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Generalized remote state preparation: Trading cbits, qubits, and ebits in quantum communication

Anura Abeyesinghe* and Patrick Hayden†

Institute for Quantum Information, Physics Department, Caltech, 103-33, Pasadena, California 91125, USA
~Received 29 August 2003; published 24 December 2003!

We consider the problem of communicating quantum states by simultaneously making use of a noiseless
classical channel, a noiseless quantum channel, and shared entanglement. We specifically study the version of
the problem in which the sender is given knowledge of the state to be communicated. In this setting, a trade-off
arises between the three resources, some portions of which have been investigated previously in the contexts of
the quantum-classical trade-off in data compression, remote state preparation, and superdense coding of quan-
tum states, each of which amounts to allowing just two out of these three resources. We present a formula for
the triple resource trade-off that reduces its calculation to evaluating the data compression trade-off formula. In
the process, we also construct protocols achieving all the optimal points. These turn out to be achievable by
trade-off coding and suitable time sharing between optimal protocols for cases involving two resources out of
the three mentioned above.
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I. INTRODUCTION

Quantum information theory can be described as the
fort to identify and quantify the basic resources required
communicate or, more generally, process information in
quantum-mechanical setting. The dual goals of identify
new protocols and demonstrating their optimality have,
spectively, helped to expose the surprising range of inform
tion processing tasks facilitated by quantum mechanics
highlighted the subtle ways in which physics dictates limi
tions on the transmission and processing of information.

Part of the appeal of the information theoretic paradigm
that it emphasizes the notions of interconvertibility a
simulation. Identifying basic resources and evaluating th
interconvertibility provides a general strategy for system
cally charting the capabilities of quantum-mechanical s
tems. Some early successes of this approach include S
macher’s quantum noiseless coding theorem@1,2#, which
demonstrated that a single number quantifies the compr
ibility of memoryless sources of quantum states, and
theory of pure state bipartite entanglement, where a sin
number, likewise, determines the asymptotic interconverti
ity of entanglement@3#. More recently, we have seen how
evaluate the interconvertibility of quantum memories@4# and
even seen that the rate at which one noisy quantum cha
can simulate any other~in the presence of entanglement a
with certain restrictions on the input! is controlled again by a
single number, the channel’s entanglement-assisted cap
@5#.

From the point of view of communication theory, the
results identify three basic and inequivalent resources: no
less classical channels, noiseless quantum channels
maximally entangled states. Other inequivalent resources
ist, of course. One such, classically correlated bits, will pro
useless for the problem we investigate. Noisy versions of
basic list of three resources identified above potentially a
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many others but we do not study them here. Those cav
aside, the three basic resources serve as formalized ver
of abstract ‘‘classicality,’’ ‘‘quantumness,’’ and ‘‘nonlocal
ity,’’ quantifiable in units of classical bits~cbits!, quantum
bits ~qubits!, and maximally entangled qubits~ebits!. While
the three basic resources are inequivalent, relationships
between them. Because cbits can be encoded in qubits
ebits can be established by sending qubits, the noise
quantum channel is~in this narrow sense! the strongest of the
three. Because it is impossible to establish entanglemen
ing classical communication or to communicate using o
entanglement, ebits and cbits are simply incomparable;
ther is truly stronger than the other.

In the present work, we quantify the relationship betwe
the three resources for a basic task in quantum informa
theory: communicating quantum states from a sender t
receiver ~and, more generally, sharing entangled states
tween them!. There are at least two variations on the ta
depending on whether or not the sender has knowledg
the states she is required to communicate. If she is o
given a copy of the quantum state and not a description,
describe the source as hidden and the encoding as obliv
~or blind!. At the other extreme, if she is told which state s
is required to transmit, we describe the source as visible
the encoding as nonoblivious.~Sometimes in the quantum
information literature the adjective ‘‘visible’’ is also applied
somewhat nonsensically, to the encoding.! While the distinc-
tion makes no difference in classical information theo
quantum-mechanical restrictions on the sender’s ability
measure without causing a disturbance lead to very diffe
results for the two tasks in the quantum case.~Compare, for
example, the results of Refs.@6–8#.! Our emphasis here is o
the visible scenario since there is generically only a triv
trade-off for the blind encoder case: using teleportation, t
cbits and one ebit can be used to simulate a noiseless
qubit channel but no other interesting trade-offs are possi

