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Generalized remote state preparation: Trading cbits, qubits, and ebits in quantum communication
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We consider the problem of communicating quantum states by simultaneously making use of a noiseless
classical channel, a noiseless quantum channel, and shared entanglement. We specifically study the version of
the problem in which the sender is given knowledge of the state to be communicated. In this setting, a trade-off
arises between the three resources, some portions of which have been investigated previously in the contexts of
the quantum-classical trade-off in data compression, remote state preparation, and superdense coding of quan-
tum states, each of which amounts to allowing just two out of these three resources. We present a formula for
the triple resource trade-off that reduces its calculation to evaluating the data compression trade-off formula. In
the process, we also construct protocols achieving all the optimal points. These turn out to be achievable by
trade-off coding and suitable time sharing between optimal protocols for cases involving two resources out of
the three mentioned above.
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[. INTRODUCTION many others but we do not study them here. Those caveats
aside, the three basic resources serve as formalized versions
Quantum information theory can be described as the efef abstract “classicality,” “quantumness,” and “nonlocal-
fort to identify and quantify the basic resources required taty,” quantifiable in units of classical bitgcbits), quantum
communicate or, more generally, process information in @its (qubitg, and maximally entangled qubitgebits. While
guantum-mechanical setting. The dual goals of identifyingthe three basic resources are inequivalent, relationships exist
new protocols and demonstrating their optimality have, rebetween them. Because chits can be encoded in qubits and
spectively, helped to expose the surprising range of informaebits can be established by sending qubits, the noiseless
tion processing tasks facilitated by quantum mechanics anquantum channel i§n this narrow sengehe strongest of the
highlighted the subtle ways in which physics dictates limita-three. Because it is impossible to establish entanglement us-
tions on the transmission and processing of information. ing classical communication or to communicate using only
Part of the appeal of the information theoretic paradigm isentanglement, ebits and cbits are simply incomparable; nei-
that it emphasizes the notions of interconvertibility andther is truly stronger than the other.
simulation. Identifying basic resources and evaluating their In the present work, we guantify the relationship between
interconvertibility provides a general strategy for systematithe three resources for a basic task in quantum information
cally charting the capabilities of quantum-mechanical systheory: communicating quantum states from a sender to a
tems. Some early successes of this approach include Schreceiver(and, more generally, sharing entangled states be-
macher’'s quantum noiseless coding theorgh®?], which  tween them There are at least two variations on the task,
demonstrated that a single number quantifies the compresdepending on whether or not the sender has knowledge of
ibility of memoryless sources of quantum states, and thehe states she is required to communicate. If she is only
theory of pure state bipartite entanglement, where a singlgiven a copy of the quantum state and not a description, we
number, likewise, determines the asymptotic interconvertibil-describe the source as hidden and the encoding as oblivious
ity of entanglemenf3]. More recently, we have seen how to (or blind). At the other extreme, if she is told which state she
evaluate the interconvertibility of quantum memoifiésand s required to transmit, we describe the source as visible and
even seen that the rate at which one noisy quantum channgde encoding as nonobliviou¢Sometimes in the quantum
can simulate any othdém the presence of entanglement andinformation literature the adjective “visible” is also applied,
with certain restrictions on the inpus controlled again by a somewhat nonsensically, to the encodjihile the distinc-
single number, the channel's entanglement-assisted capaciipn makes no difference in classical information theory,
[5]. quantum-mechanical restrictions on the sender’s ability to
From the point of view of communication theory, these measure without causing a disturbance lead to very different
results identify three basic and inequivalent resources: noiseesults for the two tasks in the quantum ca&ompare, for
less classical channels, noiseless quantum channels asglample, the results of Ref&—8].) Our emphasis here is on
maximally entangled states. Other inequivalent resources exhe visible scenario since there is generically only a trivial
ist, of course. One such, classically correlated bits, will provetrade-off for the blind encoder case: using teleportation, two
useless for the problem we investigate. Noisy versions of thebits and one ebit can be used to simulate a noiseless one-
basic list of three resources identified above potentially addgubit channel but no other interesting trade-offs are possible.
In the visible scenario, the relationship between the three
resources becomes much more varied. When no quantum
*Electronic address: anura@caltech.edu channel is permitted, we recover the problem known as re-
"Electronic address: patrick@cs.caltech.edu mote state preparatiof®,10], while forbidding use of the
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classical channel leads to superdense coding of quantun i Aq

stated11,12. Likewise, if entanglement is not permitted, we ‘-

recover the trade-off between classical and quantum commu:

