹W f),
these equations allow for flows other than a poloidal flow

F. Closure relations

Stress tensor terms are ignored in the resistive M
approximation. In this section, we briefly discuss the str
tensor terms included in these equations in terms of neoc
sical closure theory.15,16 In the neoclassical MHD theory7 for
a tokamak plasma, the differences between the parallel~per-
pendicular! and toroidal~poloidal! directions is crucial for
obtaining the key physics results. For conventional redu
MHD where there is no such distinction, it is difficult t
incorporate all of the relevent physics.7,17 However, in the
present formulation, the neoclassical physics is easily c
tured.

The vorticity and momentum balance equations requ
different forms of the viscous stress tensors. Unfortunat
conventional neoclassical theory only yields particular p
jections of the stress tensors in particular asymptotic tem
ral regimes~namely on time scales long compared to the i
collision time!. In this work, we propose a form for the vis
cous stress tensor which yields the correct asymptotic for
Namely, for¹W •P, we suggest the form

¹W •Ps5rsms^B
2&

VW s•¹W Q

~BW •¹W Q!2
¹W Q, ~64!

wherems is the viscous damping frequency for each spec
s, which depends on the collisionality regime.

This form for the ion viscous stress tensor yields t
important physics of poloidal flow damping from the paral
momentum balance equation. It is important to realize t
this effect cannot be represented in conventional redu
MHD descriptions since the only perturbed flow allowe
within the flux surface is poloidal.17 Further, the presence o
a viscous term in the vorticity equation in combination wi
the parallel momentum balance gives the neoclass
polarization-current enhancement of neoclassical MH
theory.7

For the perturbed electron stress tensor, the form is s
plified if we order the relation between the electron veloc
VW e and the MHD variables that we are evolving:

VW e1
5VW 2

JW

ne
52

1

neS Jĩb̂01
BW 03¹W p1

B0
2 D 1O~e!. ~65!

This form of the electron velocity when substituted into t
electron stress tensor term in the parallel Ohm’s Law gi
rise to the neoclassical enhancement of the plasma resist
and the perturbed bootstrap current, which is important
neoclassical tearing modes.

The suggested forms for the viscous stress terms h
convenient forms for demonstrating energy conservati
The stress tensor terms on the right-hand side of Eqs.~23!,
~30!, and ~33! can be shown to be negative definite th
heating the plasma through the viscous heating terms
appear in the pressure equation with which they cancel.
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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IV. LINEAR STABILITY ANALYSIS OF THE REDUCED
EQUATIONS

Writing the equilibrium magnetic field asBW 05¹W a

3¹W c, the perpendicular wave number can be written
k'5kc¹W c1ka¹W a. This expression fork' allows us to clas-
sify modes for which our ordering is valid into two categ
ries: ~1! resistive layer modes, such as interchange and t
ing modes, where the modes localize near a rational sur
and one can order

kc;
1

e
, ka;1; ~66!

and~2! ballooning modes where bothkc andka are order 1/e
such that the modes are poloidally localized. Applying t
WKB formalism of ballooning theory to our equations repr
duces the ballooning equation in a manner that is simila
the treatment of Hazeltine and Meiss.5 In this section, we
discuss the resistive layer modes in a general axisyme
device.

A. Resistive layer modes

In this section, the inner linear resistive-layer equatio
for the reduced equations are discussed. The layer equa
are derived from the narrow layer width approximation ch
acterized by the ordering

x[c2cs;g;h1/3;e,
]

]c0
;

1

e
. ~67!

A detailed derivation of the inner-layer equations, shown
Appendix C, follows the methods used by Johnson a
Green18 and Glasser, Greene, and Johnson19 ~GGJ!. The re-
sults are contrasted with GGJ to elucidate the approxi
tions that were made in the derivation of the reduced eq
tions.

Neglecting the stress-tensor contributions, the inn
layer equations become

C̄XX2HYX5Q~C̄2XJ!, ~68!

Q2JXX2QX2J1EY1QXC1G50, ~69!

QYXX2X2Y2Q2GY1~G2KE2R!Q2J1XC̄

2KQ2G50, ~70!

GX5HC̄XX1FYX , ~71!

for the variablesC̄,J,Y, andG. The definitions of the vari-
ables and constants may be found in Appendix C.