In the visible scenario, the relationship between the th
resources becomes much more varied. When no quan
channel is permitted, we recover the problem known as
mote state preparation@9,10#, while forbidding use of the
©2003 The American Physical Society19-1



tu
e
m
ly
a
o
s
v

re
m
m
th

u
s
th
b

c
rc
re
ff.
r.
we
-

e

a-

le

e

e
pe
1
o

ce

cal

ing a
led

s
er-

er
1

-

ed
es

ssical
ally

d

s

A. ABEYESINGHE AND P. HAYDEN PHYSICAL REVIEW A68, 062319 ~2003!
classical channel leads to superdense coding of quan
states@11,12#. Likewise, if entanglement is not permitted, w
recover the trade-off between classical and quantum com
nication solved in Ref.@8#. The present paper complete
solves the problem of trading all three resources against e
other, finding that optimal protocols for any combination
resources can be constructed by appropriate combination
the protocols representing the extremes identified abo
Such a clean resolution in terms of previously discove
building blocks is encouraging: it confirms yet again the si
plifying power of the resource-based approach, this ti
yielding a manageable taxonomy of optimal protocols for
triple trade-off problem.

The rest of the paper is structured as follows. Section
defines the problem rigorously and describes previous res
for the cases when one of the three resources is not u
along with some minor extensions. Section III studies
relationship between the trade-off between qubits and c
in quantum data compression~QCT! and the trade-off be-
tween ebits and cbits in remote state preparation~RSP!. In
Sec. IV these connections and the results described in Se
are used to obtain optimal protocols and optimal resou
trade-offs for communicating quantum states when all th
resources are used simultaneously: the full ‘‘triple trade-o

We use the following conventions throughout the pape
EAB5$w i

AB ,pi% is an ensemble of bipartite states then
write EA for the ensemble$w i

A ,pi% of reduced states on sys
temA. Sometimes we omit subscripts~or superscripts! label-
ing subsystems, in which case the largest subsystem
which the ensemble~or state! has been defined should b
assumed:E5EAB andw i5w i

AB . We identify states with their
density operators and ifuw& is a pure state, we use the not
tion w5uw&^wu for its density operator. The functionS(r) is
the von Neumann entropyS(r)52Trr logr and S(E) the
von Neumann entropy of the average state of the ensembE.
Functions likeS(AuB)r and S(A:BuC)r are defined in the
same way as their classical counterparts:

S~A:BuC!r5S~rAC!1S~rBC!2S~rABC!2S~rC!, ~1!

for example.x~E! is the Holevox quantity ofE @13#. Given
a bipartite ensembleEAB5$w i

AB ,pi%, we also make use th

abbreviations S5S(EB), S̄5S i piw i
B , x5x(EB) and H

5H(pi). Throughout, log and exp are taken base 2.

II. DEFINITION OF THE PROBLEM
AND PREVIOUS RESULTS

We now give a more formal definition of the task to b
completed by the sender and receiver, henceforth, res
tively, Alice and Bob. The reader can also refer to Fig.
which illustrates the definition. We consider an ensemble
bipartite quantum statesE5$uw i&

AB,pi% on a finite-
dimensional Hilbert spaceHAB5HA^ HB and the product
ensemblesE^ n5$uw i n&

AB,pi n% on HAB
^ n , where

i n5 i 1i 2¯ i n ,

pi n5pi 1
pi 2

¯pi n
,
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uw i n&5uw i 1
& ^ uw i 2

& ^¯^ uw i n
&.

