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Generalized Reed-Solomon Codes from
Algebraic Geometry

J. H. van LINT anp T. A. SPRINGER

Abstract— A few years ago Tsfasman et al., using results from algebraic

geometry, showed that there is a sequence of codes which are generaliza-

tions of Goppa codes and which exceed the Gilbert-Varshamov bound. We
show that a similar sequence of codes (in fact, the duals of the previous
codes) can be found by generalizing the construction of Reed-Solomon
codes. Our approach has the advantage that it uses less complicated
concepts from algebraic geometry.

1. INTRODUCTION

N 1982 Tsfasman et al. [19] published a paper with

an extremely exciting result, namely, the existence
of a sequence of codes which generalize the idea of Goppa
codes (cf. [15, p. 108]) over F, (with g = p?")
and the minimum distances of which exceed the
Gilbert—Varshamov bound for g > 49. For this paper they
received the IEEE Information Theory Group Paper Award
for 1983. Since the results depend heavily on methods and
results from algebraic geometry, or more particularly, the
theory of algebraic curves, the paper was not easily accessi-
ble to many coding theorists.

Since then, several expository papers have appeared [1],
[6]-[8], [101, [14], [16], [18] which have made the main idea
considerably clearer. This paper is another attempt to
simplify the situation by taking a different approach. The
Goppa codes are considered as generalizations of
Reed-Solomon (RS) codes. This avoids the use of dif-
ferentials and residues. It is likely that Tsfasman et al. are
aware of this easier approach (cf., e.g., {13]). Actually, our
codes are the duals of the codes described in [19]; cf.
Section VII. We remark that in 1975 Delsarte [3] observed
the strong connection between the original Goppa codes
and Reed-Solomon codes.

In Section II we repeat the definition of an extended
Reed-Solomon code over ¥, and then reformulate this
definition in terminology which leads in a natural way to
the generalization. In Section III we list the definitions and
results from algebraic geometry which we need, and we
give a few examples. The reader who is not familiar with
algebraic geometry should nevertheless be able to read this
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section. Section IV gives the “generalized Reed—Solomon”
codes. We obtain the parameters of these codes (dimen-
sion, minimum distance) and in Section V we only briefly
go into the asymptotics. which show that these codes
exceed the Gilbert—Varshamov bound (since the calcula-
tions are exactly the same as those in [18]).

In Section VI we treat an example. We regret that
difficulties remain; for example, it is not possible (yet) to
explain the projective curves (which are used in the con-
struction) in an elementary way.

Section VII requires knowledge of the original approach.
We show that the two sequences of codes are duals.

II. ReED-SoLoMON CODES

We repeat one of the standard descriptions of an ex-
tended Reed—-Solomon code over F (cf. [15, p. 85]). Let
F,= {ao ay, -, &, ;}. Consider the set L of all poly-
nomials f(x) of degree <k in F [x]. The code C of
length n = g is defined by

C={e=(fao), fla), . flag))If(x) € L}.
(2.1)

Since a polynomial of degree / has at most / zeros in F ,
we see that C has minimum distance d=n -k + 1,
which is the best possible, ie., C is a maximum distance
separable (MDS) code (cf. [15, p. 54]). Therefore, C is a
good starting point for a sequence of good codes.

We now reformulate this definition in terminology which
will make the generalization quite natural. Let F be the
algebraic closure of F,. Consider the projective line X over
F. As usual, points on X are described by homogeneous
coordinates (x, y) where (x, y) and (Ax,Ay),0 # A € F,
denote the same point. Points on X with coordinates in F_
are called rational points. Of course, they are the points

Pi:=(ai’1)’ 0<i<g-1

and

Q=(1,0)
(the so-called point at infinity). Let ¥ be the set of
rational functions on X which are defined at each P,, with
coefficients in F 2 and which have a pole of order less than
k in the point Q and no other poles.
A rational function has the form a(x, y)/b(x, y), where
a(x, y) and b(x, y) are homogeneous polynomials of the
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same degree. If L is the set defined, then we clearly have

z={f(x/y)If(x) e L}.
Therefore, the code C, defined by (2.1), is also given by

= {{(£(P). (P, -+ f(P,_1))If €2} (22)

IIL

Most of what we shall need can be found in introduc-
tory textbooks on algebraic geometry, e.g., in [5]. For a
more algebraic approach see [2]. Let F, as before, be the
algebraic closure of F . Let X be an irreducible nonsingu-
lar projective curve in N-dimensional projective space over
F (we do not give a precise definition since we hope the
concept is intuitively clear). Let g be the genus of X (cf.
[5, p. 196}; for the reader who is not familiar with the term
genus, it suffices to know that it is an integer which, for a
given curve, can be calculated). We give a few simple
examples.