The equations exactly match those of GGJ except for
term in the pressure equation containingR. Using the defini-
tion given in Appendix C, it is possible to expressR as

R5
^B0

2&^1/B0
2 &

^B0
2BT

2/BP
2 &@^BP

2 /BT
2B0

2 &1^1/B0
2 &2 1/̂ B0

2&#
, ~72!

whereBT(BP) is the toroidal~poloidal! magnetic field. As
can be seen, this term is of order unity, which will be sma
thanG whenG is large enough to be significant as shown
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the Appendix of GGJ. Hence, the reduced equations p
sented here exactly reproduce the ideal and resistive M
instability criterion and growth rates.

We conclude that the dropping of the term in our equ
tion for VW 2 , which is not rigorously justified in our expan
sion yet necessary for energy conservation, has neglig
effects on the linear stability. Our other significant appro
mation, Jĩ5¹2C, also has no effect on stability. The re
duced MHD description given in this work reproduces t
linear growth rates and instability conditions for tearin
modes in a tokamak plasma because the narrow-layer w
ordering is a subset of the ordering used in these equati

V. SUMMARY

A new multiple-time-scale technique based on assum
a disparity of wavelengths along and perpendicular to
magnetic field has been used to reduce the MHD equati
This derivation has the advantage of clearly separating
three time scales of the problem associated with~1! MHD
equilibrium, ~2! fluctuations whose wave vector is aligne
perpendicular to, and~3! those aligned parallel to the mag
netic field. On the equilibrium time scale, the equilibriu
quantities were shown to be time independent and sat
exactly the MHD equilibrium equations, in contrast wi
conventional reduced MHD where the equilibrium equatio
themselves are reduced versions of the general equilibr
equations. The fast, perpendicular time-scale motions, wh
were shown to be fast magnetosonic waves, came in at
same order as the equilibrium equations. To assume
these waves equilibrate to the equilibrium, constraints m
be placed on the perturbed quantities. These constraint
low one to derive equations that evolve five scalar functio
on a time scale associated with the parallel wave vec
~shear-Alfven wave time scale!, which is the time scale of
interest for instability studies.

A major advantage of the reduced equations derived h
is that they reproduce the stability criterion for resistive lay
modes. Because the perturbations are expanded abou
exact equilibrium equations, the derivation followed in th
work is similar to previous linear stability analyses.11,18–20

However, by emphasizing energy conservation and
divergence-free perturbed magnetic field when keeping
nonlinear terms, these equations are suitable for nonlin
numerical simulations. Conventional reduced MHD, whi
does not contain the correct linear physics, has been a
cessful model for numerical simulations of plasma pheno
ena because it contains the key nonlinear physics and m
tains an energy conservation relation. The equations h
incorporate results learned from linear stability analy
within the framework of reduced MHD.

The reduced MHD equations derived here also allow
consideration of two effects not normally considered in
duced MHD: equilibrium shear flow and neoclassical effec
The inclusion of both of these effects is aided by keeping
evolution equation for the parallel velocity, which is no
mally not evolved. The inclusion of the parallel velocity a
lows the equilibrium velocity to be expressed in the sa
form as the first-order velocity so that inclusion of shear-flo
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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effects is very straightforward. The keeping of the para
evolution equation allows the neoclassical effects of poloi
flow damping and polarization current enhancement to
included in addition to the bootstrap current which had be
used in reduced equations previously.17 The numerical solu-
tion of these equations, including these two effects, will
considered in future work.
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APPENDIX A: PROPERTIES OF THE
PERPENDICULAR AND PARALLEL GRADIENT
OPERATORS

The ordering used is somewhat unusual in that it is ba
on operators rather than physical quantities. Because
derivation requires a familiarity with the properties of the¹W i

and¹W ' operators, this appendix summarizes those that w
found useful.

We define

¹W i[b̂0~ b̂0•¹W !, ~A1!

¹W '[¹W 2b̂0~ b̂0•¹W !, ~A2!

and consider the operations of these operators on any s
function f and vector functionAW .

Gradient

¹W i f 5b̂0~ b̂0•¹W ! f , ~A3!

¹W ' f 5¹W f 2b̂0~ b̂0•¹W ! f , ~A4!

so that

BW 0•¹W ' f 50, ~A5!

BW 0•¹W i f 5BW 0•¹W f . ~A6!

Divergence

¹W i•AW 5b̂0~ b̂0•¹W !•AW ,

5~ b̂0•¹W !AW •b̂02AW •~ b̂0•¹W !b̂0 , ~A7!

5b̂0•¹W Ai2AW •kW ,

where the curvature vector is defined by

kW [~ b̂0•¹W !b̂0 . ~A8!