At the end of the protocol, Alice and Bob are to reprodu
the states of the bipartite ensemble with high fidelity.~Re-
gardless of whether pure states arepreparedin Bob’s system,
or entangled states aresharedbetween Alice and Bob, we
will always refer to the task simply ascommunicatingfrom
Alice to Bob.! We imagine that there is a noiseless classi
channel from Alice to Bob capable of sending one ofdC
messages, a noiseless quantum channel capable of send
dQ-dimensional quantum system and a maximally entang
state uF&5dE

21/2( i 51
dE u i &u i & of Schmidt rankdE . A source

provides Alice withi n, drawn with probabilitypi n, at which
point Alice applies a quantum operationEi n to her half ofuF&
that without loss of generality has output of the form

(
j 51

dC

r
i n, j

AB1B2
^ q~ j u i n!u j &^ j uC, ~2!

where B1 is a dQ-dimensional quantum system,B2 is the
quantum system supporting Bob’s half ofuF&, the states$u j &%
are orthonormal~i.e., classical! and q(•u i n) is a probability
distribution. Alice then sends registerB1 to Bob over her
noiseless quantum channel andC to Bob over the noiseles
classical channel. The protocol is completed by Bob p
forming a quantum operationD j on registersB1 and B2 .
Write w̃ i n for the joint Alice-Bob output state averaged ov
different values ofj. We say that the protocol has fidelity
2e if

(
i n

pi n^w i nuw̃ i nuw i n&>12e. ~3!

Likewise, ~R,Q,E! is an achievable rate triple for the en
sembleE if for all d, e.0 there existsN such that for alln
.N there is a protocol forE^ n with fidelity 12e and

FIG. 1. In the above quantum circuit diagram for generaliz
remote state preparation, time goes from left to right, solid lin
represent quantum registers, and dashed lines represent cla
registers. The registers connected in the left represent a maxim
entangled state of logdE ebits initially shared between Alice an
Bob. The logdQ-qubit quantum registerB1 is sent from Alice to
Bob, as is the logdC cbit classical messagem. Alice’s encoding
operation is denoted byEi n and Bob’s decoding operation, which i
conditioned onm, by Dm .
9-2
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1

n
logdC<R1d,

1

n
logdQ<Q1d,

1

n
logdE<E1d.

~4!

Our goal will be to identify these achievable triples.
particular, we will find a formula for the function

E* ~R,Q!5 inf$E:~R,Q,E! is achievable%. ~5!

We refer to rate triples of the form„R,Q,E* (R,Q)… as
optimal rate triples and the protocols that achieve them
optimal protocols. We will indicate that a rate triple~R,Q,E!
is optimal by writing it as (R,Q,E)* . Throughout the paper
unless otherwise stated, all entropic quantities will be ta
with respect to 4-partite statesv of the following form:

v5(
i

pi u i &^ i uX^ w i
AB

^ (
j 51

m11

p~ j u i !u j &^ j uC, ~6!

wherem is the number of states inEAB ~if that number is
finite!, andp(•u•) is a classical noisy channel. Note that f
all such states

S~X:BuC!5S~BuC!2S̄ where S̄5(
i

piS~w i
B!, ~7!

a fact that will be useful later. Before moving on to th
general problem, we consider the special cases given by
ting one of the three rates to zero.

A. QÄ0: Remote state preparation„RSP…

This problem was studied extensively in Ref.@14#. It is
impossible to achieve an entanglement rate of less t
( i piw i

B , essentially because that is the amount of entan
ment shared between Alice and Bob at the end of any s
cessful protocol. The optimal cbit rate when the entang
ment is minimal is justH(pi), meaning that the simple
protocol consisting of Alice communicatingi n to Bob and
then the pair performing entanglement dilution is optimal.
the other extreme, the cbit rate is minimized~at least for
irreducible sources! by a protocol achieving the rat
„x(EB),0,S(EB)…. In general, we introduce the function

E* ~R!5 inf$E : ~R,0,E! is achievable%. ~8!

This choice, a slight abuse of notation given our earlier d
nition of a functionE* with two arguments, is chosen fo
consistency with the remote state preparation paper. N
thatE* (R)5E* (R,0). We have the following theorem from
Ref. @14#.

Theorem II.1.For the ensembleE5$uw i&
AB,pi% of pure

bipartite states andR>0,

E* ~R!5min$S~BuC! : S~X : BC!<R%, ~9!

where the entropic quantities are with respect to the statv,
minimization is over all 4-partite statesv of the form of Eq.
~6! with classical channelsp( j u i ), and m the number of
06231
s

n

et-

n
e-
c-
-

t

-

te

states inE. E* is convex, continuous, and strictly decreasi
in the interval in which it takes positive values.