nication solved in Ref[8]. The present paper completely

solves the problem of trading all three resources against eacl

other, finding that optimal protocols for any combination of

resources can be constructed by appropriate combinations ¢

the protocols representing the extremes identified above

Such a clean resolution in terms of previously discovered

bL_JiIding blocks is encouraging: it confirms yet again the S.im' FIG. 1. In the above quantum circuit diagram for generalized

p.“fy'f“g power of the resource-based _approach, this tlmeremote state preparation, time goes from left to right, solid lines

yl_eldlng a manageable taxonomy of optimal protocols for therepresent guantum registers, and dashed lines represent classical

triple trade-off problem. . . registers. The registers connected in the left represent a maximally
The rest of the paper is structured as follows. Section llgntangled state of log: ebits initially shared between Alice and

defines the problem rigorously and describes previous resuligop. The logdo-qubit quantum registeB; is sent from Alice to

for the cases when one of the three resources is not useggp, as is the logl cbit classical message. Alice’s encoding

along with some minor extensions. Section Il studies thepperation is denoted big;» and Bob’s decoding operation, which is

relationship between the trade-off between qubits and cbitgonditioned orm, by D,,.

in quantum data compressid@CT) and the trade-off be-

tween ebits and chits in remote state preparat®8P. In  gnd

Sec. IV these connections and the results described in Sec. Il

are used to obtain optimal protocols and optimal resource loin)=|ei )@@ )@ ®|@; ).

trade-offs for communicating quantum states when all three ! 2 "

resources are used simultaneously: the full “triple trade-off.”

. : t the end of the protocol, Alice and Bob are to reproduce
We use the following conventions throughout the paper. HA - AR i
5AB={€DiABaDi} is an ensemble of bipartite states then Wethe states of the bipartite ensemble with high fideliie

ardless of whether pure states preparedin Bob’s system,
write £, for the ensemblée? ,p;} of reduced states on sys- g P prep y

. . . . or entangled states asharedbetween Alice and Bob, we
temA. Sometimes we omit subscripiisr superscriptslabel- always refer to the task simply asommunicatingrom

ing subsystems, in which case the largest subsystem ORjice 1o Bob) We imagine that there is a noiseless classical
which the ensembléor state has been defined should be channel from Alice to Bob capable of sending onedgf
_ _ AB . . . .
assumede=Exg ande;=¢; " . We identify states with their - essages, a noiseless quantum channel capable of sending a
density operators and jp) is a pure state, we use the nota- do-dimensional quantum system and a maximally entangled
tion ¢=|¢){¢| for its density operator. The functid(p) is state|<I>>=d,§l’22.dEl|i)|i> of Schmidt rankdg. A source
= — 1=

t/r;en \IgoenurﬂZrl;er 22{: Oepl;troc;p;%(; ;vera-g: ;?gt’e) gp t?lg(eg% s’g:f(;bl e provides Alice withi", drawn with probabilityp;s, at which

point Alice applies a quantum operati&m to her half of|®)

Functions likeS(A|B), and S(A:B|C), are defined in the ) .
same way as their classical counterparts: that without loss of generality has output of the form

S(A:B|C),=S(p") +S(p®9) = S(p"*) = S(p©), (1)

for example.x(€) is the Holevoy quantity of £ [13]. Given
a bipartite ensembl€ g={¢/"®,p;}, we also make use the
abbreviations S=S(&), S=3p;¢?, x=x(&) and H
=H(p;). Throughout, log and exp are taken base 2.

Pin

dc
3 e adinliile 2

where B, is a dgp-dimensional quantum systerB,, is the

quantum system supporting Bob’s half|df), the state$|j)}

are orthonormali.e., classicalandq(-|i") is a probability

distribution. Alice then sends regist®; to Bob over her

Il. DEFINITION OF THE PROBLEM noiseless quantum channel aBdo Bob over the noiseless
AND PREVIOUS RESULTS classical channel. The protocol is completed by Bob per-

We now give a more formal definition of the task to be forming & quantum operatiob; on registersB; and B,.
completed by the sender and receiver, henceforth, respeg\;/”te ¢;n for the joint Alice-Bob output state averaged.over
tively, Alice and Bob. The reader can also refer to Fig. 1,different values of. We say that the protocol has fidelity 1
which illustrates the definition. We consider an ensemble of~ € if
bipartite quantum states€={|¢;)"8,p;} on a finite-

dimensional Hilbert spacéi{,g="H,® Hg and the product ~ -
in in in in /1_ .
ensembles®"={|¢;n)*B,pin} on Hag, where Izn: pin{ ein[@inl oin) ¢ @
I"=iyiyin, Likewise, (R,Q,B is an achievable rate triple for the en-
_ semblef if for all 6, >0 there existdN such that for alin
Pin=Pi,Pi, "Pi, >N there is a protocol fo€®" with fidelity 1— e and
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1 1 1 states ing. E* is convex, continuous, and strictly decreasing
~logdc<R+45, —logde<Q+4, —logde<E+d. in the interval in which it takes positive values.
(4) We will also use the simple fact that the inequality in Eq.
(9) can be replaced by equality.