Example A: In the plane C? consider the curve with
equation y2 — x3 + x = 0 (see Fig. 1 for the real points of
this curve). We embed C? in projective space P? with
homogeneous coordinates (x, y, z). Our curve X now has
the equation f(x, y,z) = y%z — x> + xz? = 0; the origi-
nal representation is obtained by taking z = 1. In general,
let X be a nonsingular irreducible curve in P2 defined by
an equation f(x, y,z) =0, where f is a homogeneous
polynomial of degree d. Then the genus of X is 3(d — 1)
(d — 2); so the example of Fig. 1 has genus 1 (cf. [5,
p. 199)). In particular, the projective line P! considered as
a curve in P? has genus 0; it has the equation y = 0.

A
o<

Fig. 1

FACTS FROM ALGEBRAIC GEOMETRY

-

Example B: Our second example is given only because it
has strong connections to the geometry which is the foun-
dation of the remarkable codes of Section IV. (This exam-
ple can be skipped.) An elliptic curve X in P? is defined by
a cubic equation of the form

4x3 —axz? - b2} -y =0

(we assume that the characteristic p of F is not 2 or 3 and,
furthermore, that A = a® — 27b% # 0).

Over C these curves are dealt with via the theory of
elliptic functions. As in Example A, we have a curve of
genus 1. Elhpuc curves are particularly interesting because
they can be given the structure of an Abelian group (cf. [5,
p. 124]). Choose (0,0,1) as zero element. Addition is
defined as follows: if ¢ € X, n € X, then — (£ + 7) is the
third point of intersection of the line through § and 7 with
X. This group structure plays an essential role in the
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analysis of the so-called “supersingular” elliptic curves
which lead to Theorem 1.

We return to the essentials which we shall use. Let X be

a curve as before. A divisor D on X is simply a formal sum

D=an'P

where P runs through the points of X, n, € Z, and
n, = 0 for all but finitely many points P. The integer In,
is called the degree of D.

Let f be a rational function (not identically 0) defined
on the curve X. If P € X, we say that f has order n
(n > 0)in P if f has a zero of multiplicity » in P, and we
say f has order —n if P is a pole of order n for f. If f is
defined at P and f(P) # 0, then the order of f in P is 0.
We give an example.

Example C: Consider the algebraic closure F of F, and
let X be the curve in P2 with equation x> + y* + z° = 0.
Consider the point Q = (0,1,1) on X, and let f be the
rational function x/(y + z). To understand the behavior
of f at Q, we shall have to represent the function differ-
ently. To this end, we observe that on the curve X we have
(y +2)=x*/(y* +yz + 2%).

Therefore, f can be given by

f(x, y,2) = (y*+yz + 22) /x>

Since the numerator of this expression is not zero in Q, it
is clear why we say that f has order —2 in Q. Similarly, f
has order 1 in the points (0, w, 1), (0, @, 1), where we use
the notation F, = {0,1, @, &w}.

If D=1%Xn, P is a divisor, then we define the linear
space £(D) of rational functions on X to be the set of all
functions f such that the order of f at each point P of X
is > —n,. It is easy to see [5, p. 192] that

2(D) = {0} if the degree of D is negative. (3.1)

The main theorem used in the proof is the Riemann-
Roch theorem [5, p. 210] and in fact the weaker version
known as Riemann’s theorem [5, p. 196] suffices. This
theorem tells us the dimension /(D) of the space £(D):

/(D) > degree (D) — g+ 1, (3.2)

with equality if degree (D) > 2g — 2.

In the application in the next section the divisor D will
have n, # 0 only for points P which are rational (i.e,, they
have coordmates in &). In this case there is an analog of

F(D) which is a vector space over F, (rational functions
which have values in F, at the points where n, # 0). It is
known that (3.1) and (3.2) remain valid in that case (cf.,
e.g., [20, ch. VIII, theorem 10] or [2]). The results treated
above are enough to understand the construction in Sec-
tion IV. For the asymptotics of Section V we need an
actual sequence of projective curves X. If the curve X has
n + 1 rational points and genus g, then we define

v :=g/n.