We will also use the simple fact that the inequality in E
~9! can be replaced by equality.

B. EÄ0: Quantum-classical trade-off„QCT…

The case where the ensembleE consists only of product
statesuw i&

AB5u0&Auw i&
B was the focus of Ref.@8#. At the

extreme whenR50, only quantum communication is permi
ted so the problem of finding achievable rates is answered
the quantum noiseless coding theorem:„0,S(EB),0… is anop-
timal point, in the sense that none of the three rates can
reduced. Likewise, the optimal point whenQ50 is given by
„H(pi),0,0…, meaning that Alice has no better strategy th
to communicate the labeli n to Bob. More generally, when
the ensemble is allowed to contain entangled states, the t
niques of Refs.@8#, @14# are easily adapted to yield a formu
for

Q* ~R!5 inf$Q:~R,Q,0! is achievable%. ~10!

In particular, we have the following analog of Theorem II.
Theorem II.2.For the ensembleE5$uw i&

AB,pi% of pure
bipartite states andR>0,

Q* ~R!5min$S~BuC!:S~X:C!<R%, ~11!

where the entropic quantities are with respect to the statv,
minimization is over all 4-partite statesv of the form of Eq.
~6! with classical channelsp( j u i ), and m the number of
states inE. Q* is convex, continuous, and strictly decreasi
in the interval in which it takes positive values. There exi
a critical value ofR, hereafter referred to asHc such thatR
1Q* (R)5S(B) for R<Hc and R1Q* (R).S(B) other-
wise.

As before, the inequality in Eq.~11! can be replaced by an
equality.

C. RÄ0: Superdense coding of quantum states„SDC…

Reference@12# showed that it is possible to communica
arbitrary d2-dimensional quantum states using logd
1o(logd) qubits, logd1o(logd) ebits and shared random
bits. For exploring the trade-off of quantum resources,
need a variation on this result that applies to ensemble
entangled states: using his coherent classical communica
technique, Harrow has shown that

„0,1
2 x~EB!,S~EB!2 1

2 x~EB!… ~12!

is an achievable rate triple@15#. Using his construction, we
can easily find theR50 trade-off curve.

Theorem II.3.For the ensembleE5$uw i&
AB,pi% of pure

bipartite states andQ>0,

E* ~0,Q!5H S~EB!2Q if Q>x~EB!/2

1` otherwise.
~13!

Proof. Since (0,S,0) and (0,x/2,S2x/2) ~S andx are de-
fined in the Introduction! are both achievable rate triples, an
9-3
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convex combination of the two is an achievable rate tri
corresponding to a time-shared protocol. Thus, if 0<l<1,

„0,lS1~12l!x/2,~12l!~S2x/2!… ~14!

is achievable. Suppose these points are not optimal. T
there existse.0 such that

„0,lS1~12l!x/2,~12l!~S2x/2!2e… ~15!

is optimal. By using quantum communication to establ
entanglement, however, protocols achieving this rate can
converted into protocols with the rate triple

„0,lS1~12l!x/21~12l!~S2x/2!2e,0…5~0,S2e,0!,
~16!

contradicting the optimality of Schumacher compression.
conclude thatE* (0,Q)5S2Q when this conversion is pos
sible, that is, whenQ>x/2. This condition is required by
causality.~For a detailed proof, see Sec. IV C.! j

The simple argument used in the proof of Theorem II.3
characteristic of what will follow. Our evaluation o
E* (R,Q) will be accomplished via operational reductions
the three extremal cases we have now completed, jus
Theorem II.3 was demonstrated using a reduction from
unknown E* (0,Q) curve to the known Schumacher com
pression point.