The perpendicular divergence is then

¹W '•AW 5¹W •AW 2b̂0•¹W Ai1AW •kW . ~A9!
Downloaded 07 Mar 2007 to 128.104.198.190. Redistribution subject to AI
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These relations are identities. Becausel'!a, the gradi-
ents of the equilibrium quantities are ordere smaller than the
perpendicular gradients of perturbed quantities and can c
confusion when ordering these relations. As a simple
ample, consider the divergence ofAib̂0 . To first order we
have the perpendicular divergence:

¹W '•Aib̂05b̂0•¹W 'Ai1Ai¹W '•b̂0 . ~A10!

The first term is zero and the second term should really
interpreted as¹W •b̂0 , which is ordere. Thus, this last term
appears in the next order of the divergence, which is
parallel divergence:

¹W i•Aib̂05b̂0•¹W iAi1Ai¹W •b̂0 . ~A11!

As a practical way of deriving many of the terms, on
can take the¹W ' operation on an equilibrium quantity to b
zero, and convert¹W i operating on an equilibrium quantity t
be ¹W , which is similar to how Hazeltine and Meiss5 present
their derivation. The fundamental ordering however is th
given by Eq.~2!.

Curl

¹W i3AW 5b̂0~ b̂0•¹W !3AW ,
~A12!

5~ b̂0•¹W !b̂03AW 2AW 3~ b̂0•¹W !b̂0 ,

5¹ i~ b̂03AW !2AW 3kW ,

5~BW 0•¹W !
BW 03AW

B0
2

2b̂03AW ¹ i ln~B0!2AW 3kW .

The perpendicular curl is

¹W '3AW 5¹W 3AW'2¹W i3AW . ~A13!

Note thatBW 0•¹W i3AW 50.

APPENDIX B: REDUCTION OF EQUATIONS TO
CONVENTIONAL REDUCED MHD

In this Appendix, the relation of Eqs.~46!, where it has
already been assumed thatb is small, to conventional re-
duced MHD is made explicit. Conventional reduced MH
uses the large-aspect ratio assumption of

e[
a

R
,

Bpoloidal

Btoroidal
;e. ~B1!

As shown in Eq.~1!, this ordering is a subset of the orderin
already used. The dominant change in Eqs.~46! is due to the
equilibrium magnetic field also being ordered. The para
direction is now the toroidal direction:

b̂05R0¹W z. ~B2!

The toroidal flux functionI is approximately constant in thi
ordering, such that the magnitude of the magnetic field
also a constant (B0'I 0 /R0).
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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Only the perpendicular component of the perturbed m
netic field is kept because, as discussed in Sec. III, to hig
order BW 1•¹W 'BW 1•¹W '5BW 1'

•¹W . The perpendicular compo
nent of the magnetic field is, using Eq.~35!,

BW 1'
5¹W z3¹W c. ~B3!

Similarly, the expression for the velocity in Eq.~46! be-
comes

VW 1'
5

BW 03¹W f

B0
2

5¹W z3¹W f8 ~B4!

wheref85(R0
2/I 0)f. Like the perpendicular magnetic field

the perpendicular velocity field is divergence-free in th
model.

We first consider the pressure equation. In this pape
distinction was made between equilibrium terms and p
turbed quantities because the ordering was performed di
ently for the two quantities and the equilibrium equation w
not reduced; however, this distinction is usually not made
reduced equations wherep denotes both the equilibrium an
perturbed quantities. Ignoring the stress tensors and resi
heating, the pressure equation becomes

]p

]t i
1¹W z•¹W f83¹W p50. ~B5!

Ohm’s Law becomes

]c

]t i
2I¹W z•f82¹W z•¹W c3¹W f85h¹W 2c, ~B6!

where the parallel vector potential has been related to
poloidal flux by ordering the parallel component of Eq.~34!:

C'
c

R0
. ~B7!

At high-aspect ratio, where only the perpendicular g
dient is needed and the magnetic field is approximately c
stant, the inertia term in the vorticity equation becomes

1

I 0
S r0

]U

]t i
1r0¹W z•¹W f83¹W U D , ~B8!

whereU5¹W '
2 f8. The curvature term becomes

¹W p•¹W 3
BW 0

B0
2

52
2

I 0
¹W z3¹W R•¹W p. ~B9!

For the kink terms, we first write the equilibrium parall
current as¹W '

2 c0 . Again we do not distinguish between equ
librium and perturbed quantities to write the kink terms a

¹W z•¹W Ji1
1

I 0
¹W z•¹W c3¹W Ji . ~B10!