Our goal will be to identify these achievable triples. In
particular, we will find a formula for the function B. E=0: Quantum-classical trade-off (QCT)

The case where the ensemBleonsists only of product
states| ¢;)"B=]0)"| ¢;)® was the focus of Ref[8]. At the
extreme wheriR= 0, only quantum communication is permit-
ted so the problem of finding achievable rates is answered by

e quantum noiseless coding theordMS(&g),0) is anop-
timal point, in the sense that none of the three rates can be
reduced. Likewise, the optimal point whé 0 is given by
rZH(pi),O,O), meaning that Alice has no better strategy than
to communicate the labél' to Bob. More generally, when

E*(R,Q)=inf{E:(R,Q,E) is achievablg (5)

We refer to rate triples of the fornfR,Q,E*(R,Q)) as
optimal rate triples and the protocols that achieve them a
optimal protocols. We will indicate that a rate trigle,Q,B
is optimal by writing it as R,Q,E)*. Throughout the paper,
unless otherwise stated, all entropic quantities will be take
with respect to 4-partite statesof the following form:

m+1 the ensemble is allowed to contain entangled states, the tech-
w= piliNi*@ B > p(jli)]j)jlC, (6)  hiques of Refs[8], [14] are easily adapted to yield a formula
i i=1 for
wherem is the number of states ifiyg (if that number is Q*(R)=inf{Q:(R,Q,0) is achievablp. (10)

finite), andp(-|-) is a classical noisy channel. Note that for

all such states In particular, we have the following analog of Theorem I1.1.

Theorem 11.2.For the ensembl€={|¢;)"B,p;} of pure

_ _ bipartite states an&=0,
S(X:B|C)=S(B|C)~S where S=2, p;S(¢), (7)
[ Q*(R)=min{S(B|C):S(X:C)<R}, (12

a fact that will be useful later. Before moving on to the where the entropic quantities are with respect to the state
general problem, we consider the special cases given by satinimization is over all 4-partite states of the form of Eq.

ting one of the three rates to zero. (6) with classical channelp(jli), and m the number of
states in€. Q* is convex, continuous, and strictly decreasing
A. Q=0: Remote state preparation(RSP) in the interval in which it takes positive values. There exists

) ) , , ) a critical value ofR, hereafter referred to &8, such thatR

This problem was studied extensively in RET4]. It is +Q*(R)=S(B) for R<H, and R+Q*(R)>S(B) other-
impossible to achieve an entanglement rate of less thaﬂ/ise. ¢
EipicpiB, essentially because that is the amount of entangle- Aq before, the inequality in Eq11) can be replaced by an
ment shared between Alice and Bob at the end of any SUGsquallity.
cessful protocol. The optimal cbit rate when the entangle-
ment is minimal is justH(p;), meaning that the simple
protocol consisting of Alice communicating to Bob and
then the pair performing entanglement dilution is optimal. At  Referencg12] showed that it is possible to communicate
the other extreme, the chit rate is minimizéat least for  arbitrary d-dimensional quantum states using tbg
irreducible sourcgs by a protocol achieving the rate +o(logd) qubits, logd+o(logd) ebits and shared random

C. R=0: Superdense coding of quantum state¢éSDC)

(x(&g),05(&R)). In general, we introduce the function bits. For exploring the trade-off of quantum resources, we
need a variation on this result that applies to ensembles of
E*(R)=inf{E : (R,0E) is achievablp. (8)  entangled states: using his coherent classical communication

technique, Harrow has shown that
This choice, a slight abuse of notation given our earlier defi-
nition of a functionE* with two arguments, is chosen for (0,5x(&8),S(E) — 3 x(&s)) (12
consistency with the remote state preparation paper. Note
thatE* (R)=E*(R,0). We have the following theorem from is an achievable rate triplel5]. Using his construction, we