Later we will also have occasion to make use of the f
lowing analog of the QCT and RSP constructions. Give
statev of the form of Eq.~6!, the trade-off coding techniqu
from Ref. @8# then gives protocols achieving all the ra
triples of the form

„S~X:C!, 1
2 S~X:BuC!,S~BuC!2 1

2 S~X:BuC!…. ~17!

Briefly, once a channelp( j u i ) is chosen, Alice and Bob ca
share~typical! j n5 j 1¯ j n at a cost ofnS(X:C)1o(n) bits
of communication plus shared random bits using the Rev
Shannon Theorem@16#. Harrow’s protocol is then used o
the induced ‘‘conditional’’ ensembles

$uw i n&
AB,q~ i nu j n!5q~ i 1u j 1!¯q~ i nu j n!%,

where

q~ i u j !5S (
i 8

pi 8p~ j u i 8!D 21

p~ j u i !pi . ~18!

The shared random bits are then seen to be unnecessar
cause we only require high fidelity on average~so that some
particular value of the shared random bits can be us!.
Evaluation of the rates for the approach gives exactly
~17!.

Given any„R,Q* (R),0… there is a statev of the form Eq.
~6! for which „S(X:C),S(BuC),0…5„R,Q* (R),0…. For this
state, we therefore find a new achievable rate triple:

„S~X:C!, 1
2 S~X:BuC!,S~BuC!2 1

2 S~X:BuC!…

5„R, 1
2 ~Q* ~R!2S̄…, 1

2 „Q* ~R!1S̄!…, ~19!
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where we have used Eq.~7! to arrive at the expression on th
right-hand side.

III. RELATING OPTIMAL QCT AND OPTIMAL RSP

Any protocol for quantum-classical compression can
converted into a RSP protocol by using a RSP to send
compressed qubits. One might hope that if the original Q
point was optimal that the resulting RSP point would also
optimal. For classical rates aboveHc this is indeed the case
but otherwise it need not be. Consider, for example, the
semble consisting of the orthonormal statesu0& and u1&, each
occurring with probability 1/2. In this case,Q* (0)51 but
the corresponding RSP protocol would wastefully consum
cbit and 1 ebit per signal when 1 cbit and no entanglem
are sufficient.

As an aside, while there is a natural way to convert op
mal QCT protocols into optimal RSP protocols~for unen-
tangled ensembles andR>Hc), there is no known way to do
the opposite. An appendix to Ref.@14#, however, demon-
strates the existence of just such an operational reduction
only under the assumption that the mixed state compres
conjecture is true.~See Refs.@17–19# for more details on the
conjecture.!

The following two lemmas formally express the relatio
ship between optimal QCT and optimal RSP.

Lemma III.1. When R>Hc , E* @R1Q* (R)2S̄#

5Q* (R). Otherwise,E* @R1Q* (R)2S̄#5Q* (Hc).
Proof. We begin by showing thatE* @R1Q* (R)2S̄#

<Q* (R). We know that„S(X:BC),0,S(BuC)… is an achiev-
able rate triple for anyv of the form of Eq.~6!. In particular,
it is achievable when„S(X:C),S(BuC),0…5„R,Q* (R),0…, in
which case

„S~X:BC!,0,S~BuC!…5„S~X:C!1S~BuC!2S̄,0,S~BuC!…
~20!

5„R1Q* ~R!2S̄,0,Q* ~R!…. ~21!

This proves the claim. Note that this inequality is true r
gardless of whetherR is greater or less thanHc .

We now prove the opposite inequality:E* @R1Q* (R)
2S̄#>Q* (R) when R>Hc . Substituting our expression
for E* (R) andQ* (R) shows that what we need to prove
that

min$S~BuC!:S~X:C!1S~BuC!5R1Q* ~R!% ~22!

>min$S~BuC!:S~X:C!5R%. ~23!

Let v be the state that minimizes the first expression
fixed R. If S(X:C)v<R then we are done so we may su
pose not:S(X:C)v5R1D for some D.0. By convexity
and the definition ofHc8

for any R>Hc8

Q* ~R1D!2Q* ~R!

D
.21. ~24!

Rearranging this inequality yields
9-4
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~R1D!1Q* ~R1D!.R1Q* ~R!. ~25!