Multiplying through byI 0 , the vorticity equation becomes

r0

dU

dti
5I 0¹W z•¹W Ji1¹W z•¹W c3¹W Ji22¹W z3¹W R•¹W p,

~B11!

where
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U[¹W '
2 f8, Ji[¹W '

2 c,
d

dti
[

]

]t i
1¹W z•¹W f83¹W .

~B12!

Equations~B5!, ~B6!, and ~B11! are the conventiona
reduced MHD equations.

APPENDIX C: DERIVATION OF THE RESISTIVE
INNER-LAYER EQUATIONS

In this Appendix, linear equations are found for the inn
resistive layer based on the narrow-layer width approxim
tion. The formalism used in Refs. 18–20 is used in deriv
these equations.

We begin with the linearized version of Eqs.~41! with
the perturbed quantities now denoted with tildes:

r
]Vĩ

]t
52b̂0•¹W p̃2

BW̃

B0
•¹W p0 ,

]C̃

]t
2b̂0•¹W f̃5h¹W 2C̃,

~C1!

¹W •
r

B0
2

]¹W f̃

]t
5¹W •

BW 03¹W p̃

B0
2

1¹W •
p̃

B0
2

BW 03¹W p0

B0
2

1BW 0•¹W
Jĩ

B0
1~BW̃ •¹W !

Ji0

B0
,

] p̃

]t
1

BW 03¹W f̃

B0
2

•¹W p01Gp0¹W •VW̃ 50.

We will consider a narrow-layer width at theq5M /N ratio-
nal surface where we adopt the usual resistive la
ordering18–20

x[c2cs;g;h1/3;e,
]

]c0
;

1

e
. ~C2!

Equilibrium quantities will be considered to be approx
mately constant across the layer. We also order the pertu
variables as:

p̃, Vĩ;1, f̃, C̃, c̃;e. ~C3!

The potentials are ordered such that when the derivative w
respect toc0 is taken, they will be of the same order as t
primitive variables.

Because we are considering perturbed quantities nea
rational surface, it is helpful to change from the straig
field-line coordinate system of Sec. III~usingc0 ,Q,z) to a
c0 ,Q,u coordinate system where u is the helical angle
fined asu[Nz2MQ. This translation of coordinates wil
allow easier identification of resonant perturbations wh
Fourier expanding the perturbed quantities:
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~C4!

~C5!

The last line is the procedure we will adopt for simplicity.
after transforming, we findQ̃ to be independent ofQ, then
only the resonant harmonic is present. The helical coordin
also facilitates the representation of the parallel gradient
erator:

BW 0•¹W 5J21F ]

]Q
2~M2Nq!

]

]uG ,
~C6!

'J21
]

]Q
2e iNL

V8J21

4p2
x,

whereL54p2q8/V8, x5c2cs whereq(cs)5M /N, V is
the volume enclosed by the flux surface, and primes den
derivatives with respectc0 . In the last line,M2Nq was
Taylor expanded about the rational surface after Fourier
panding. Also note that for convenience the Jacobian h
refers to the original Jacobian in thec0 ,Q,z coordinate sys-
tem which differs from the new Jacobian by a factor ofN.20

Before considering the ordered equations, first cons
common operations on perturbed quantities. We begin
writing

¹W Q̃5
]Q̃

]c0
¹W c01Q̃`BW 03¹W c01Q̃ib̂0 , ~C7!

where the cross-field derivative coefficientQ̃` is

Q̃`u¹W c0u25 iNQ̃1
I

B0
2
BW 0•¹W Q̃. ~C8!

This allows us to write

BW 03¹W Q̃

B0
2

52Q̃`¹W c01
]Q̃

]c0

BW 03¹W c0

B0
2

. ~C9!

The divergence of this quantity is

¹W •
BW 03¹W Q̃

B0
2

52
]Q̃

]c0
~BW 0•¹W !

Ji0

p08B0

1Q̃`u¹W c0u2S 2kc2
p08

B0
2D 1

Ji0 /B0

B0
2

BW 0•¹W Q̃, ~C10!

where we have used

kW 5kc

¹W c0

u¹W c0u2
1k`BW 03¹W c0 , ~C11!
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2k`u¹W c0u252
BW 032kW

B0
2

•¹W c05BW 0•¹W
Ji0

p08B0

. ~C12!

The first term on the right hand side of Eq.~C10! will be the
highest-order term in that expression.