The following theorem was proved in [19].
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Theorem 1: Let g = p*". There exists a sequence of
curves over F_ such that

v (¢72-1)7
We remark that Drinfeld and VIidut [4] have shown

that liminf y > (¢'/% — 1)7}, (g arbitrary). Thus we can-
not improve on the theorem. (Also see [12], [16], [18].)

=:y for n = o0.

IV. GENERALIZED REED-S0LOMON CODES

Again let X be an irreducible nonsingular projective
curve in PV, and let P, P,,---, P, and Q be the rational
points on X. We choose an integer m such that

2g—-2<m<n.

(4.1)

Generalizing (2.2) we define a code C over F, by

C = {(f(P).--, f(P,))If € £(mQ))}

where the space £ (mQ) is taken over F .

If a codeword is 0, then the corresponding function f is
in the space £(mQ — I ,P,), and then (3.1) implies that
f = 0. Therefore, the code C has the same dimension as
the space £ (mQ). So we find from (3.2) and (4.1) that

k=dimC=m—-g+ 1. (4.3)
Similarly, if a codeword has weight w, i.e., f(P;) =0 for
n — w values of i, then the corresponding function f is in
a space (D) where D is a divisor of degree m — n + w.

Therefore, (3.1) shows that the minimum distance d of C
satisfies

(42)

(4.4)

In this way we have given the construction and the param-
eters of a large class of codes.

How good a code from this class is depends on the
choice of the curve X. If we take X to be the projective
line P, then we find our starting point of Section II.

d=n—m.

V. ASYMPTOTICS

In the construction of Section IV let X run through the
sequence of projective curves mentioned in Theorem 1.
For each curve X we can still choose m according to (4.1).
We thus obtain a sequence of codes. We are interested in
the asymptotic behavior of the rate R:=k/n and the
parameter § == d/n as n tends to infinity. From (4.3) and
(4.4) we find

(5.1)

The Gilbert—Varshamov bound states that a sequence of
codes exists such that

m
R=k/n>——-y=21-y-24.
n

lim supR =1~ H,(5) (5.2)
n— oo
where
H,(x)=xlog,(g~1) — xlog,x — (1 = x)log,(1 — x)
for

0<x<(g-1)/q.
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From (5.1) we find

lim supR>1-7—38. (5.3)

n-—+oc
An easy calculation shows that if g > 49, the line given by
the right-hand side of (5.3) intersects the curve given by
the right-hand side of (5.2). For the details we refer to [18].
If the points of intersection correspond to & = §; resp.
8 = §,, then for values of & between these bounds our
sequence of codes exceeds the Gilbert—Varshamov bound.

Vi. AN EXAMPLE
The introductory example in Section II was the “curve”
P of genus 0. We now consider as an example a plane
curve, which in a sense is the next member of our se-
quence. Let ¢ = r? be a square (as before). If we consider

F, as a quadratic extension of F,, then X:=x" is the
conjugate of x. Consider the curve X in P2 with equation

X"yl gril =0,ie, xX+ )y +22=0, (6.1)

a so-called Hermitean curve. For g = 4, the Example C of
Section III is of type (6.1). As remarked in Example A of
Section III, this curve has genus g= ir(r - 1) =
HCRR')!

To apply our theory we must now calculate the number
of rational points of X. (This is well-known; cf. [11,
p. 102].) In this case this is an easy exercise. If z = 0, then
in (6.1) we may take y = 1, and we find r + 1 solutions
for x. If none of x, y, z are 0, then we may take z = 1. Let
a be primitive in F_. If B € F \ {0,1}, then B = o"*?
and hence y"*! = B has r + 1 solutions. Fixing B simi-
larly yields r + 1 solutions for x. So X has (r — 2)(r + 1)?
+ 3(r + 1) rational points, i.e., x has qﬁ + 1 rational
points. As in (4.1) we take

q- q<m<q‘/¢;. (6.2)
By the method of Section IV we find a code C with length
n= ‘h/a , dimension k = m — g + 1, and minimum dis-
tanced>n—m=n—k—-g+1.

Although this code is no longer MDS, it is usually better
than the corresponding RS code with the same rate. For
instance, if we take g = 16, then a rate } extended RS
code (length 16) has d = 9 and the code treated above with
rate 1 (i.e, m = 37) has length 64 and d = 27. On practi-
cally any channel this is a far better code.