Using the hypothesisS(X:C)v5R1D and the fact that the
right-hand side of the above inequality isS(X:C)v

1S(BuC)v8
we find thatS(BuC)v,Q* (R1D). But, again

by hypothesis,S(X:C)v5R1D so we have a contradictio
of the definition ofQ* (R1D). We conclude thatS(X:C)v

<R.
Finally, R1Q* (R)2S̄5x when R,Hc so E* (R)

5E* (x) is constant. Using the first half of the lemma, w
then findE* (x)5E* @Hc1Q* (Hc)2S̄#5Q* (Hc). j

Lemma III.2. Q* @R2E* (R)1S̄#5E* (R) when R
>x. OtherwiseE* (R)51`.

Proof. Let Hc<R1 and considerR5R11Q* (R1)2S̄. R
is a strictly increasing function ofR1 by the definition ofHc8taking all valuesx<R. Substituting into Lemma III.1 gives

Q* @R2E* ~R!1S̄#5Q* @R11Q* ~R1!2S̄2Q* ~R1!1S̄#
~26!

5Q* ~R1! ~27!

5E* @R11Q* ~R1!2S̄# ~28!

5E* ~R!. ~29!

Also, R,x is not achievable~by causality, see Sec. IV C!,
yielding the second half of the lemma. j

IV. THE TRIPLE TRADE-OFF

The following theorem is the main result of the paper
prescription for calculating the minimal amount of entang
ment required given any cbit and qubit rate.

Theorem IV.1. We have

E* ~R,Q!

55
0 if Q* ~R!,Q

Q* ~R!2Q if 1
2 @Q* ~R!2S̄#<Q<Q* ~R!

E* ~R12Q!2Q if 1
2 ~x2R!<Q, 1

2 @Q* ~R!2S̄#

1` if Q, 1
2 ~x2R!

.

We discuss each of the four ranges forQ separately, referring
to them, in order, as theQCT region, the low-entanglement
region, the high-entanglement region, and theforbidden re-
gion. The names of the first and last regions should be s
explanatory.~QCT is optimal by definition in the QCT regio
and no amount of entanglement is sufficient in the forbidd
region.! In the low-entanglement region we will find tha
optimal protocols can be found by time-sharing betwe
QCT and SDC~the first of which does not use entangleme!
while the optimal protocols for the high-entanglement reg
are found by time-sharing between RSP and SDC,both of
which rely on entanglement.

While Hc does not appear explicitly in our formula,
once again delineates the boundary between two qua
06231
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tively different regimes: forR,Hc we have that12 @Q* (R)
2S̄#5 1

2 (x2R) so there is no high-entanglement region
this case. The region defined byR,Hc andQ> 1

2 (x2R) is
entirely contained in the low-entanglement region.

Before giving a proof of Theorem IV.1, we consider th
standard example:EAB being the uniform~unitarily invariant!
ensemble over qubit states onB. Devetak and Berger gave a
explicit parametrization@20# of the function identified as
Q* (R) for this ensemble in Ref.@8# and the corresponding
RSP curve appeared in Ref.@14#. We present the full trade
off surfaceE* (R,Q) in Fig. 2. ~In the case of an infinite
ensemble, Theorems II.1 and II.2 need to be slightly mo
fied: the min should be replaced by an inf as explained
theorem 10.1 of Ref.@8#. The only significant modification
required to the argument of this paper is in the second ha
Lemma III.1, where a sequence ofvn needs to be considere
instead of a fixed minimizingv.!

We also summarize for convenience in Table I all the r
triples and conversions between them that we will use in
proof. We use the notation (R,Q,E)→(R8,Q8,E8) to indi-
cate that if the rate triple~R,Q,E! is achievable then so is th
rate triple (R8,Q8,E8), i.e., ~R,Q,E! can beconvertedinto
(R8,Q8,E8). Similarly, if we write (R,Q,E)*
→(R8,Q8,E8) then the conversion is possible conditional
~R,Q,E! being optimal.

A. The low-entanglement region: 1
2 †Q* „R…ÀS̄‡ÏQÏQ* „R…

Definel52@Q* (R)2Q#/@Q* (R)1S̄#. By the definition
of the low-entanglement region, 0<l<1. Both

„R,Q* (R),0… and „R, 1
2 @Q* (R)2S̄#,1/2@Q* (R)1S̄#… are

achievable so the convex combination

FIG. 2. Trade-off surface for the uniform qubit ensemble. T
region on the left for whichE* (R,Q)50 is the QCT region, whose
boundary with the low-entanglement region is given by the cu
„R,Q* (R),0…. The transition to the high-entanglement region th
occurs when 2Q5Q* (R); note that the surface is not smooth at t
transition. Finally the points corresponding to pure RSP,~1, 0, 1!,
and pure SDC,~0, 1/2, 1/2!, define the boundary of the forbidde
region. The surface matches the convex hull of the QCT, SDC,
RSP curves.
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TABLE I. Achievable rate triples and conversions.