Ref.[14]. can easily find th&R=0 trade-off curve.
Theorem II.1.For the ensembl&€={|¢;)"8,p;} of pure Theorem 11.3.For the ensembl€={|¢;)"B,p;} of pure
bipartite states an&=0, bipartite states an@®=0,
*(R)=mi : : < S(&s)—Q if Q=x(&)/2
E*(R)=min{S(B|C) : S(X : BC)<R}, (9) E*(0.0)= B B 13

) N ) +o  otherwise.
where the entropic quantities are with respect to the state

minimization is over all 4-partite states of the form of Eq. Proof. Since (0S$,0) and (0y/2,S— x/2) (Sand y are de-
(6) with classical channelp(jli), and m the number of fined in the Introductiopare both achievable rate triples, any
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convex combination of the two is an achievable rate triplewhere we have used E(¥) to arrive at the expression on the

corresponding to a time-shared protocol. Thus,)0<1, right-hand side.

OASH(1=Mx/2(1=N)(S—x/2)) (14) IIl. RELATING OPTIMAL QCT AND OPTIMAL RSP
is achievable. Suppose these points are not optimal. Then any protocol for quantum-classical compression can be
there existse>0 such that converted into a RSP protocol by using a RSP to send the

B _ B B compressed qubits. One might hope that if the original QCT
OASHI=Mx/2(1=1)(S=x/2) =€) (15 point was optimal that the resulting RSP point would also be

is optimal. By using quantum communication to establishOPtimal. For classical rates abobt this is indeed the case

entanglement, however, protocols achieving this rate can bRut otherwise it need not be. Consider, for example, the en-

converted into protocols with the rate triple semble consisting of the orthonormal staf@sand|1), each
occurring with probability 1/2. In this cas€* (0)=1 but
OASH(1—N)x/2+(1—N)(S—x/2) — €,00=(0,S—€,0), the corresponding RSP protocol would wastefully consume 1

(16 cbit and 1 ebit per signal when 1 cbit and no entanglement
are sufficient.

contradicting the optimality of Schumacher compression. We A an aside, while there is a natural way to convert opti-
conclude thaE* (0,Q) =S—Q when this conversion is pos- mal QCT protocols into optimal RSP protocd®r unen-
sible, that is, wherQ=x/2. This condition is required by tangled ensembles af=H.), there is no known way to do
causality.(For a detailed proof, see Sec. IV)C. B the opposite. An appendix to Refl4], however, demon-

The simple argument used in the proof of Theorem I1.3 isstrates the existence of just such an operational reduction but
characteristic of what will follow. Our evaluation of only under the assumption that the mixed state compression
E*(R,Q) will be accomplished via operational reductions to conjecture is true(See Refs[17—19 for more details on the
the three extremal cases we have now completed, just agnjecture.
Theorem 1.3 was demonstrated Using a reduction from the The fo”owing two lemmas forma”y express the relation-
unknown E*(0,Q) curve to the known Schumacher com- ship between optimal QCT and optimal RSP.
pression point. - * (D) _ o

Later we will also have occasion to make use of the fol- Lfmma I”'l'. thn R/*HC’ E_[RjQ (R)=S]
lowing analog of the QCT and RSP constructions. Given a @ (R). Otherwise E*[R+Q*(R) = S]=Q* (H,).
statew of the form of Eq.(6), the trade-off coding technique ~ Proof. We begin by showing thaE*[R+Q*(R)—S]

from Ref. [8] then gives protocols achieving all the rate <Q*(R). We know that(S(X:BC),0,S(B|C)) is an achiev-
triples of the form able rate triple for anw of the form of Eq.(6). In particular,

it is achievable wheS(X:C),S(B|C),00=(R,Q*(R),0), in
(S(X:C),3S(X:B|C),S(B|C) - $S(X:B|C)). (17) ~ Which case

Briefly, once a channgh(j|i) is chosen, Alice and Bob can  (S(X:BC),0,S(B|C))=(S(X:C)+S(B|C)—S,0S(B|C))

share(typical) j"=j;-*-j, at a cost onS(X:C)+o(n) bits (20
of communication plus shared random bits using the Reverse _
Shannon Theorerfil6]. Harrow’s protocol is then used on =(R+Q*(R)—S,0Q*(R)). (21

the induced “conditional” ensembles _ ) o o
This proves the claim. Note that this inequality is true re-