With these relations and definitions, the ordering of E
~C1! is simplified. The parallel momentum balance, para
Ohm’s Law, vorticity equation, and pressure equation are
lowest order

J21
] p̃

]Q
50, ~C13!

J21
]f̃

]Q
50, ~C14!

J21
]

]QS ]2

]c0
2

C̃B0u¹W c0u2

B0
2 D 2

] p̃

]c0
J21

]

]QS Ji0

p08B0
D 50,

~C15!

J21
]

]QS VĩB0

B0
2 D 2

]f̃

]c0
J21

]

]QS Ji0

p08B0
D 50, ~C16!

and in the next order

grVĩB052J21
] p̃~2!

]Q
1 iNLx

V8J21

4p2
p̃1p08iNC̃B0

1p08J21
]c̃

]Q
, ~C17!

gC̃B05J21
]f̃~2!

]Q
2 iNLx

V8J21

4p2
f̃1h

]2

]c0
2
C̃B0u¹W c0u2,

~C18!

gr
u¹W c0u2

B0
2

]2f̃

]c0
2

2FJ21
]

]Q

]2

]c0
2

C̃~2!u¹W c0u2

B0

2
] p̃~2!

]c0
J21

]

]QS Ji0

p08B0
D G1

]c

]c0
J

]~Ji0 /p08B0!

]Q

1 iNLx
V8J21

4p2

]2

]c0
2

C̃B0u¹W c0u2

B0
2

2 p̃`u¹W c0u22kc

1
2p̃

B0
2
J21

]

]QS Ji0

B0
D50, ~C19!

g p̃

Gp0
1FJ21

]

]QS Vĩ
~2!B0

B0
2 D 2

]f̃~2!

]c0
J21

]

]QS Ji0

p08B0
D G

2h
u¹W c0u2

B0
2

]2p̃

]c0
2

2 iNLx
V8J21

4p2

VĩB0

B0
2

1f̃`u¹W c0u2S 2kc2
p08

B0
2

2
p08

Gp0
D 50, ~C20!

where the superscript~2! denotes second-order variables
the expansion.
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Before considering the lowest order equations, note
second-order terms in Eqs.~C17! and ~C18!. To annihilate
these problematic terms, the following operator is int
duced:

^Q&5
2p

V8
R QJ dQ, ~C21!

which describes variables as functions of the resonant a
and flux surface label. IfQ is axisymmetric, this average i
the same as a flux surface average. A useful relation for
average is

^J21&5
4p2

V8
. ~C22!

After annihilating the second-order terms in Eqs.~C17! and
~C18!, the equations will be in terms of^VĩB0& and^C̃B0&,
which we choose as our fundamental variables in additio
f̃ and p̃.

We now consider the lowest-order equations. Eq
tions ~C13! and ~C14! show p̃5^ p̃& and f̃5^f̃& are inde-
pendent ofQ to lowest order. Equations~C15! and ~C16!
show thatVĩB0 andC̃B0 have aQ dependence in the lowes
order. Solving for that dependence, we find

VĩB05^VĩB0&
B0

2

^B0
2&

1
1

p08

]f̃

]c0
S Ji0

B0
B22 K Ji0

B0
B0

2L B0
2

^B0
2&
D ,

~C23!

]2

]c0
2
C̃B05

]2

]c0
2 ^C̃B0&

B0
2

u¹W c0u2

K B0
2

u¹W c0u2 L
1

1

p08

] p̃

]c0

3SJi0

B0

B2

u¹W c0u2
2KJi0

B0

B0
2

u¹W c0u2
L

B0
2

u¹W c0u2

K B0
2

u¹W c0u2
LD. ~C24!

We are now ready to consider the higher-order eq
tions. The averaged parallel momentum equation is

gr^VĩB0&5 iNLxp̃1p08iN^C̃B0&. ~C25!

This equation contains no derivatives so it may be used
trivially eliminate ^VĩB0& from the other equations. The pa
allel Ohm’s Law when averaged is

g^C̃B0&52 iNLxf̃1h
]2

]c0
2 ^C̃B0u¹W c0u2&. ~C26!

Equation ~C24! can be used to find an expression for the l
term:
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e
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to
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]2

]c0
2 ^C̃B0u¹W c0u2&

5
]2

]c0
2 ^C̃B0&

^B0
2&

^B0
2/u¹W c0u2 &

1
1

p08

] p̃

]c0
S K Ji0

B0
B0

2L
2K Ji0

B0

B0
2

u¹W c0u2L ^B0
2&

^B0
2/u¹W c0u2 &

D . ~C27!