Let us now look at (6.1) for the case g = 4. We write
F, = {0,1, w, @}. The nine rational points of X are given
as

p P P P K K P B Q
X 1 1 1 1 1 1 0 0 0
y 0 0 0 & o 1 & o 1
z © W 1 0 0 0 1 1 1

In this case g = 1. First we take m = 2. By (4.3) the code
C has dimension 2. We must find two functions which are
a basis of .£(2Q). One of them is the function which is
identically 1, which yields 1 as a basis vector for C. The
other function must be defined on X with exception of Q,
where it has a pole of order 2. In Example C of Section III
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we saw that x/(y + z) is such a function. This yields the
following generator for C

G=(11111111)

2 @ @ 1 o w1 0 0

and indeed, we see that d =6 as predicted by (4.4).
Similarly, if we take m = 3, then we must add a row to G,,
corresponding to a function which has a pole of order 3 in
Q. We leave it to the reader to check (see Section III,
Example C) that y/(y + z) is such a function. So we find
the generator

f1. 111 1 1 1 1)\
G3lw610510Q}.
0 0 01 1 1 o @
Now d = 5 in accordance with (4.4).
VII. THE DuAL CODES

Consider the code C defined in Section IV. Let the
functions ¢, = 1, ¢,,* - -, ¢, _, be a basis of L£(mQ). Then

1 ) — - 1
G=|¢(P) é.(P,) e ¢,(P,)
Oi-1(P)  ¢p_i(Py) - éx-1(P,)

is a generator matrix for C. Let s:==m — 2g + 1. Con-
sider s columns of G corresponding to P,---, P,.By(32)

l(mQ— ‘Z‘,P,-')=m-—-s—g+1=g.

v=1

This means that the solutions (A, - -
tions

*, Ax_y) of the equa-

k-1
2 Ae(P)=0,p=1,---,5
j=0

form a space of dimension g.

Therefore, any s columns of G have rank k — g, ie.,
rank s. So any s columns of G are independent. We have
proved that the dual C*+ of C has minimum distance
d’ > s + 1. Clearly, C* has dimension n — k.

Consider the asymptotic behavior of the parameters
R’ = (n — k)/n and 8’ := d’/n for the sequence of codes
C+ corresponding to the sequence treated in Section V.
By the inequalities derived earlier we have

R +8621-4,

ie, the sequence of dual codes also exceeds the
Gilbert-Varshamov bound! We now compare our codes
with those defined in [19]. To understand the following,
the reader must be familiar with more algebraic geometry
than summarized in Section III. The codes of [19] are also
defined by considering the curve X of Section IV. Let
P, P,---, P, Q be as before.

We consider Q(XP; — mQ), the space of differentials on
X with a zero of multiplicity > m at Q and regular except
possibly in the points P;, where a pole of order 1 may
occur.
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If W is a canonical divisor, then
QIZP, — mQ) =L(W + LP, — mQ)

and so by the Riemann-Roch theorem this space has
dimension n — m + g — 1. In[19] a code C* is defined by
taking as codewords the vectors

¥ =¥(w)= (res,,l(w),; . -,res,,”(w))

where w € QP — mQ).

Again, the Riemann—-Roch theorem shows that C* also
has dimension n — m + g — 1, i.e,, it has the same dimen-
sion as the code C* treated earlier. Exactly as in Section
IV it is shown that C* has minimum distance d* > m —
2g + 2. As remarked in the introduction, we shall show
that C* and C* are equal. Since these two codes have the
same dimension, it suffices to show that a word ¢ € C and
aword ¥ € C* have inner product 0. Let ¢ correspond to
f € ZL(mQ). Then fw is a differential in Q(LP,). By the
residue theorem (cf. [9, p. 248]) the sum of the residues of
this differential is zero. Because w has poles of order at
most 1 we have

0= % resp(fo) = 3 £(P) - resp () = 3 ¥,

i=1 i=1 i=1
ie., (¢, %) = 0. The reader who is familiar with [19] will
have seen that we did not introduce a new class of codes.
Hopefully, the reader who has more difficulty with the
necessary algebraic geometry will consider our approach
easier to grasp. The task of constructing the sequence of
Theorem 1 in a more elementary way remains.
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