{einyBai™i™ =q(i1]j1)--alinlin)}, gardless of whetheR is greater or less thaH ..
We now prove the opposite inequalitE*[R+Q* (R)
where —~S]=Q*(R) when R=H,. Substituting our expressions
-1 for E*(R) andQ* (R) shows that what we need to prove is
Q(ilj)=(2 pirp(jli’)) p(j[)p; . (18  that
1

min{S(B|C):S(X:C)+S(B|C)=R+Q*(R)} (22

The shared random bits are then seen to be unnecessary be-
cause we only require high fidelity on average that some =min{S(B|C):S(X:C)=R}. (23
particular value of the shared random bits can be used
Evaluation of the rates for the approach gives exactly EqlLet w be the state that minimizes the first expression for
(17). fixed R If S(X:C),<R then we are done so we may sup-

Given any(R,Q* (R),0) there is a state of the form Eq.  pose not:S(X:C),=R+A for some A>0. By convexity
(6) for which (S(X:C),S(B|C),00=(R,Q*(R),0). For this and the definition oH, for anyR=H,
state, we therefore find a new achievable rate triple:

Q*(R+A)—Q*(R)>

(S(X:C),3S(X:B|C),S(B|C)— 3S(X:B|C)) A

—1. (24)

=(R,(Q*(R)—9),:(Q*(R)+9)), (19  Rearranging this inequality yields
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(R+A)+Q*(R+A)>R+Q*(R). (25

Using the hypothesi§(X:C),=R+A and the fact that the
right-hand side of the above inequality iS(X:C),
+S(B|C),,, we find thatS(B|C),<Q* (R+A). But, again
by hypothesisS(X:C),=R+A so we have a contradiction
of the definition ofQ* (R+A). We conclude tha§(X:C),,
=<R.

Finally, R+Q*(R)—S=x when R<H, so E*(R)
=E*(x) is constant. Using the first_half of the lemma, we
then findE*()()zE*[HC+Q*(HC)—_S]=Q*(HC). |

Lemma Ill.2 Q*[R—-E*(R)+S]=E*(R) when R
= y. OtherwiseE* (R) = + . B

Proof. Let H.<R; and consideR=R;+Q*(R;)—S. R
is a strictly increasing function d®, by the definition oH,,
taking all valuesy<R. Substituting into Lemma Ill.1 gives

Q*[R—E*(R)+S]=Q*[R;+Q*(Ry) — S—Q*(Ry) + 5]

(26)
=Q*(Ry) 27
=E*[R;+Q*(Ry)~S] (28)
=E*(R). (29

Also, R<y is not achievablgby causality, see Sec. IV)C
yielding the second half of the lemma. |
IV. THE TRIPLE TRADE-OFF

The following theorem is the main result of the paper: a
prescription for calculating the minimal amount of entangle-
ment required given any cbit and qubit rate.

Theorem IV.1We have

E*(R.Q)
0 if Q*(R)<Q
Q*(R)—Q if 3[Q*(R)—S]<Q=Q*(R)
E*(R+2Q)-Q if 3(x~R)=Q<3;[Q*(R)—S]
+o  if Q<3(x—R)

We discuss each of the four ranges @separately, referring
to them, in order, as th®CT region the low-entanglement
region, the high-entanglement regigrand theforbidden re-

gion. The names of the first and last regions should be self(R’,Q’ ,E’).

explanatory(QCT is optimal by definition in the QCT region

PHYSICAL REVIEW &8, 062319 (2003

Pure RSP

N
R Ry
N
N

2

77 7
I
1T
llllﬁﬁﬁéﬁﬁf’
,//l;;,/l;,l
T
7

NN

N
N
NN

N
N

NN

E'(R,Q) (ebits)

X
X
NN
N
NN
NN
N
N
N
X

N

N
N

N
NN

N

N
N

X
NN
N

N

N
N

N

N

0.4

08 Q (qubits)

R (cbits)

FIG. 2. Trade-off surface for the uniform qubit ensemble. The
region on the left for whicle* (R,Q) =0 is the QCT region, whose
boundary with the low-entanglement region is given by the curve
(R,Q*(R),0). The transition to the high-entanglement region then
occurs when B=Q* (R); note that the surface is not smooth at the
transition. Finally the points corresponding to pure R8P0, 1),
and pure SDC(0, 1/2, 1/3, define the boundary of the forbidden
region. The surface matches the convex hull of the QCT, SDC, and
RSP curves.

tively different regimes: foR<H, we have that[ Q* (R)
—S]=3(x—R) so there is no high-entanglement region in
this case. The region defined R<H, andQ=3(x—R) is
entirely contained in the low-entanglement region.