Using this equation, we rewrite Eq.~C26! as

]2

]c0
2 ^C̃B0&5

g

hC
^C̃B0&1

iNLx

hC
f̃2

LH

p08

] p̃

]c0
, ~C28!

where

C5
^B0

2&

^B0
2/u¹W c0u2 &

,

H5
^B0

2/u¹W c0u2 &
L S ^~Ji0 /B0! B0

2&

^B0
2&

2
^~Ji0 /B0!~B0

2/u¹W c0u2!&

^B0
2/u¹W c0u2 &

D . ~C29!

The vorticity and pressure equations are more tediou
calculate because each have two second-order terms
must be annihilated. To obtain the annihilated vorticity equ
tion, we use

^Vorticity Equation&

1K Ji0

p08B0

]

]c0
~Parallel Momentum Equation!L . ~C30!

Similarly, the annihilated pressure equation is formed us

^Pressure Equation&

1K Ji0

p08B0

]

]c0
~Parallel Ohm8s Law!L . ~C31!

When performing these averages, there are terms contai
(]/]c0) ^Ji0/B0C̃B0&. It is convenient to define a new var
able to handle these terms:

G[
^B0

2/u¹W c0u2 &

L2 F ^~Ji0 /B0! B0
2&

^B0
2&

]

]c0
^C̃B0&

2p08K 1

B0
2L p̃2

]

]c0
K Ji0

B0
C̃B0L G . ~C32!

Using Eq.~C24!, one can derive the following relation forG:

]G

]c0
5

H

L

]2

]c0
2 ^C̃B0&2

F

p08

] p̃

]c0
, ~C33!

where
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F5
^B0

2/u¹W c0u2 &

L2 F p08
2K 1

B0
2L 1K ~Ji0 /B0 !2B0

2

u¹W c0u2
L

2

K Ji0

B0

B0
2

u¹W c0u2
L 2

K B0
2

u¹W c0u2L G . ~C34!

To facilitate comparison with GGJ, we transform o
variables to their scaled variables. The relations betw
their variables and ours are

J[
1

g
VW̃ •¹W c052

1

g
iNf̃,

C̄[2
^BW̃ •¹W c0&
iNLLR

5
^C̃B0&
LLR

, ~C35!

Y[
BW̃ •BW 0

p08
52

p̃

p08
,

where

LR5F J 2rM̄h2^B0
2&2

N2q82^B0
2/u¹W c0u2 &2G 1/6

. ~C36!

The growth rates andx are also rescaled as

Q5
g

@hN2q82^B0
2&/J 2rM̄ ^B0

2/u¹W c0u2&# 1/3
5

gLR
2

hC
,

~C37!

X5
x

LR
.

With these variables our annihilated parallel Ohm’s La
annihilated vorticity, annilated pressure, and gamma eq
tion become

C̄XX2HYX5Q~C̄2XJ!, ~C38!

Q2JXX2QX2J1EY1QXC1G50, ~C39!

QYXX2X2Y2Q2GY1~G2KE2R!Q2J1XC̄

2KQ2G50, ~C40!

GX5HC̄XX1FYX , ~C41!

where

L5
4p2q8

V8
, C5

^B0
2&

^B0
2/u¹W c0u2 &

,

G5
^B0

2&

Gp0M̄
, K5

L2C

p08
2M̄

, R5
1

M̄
^B0

2&K 1

B0
2L ,
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H5
^B0

2/u¹W c0u2&
L S ^~Ji0

!B0
2&

^B0
2&

2
^~Ji0

/B0!~B0
2/u¹W c0u2!&

^B0
2/u¹W c0u2&

G ,

E5

K B0
2

u¹W 0u2L
L2 F2p08^kc&2p08

2K 1

B0
2L G , ~C42!

F5
^B0

2/u¹W c0u2 &

L2 F p08
2K 1

B0
2L 1K ^Ji0/B0!2 B0

2

u¹W c0u2 L
2

^~Ji0
/B0!~B0

2/u¹W c0u2!&2

^B0
2/u¹W c0u2&

G ,

M̄5K B0
2

u¹W c0u2L F K u¹W c0u2

B0
2 L 1

1

p08
2
S K S Ji0

B0
D 2

B0
2L

2

K Ji0

B0
B0

2L 2

^B0
2&

D G , ~C43!

andN is the toroidal mode number.
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