Before giving a proof of Theorem IV.1, we consider the
standard examplé&,,g being the uniform(unitarily invariany
ensemble over qubit states BnDevetak and Berger gave an
explicit parametrization20] of the function identified as
Q* (R) for this ensemble in Ref8] and the corresponding
RSP curve appeared in R¢lL4]. We present the full trade-
off surfaceE* (R,Q) in Fig. 2. (In the case of an infinite
ensemble, Theorems II.1 and 11.2 need to be slightly modi-
fied: the min should be replaced by an inf as explained in
theorem 10.1 of Ref[8]. The only significant modification
required to the argument of this paper is in the second half of
Lemma lll.1, where a sequence ®f, needs to be considered
instead of a fixed minimizing.)

We also summarize for convenience in Table | all the rate
triples and conversions between them that we will use in the
proof. We use the notatiorR(Q,E)—(R’,Q’,E’) to indi-
cate that if the rate tripléR,Q,B is achievable then so is the
rate triple R',Q',E’), i.e., (R,Q,B can beconvertedinto
Similarly, if we write (R,Q,E)*
—(R',Q',E") then the conversion is possible conditional on

and no amount of entanglement is sufficient in the forbiddenR,Q,B being optimal.

region) In the low-entanglement region we will find that

optimal protocols can be found by time-sharing between

QCT and SDQthe first of which does not use entanglement

while the optimal protocols for the high-entanglement region

are found by time-sharing between RSP and Sbath of
which rely on entanglement.
While H, does not appear explicitly in our formula, it

A. The low-entanglement region: 3[ Q* (R) —S]<Q=<Q*(R)

Definex =2[Q* (R) — Q]/[Q* (R) + S]. By the definition
of the low-entanglement region, sO\n<1. Both
(R,Q*(R),0) and (R,3[Q*(R)—S],1/2[Q*(R)+S]) are

once again delineates the boundary between two qualitachievable so the convex combination
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TABLE |. Achievable rate triples and conversions.

Rate triple

Description

(R,Q*(R),0)
(ROE*(R))
(R.3[Q* (R)—S].3[Q* (R)+S))
(R+Q*(R)—S,0Q*(R)) for R=H,
(R-E*(R)+S,E*(R),0)
(R,Q,E)—(R+2Q,0E+Q)
(R,Q,E)—(0,Q+3R+Q,:R+E)
(R1,Qq,E;) and R;,Q3,Ey)
—N(R1,Q1,E1) +(1-N)(R,,Q3,E)
(R,Q,E)—(R,Q+E,0)
(R,Q,E)* = (R-E+Q-S,Q+E,0)
if R==SandE>Q+S

QCT

RSP

SDC on QCT: Eq(19)
QCT to RSP: Lemma Ill.1
RSP to QCT: Lemma 1ll.2
Teleportation(of qubity
Superdense codin@f cbits)

Time sharing

Sending entanglement using qubits
Lemma IV.2

[R,Q,Q*(R)—Q]=A(R,Q*(R),0)+(1—)\)
X (R,3[Q*(R)—S],3[Q*(R)+S])
(30)

is achievable by time sharing.

The proof that these points are optimal is very simple.

Suppose they are not. Then there would existauch that

(R,Q,Q*(R)— Q— ¢) were optimal. Now, using the conver-

sion (R,Q,E)—(R,Q+E,0), it follows that (R,Q*(R)

(6) R,=S (for Q_s%[Q*(R)—g]). This is equivalent to
E*(R+2Q)=2Q+S. Since <Q*(R)— S in this region,

we have by the monotonicity &* and by Lemma IIl.1 that

E*(R+2Q)=E*[R+Q*(R)— 9] (33
=Q*(R) (34)
=2Q+S. (35)

—€,0) is achievable, which is a contradiction of the defini- Equipped with these observations we can now proceed to the

tion of Q*.

B. The high-entanglement region:
2(x—R)=Q<3[Q*(R)-S]

This region seems to require a more elaborate analysis.

We first define two new variabld®, andR, which are func-
tions of R and Q but easier to work with

R,=R+2Q-E*(R+2Q)+S, (32)

R,=R—R;+S=E*(R+2Q)—2Q. (32)

We collect for future use some simple facts abRyandR,.

(1) Ry=H.. The functionR’—E*(R’)+S is a mono-
tonically increasing function oR’. By causality, therefore,
the minimum of this function over achievabR’ occurs
when R'=y. From Lemma .1, E*(x)=Q*(H.) =S
—H., so R"—E*(R’)+S=H,. Since R+2Q=y in the
high-entanglement region, we conclude tRat=H. .

(2) Q=3[Q*(R;)—R,]. This follows by Lemma IIl.2:
Q*(R1)=E*(R+2Q)=R,+2Q.

(3) E*(R+2Q)—Q=R,+Q=3[Q*(Ry)+R,].
follows by the definition ofR, and the previous fact.
(4) R,<Q*(Ry). By fact(1), R,=Q*(Ry) —2Q.

(50 Q*(Ry))=S. Q*(R;)—S=S(B|C)—S=S(X:B|C)
=0 (for optimal w).

This

proof of Theorem IV.1 in the high-entanglement region. That
is, we will prove '[hatE*_(R,Q):E*(R-i‘ZQ)—Q when
1(x—R)=Q<3[Q*(R)—S]. Note that

(R,.Q,E*(R+2Q)—Q)
=(Ry+R;—S,3[Q* (Ry) —Ry1,3[Q* (Ry) +R,])
(36)

in terms of the new variables, by the definitionRf andR,
as well as facts 2 and 3.

1. Proof of achievability

(R1,3[Q* (Ry) — S],5[Q* (Ry) + S]) is achievable by Eq.
(19 and (R;+Q*(R,;)—S,0Q*(R,)) is achievable by
Lemma III.1. By_ facts (4), (5), and (6), A=[Q*(R;)

—R,]/[Q*(R;)—S] is between 0 and 1. Therefore, the con-
vex combination

(Ri+R;—S,3[Q*(R) —R,],3[Q* (R) +R,]) (37)

=\(Ry,3[Q*(Ry) —S],3[Q* (Ry) +S])

+(1-M (R +Q*(R)—S0Q*(Ry)) (39

is also achievable by time sharing.
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2. Proof of optimality

We defer the proof of the following lemma, which is at
the heart of our optimality proof, to the end of the section.

Lemma IV.2.If Ry, Q=0 and R2>§, then there is a
conversion

(R1+R;,Q,R+Q)* —(Ry+S,R,+2Q,0). (39

(Note that whenR,=S, the conversion always exists, re-

gardless of the optimality of the first rate triplé&Now sup-
pose that points of the form of E¢36) are not optimal. Then
there exists some>0 such that

(Ri+R,—S,3[Q* (Ry) —Ry], 3[Q* (Ry) +Ry]— )
(40)

is optimal. We handle the cas&>§+e and R2s§+e
separately.

Assume first thaR,>S+ e, then defineR;=R;— S+ e
andR,=R,— e. Rewriting the triple(40) in terms ofR; and
R;, we have that

(Ri+R3,3[Q*(R)— R, Rz +3[Q* (R) —R;]) (4D)

is optimal. SinceR;’1>§, we can use Lemma IV.2 to obtain
that (R;+ €,Q* (R;) — €,0) is achievable. This implies that
Q* (R +€)=<Q*(R;) — ¢, which is a contradiction since, by

fact (1), R;=H..
If instead R,<S+ €, we apply the conversionR,Q,E)

—(R,Q+E,0) obtained by using quantum communication

to establish entanglement,

(Ri+Ry—S,3[Q* (Ry) — Rz, 3[Q* (Ry) + Ryl — €)*
—(R;+R,—S,Q*(R;) — ¢€,0). (42

This implies thatQ* (R, +R,—S)<Q*(R,)—e. We also

have Q* (R, + €)<Q* (R, + R,—S) by assumption and the

monotonicity of Q*. As before, we find thaQ* (R;+¢€)
<Q*(R;) — €, which is a contradiction.

Proof (of Lemma IV.2) Performing teleportation yields

the conversion

(R1+R2,Q,Ry+Q)— (R +Ry+2Q,0R,+ 2Q).
(43

PHYSICAL REVIEW &8, 062319 (2003

(Ri+R,+2Q,0R,+2Q—¢)* (44)

—(Ry+ €+ SRy +2Q—€,0)* (45)
—(Ry+€+S,3(Ry+2Q—€—9),3(R,+2Q—€+9)).
(46)

We handle the casd%2>§_+ € and R2<§+ € separately.
Assume first thaR,=S+ €. Then if we definex=(R,

—S—€)/(R,+2Q—€e—S), we have Bs\<1 so the convex
combination

(R1+R,,Q,R,+Q—¢) (47)

=\(R;+R,+2Q,0R,+2Q— ¢) (48)
+(1-N)(Ry+e+S,3(R+2Q

—€e—9),2(Ry+2Q—€+9)) (49)

is achievable,
+R,,Q,R,+ Q). N B
Now suppose thatR,<S+e and considera=e+S
—R,, which is by definition positive. Rewriting the triple
(45) in terms ofa, applying the SDC conversion of E(L9)
and then regular superdense coding of the chits gives

contradicting the optimality of R{

(Ry+Ry+ a,2Q— a+S,0)* (50)
—(Ry+Ry+a,Q—al2Q— al2+5S) (51)
—(0Q+3(R;+R,),Q+5(Ri+Ry)+S). (52

Choosing\ = a/(R;+ R, + @), we can time share to achieve

(Ri+R;,Q,Q+9) (53)
=M0Q+3(Ri+Ry) . Q+3(Ri+Ry)+S) (54
+(1-N\)(Ry+ Ry + @,Q— al2,Q—al2+9S), (55

contra_dicting again the optimality ofR;+R,,Q,R,+ Q)
sinceS<R, by the hypotheses of the lemma. |

C. The forbidden region: Q<3(x—R)

(Note that teleportation is appropriate here instead of RSP |n keeping with the operational spirit of the other argu-
because the encoding map corresponding to the first triplthents in this paper, we argue that achievability in this region
will generally produce complicated entangled states betweeWould lead to a violation of causality. A classical channel of
Alice and Bob, conditioned on the classical bits being com-dimensiond. and a quantum channel of dimensidg can

municated. Teleportation will preserve this entanglemént.

be used to transmit at most ldg+2 logd, bits of classical

will suffice to prove that the resulting triple is optimal be- jnformation by the optimality of superdense codirig,13.
cause an application of Lemma I11.2 would then show thatsyccess in the ensemble communication task, however, re-

(R;+S,R,+2Q,0) is achievable.

Suppose then thatR; + R,+2Q,0,R,+2Q) is not opti-
mal so that there exists some>0 such that R;+R,
+2Q,0R,+2Q—¢€) is optimal. By Lemma 111.2 and then
Eqg. (19), there is a sequence of conversions

sults in Bob holding a high-fidelity copy ofg. By using
coding, Alice could then about communicatéfg) classical
bits to Bob per usage of the protod@1,22, a violation of
causality (for sufficiently high fidelity and smalls in the
notation of Sec. Nif x(&)>R+2Q.
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A simple entropic argument is also possible. Consider thés less than or equal t8(X), which is in turn no more than

state log dimX. Moreover, becauseis separable across tixé¢ AB

cut, S(X|AB)=0. (This follows immediately from concavity
_ Cliny/inX o AB1B2 SEmyin/i|C of the entropy[24,25].)
P ,;J pirli")i") @ Pin Sa(livnGrs 66 To prove the second inequality, we expand the definition

of S(X:A|B) differently,

which represents the output of Alice’s encoding operation for

a given(unspecified protocol of the form of Fig. 1. We can

estimate S(X:A|B)=S(A[B) ae+ >, piS(A[B),se. (63

i I

S X({@jn,Pin}) <S(X:B1B,C)  (by monotonicity of x) Using subadditivity of the von Neumann entropy again,
(57) S(A|B)<S(A) for any density operatoiS(A), in turn, is

always less than or equal to log ddm |
= S(X:B,)+ S(X:C|By) + S(X:B4|B,C)
(58) V. DISCUSSION
<logdc+2logdg, (59) The problem we posed here, communication using noise-

less classical and quantum channels in addition to maximally
entangled states, is the natural setting in which to unify many
pre-existing results on quantum-classical compression, re-
mote state preparation and quantum state superdense coding.
While our goal was to provide a unified synthesis of these
disparate results, our conclusion was ultimately that the gen-
eral problem can be understood in terms of those basic build-
ing blocks—the surface of optimal rate triples for the triple
. i resource problem can be assembled by time sharing appro-
giving the constrainy <R+2Q. _ priately between protocols designed for the special cases.
Lemma IV.3Let p be a tripartite density operator of the gy,ch 3 neat resolution confirms the simplifying power of the
form resource-based approach and justifies viewing trade-off cod-
ing, remote state preparation and quantum state superdense
p=2 piliXi*@plB, (61)  coding as fundamental primitives instead of special cases of
' a more general problem.

using Lemma IV.3(see below twice and the fact that
S(X:B,) =0 sinceB, is maximally mixed for alli". On the
other hand, applying the Fannes inequali®g] and the fi-
delity condition implies that

e—0

1 ~B
ﬁX({‘Pinvpin})—)X! (60)

where the state§i)*} are orthonormal and thg, are prob-
abilities. Then ACKNOWLEDGMENTS
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