Rate triple Description

„R,Q* (R),0… QCT
„R,0,E* (R)… RSP

„R, 1
2 @Q* (R)2S#, 1

2 @Q* (R)1S#… SDC on QCT: Eq.~19!

„R1Q* (R)2S̄,0,Q* (R)… for R>Hc
QCT to RSP: Lemma III.

„R2E* (R)1S̄,E* (R),0… RSP to QCT: Lemma III.

(R,Q,E)→„R12Q,0,E1Q… Teleportation~of qubits!

(R,Q,E)→(0,Q1
1
2 R1Q, 1

2 R1E) Superdense coding~of cbit

(R1 ,Q1 ,E1) and (R2 ,Q2 ,E2)
→l(R1 ,Q1 ,E1)1(12l)(R2 ,Q2 ,E2)

Time sharing

(R,Q,E)→(R,Q1E,0) Sending entanglement u

(R,Q,E)* →(R2E1Q2S̄,Q1E,0)

if R>S̄ andE.Q1S̄

Lemma IV.2
le

r-

i-

s

,

the
at

n-
@R,Q,Q* ~R!2Q#5l„R,Q* ~R!,0…1~12l!

3„R, 1
2 @Q* ~R!2S̄#, 1

2 @Q* ~R!1S̄#…

~30!

is achievable by time sharing.
The proof that these points are optimal is very simp

Suppose they are not. Then there would exist ane such that
„R,Q,Q* (R)2Q2e… were optimal. Now, using the conve
sion (R,Q,E)→(R,Q1E,0), it follows that „R,Q* (R)
2e,0… is achievable, which is a contradiction of the defin
tion of Q* .

B. The high-entanglement region:
1
2 „xÀR…ÏQË 1

2 †Q* „R…ÀS̄‡

This region seems to require a more elaborate analy
We first define two new variablesR1 andR2 which are func-
tions of R andQ but easier to work with

R15R12Q2E* ~R12Q!1S̄, ~31!

R25R2R11S̄5E* ~R12Q!22Q. ~32!

We collect for future use some simple facts aboutR1 andR2 .
~1! R1>Hc . The functionR82E* (R8)1S̄ is a mono-

tonically increasing function ofR8. By causality, therefore
the minimum of this function over achievableR8 occurs
when R85x. From Lemma III.1, E* (x)5Q* (Hc)5S

2Hc , so R82E* (R8)1S̄>Hc . Since R12Q>x in the
high-entanglement region, we conclude thatR1>Hc .

~2! Q5 1
2 @Q* (R1)2R2#. This follows by Lemma III.2:

Q* (R1)5E* (R12Q)5R212Q.
~3! E* (R12Q)2Q5R21Q5 1

2 @Q* (R1)1R2#. This
follows by the definition ofR2 and the previous fact.

~4! R2<Q* (R1). By fact ~1!, R25Q* (R1)22Q.
~5! Q* (R1)>S̄. Q* (R1)2S̄5S(BuC)2S̄5S(X:BuC)

>0 ~for optimal v!.
06231
.

is.

~6! R2>S̄ „for Q< 1
2 @Q* (R)2S̄#…. This is equivalent to

E* (R12Q)>2Q1S̄. Since 2Q<Q* (R)2S̄ in this region,
we have by the monotonicity ofE* and by Lemma III.1 that

E* ~R12Q!>E* @R1Q* ~R!2S̄# ~33!

5Q* ~R! ~34!

>2Q1S̄. ~35!

Equipped with these observations we can now proceed to
proof of Theorem IV.1 in the high-entanglement region. Th
is, we will prove that E* (R,Q)5E* (R12Q)2Q when
1
2 (x2R)<Q, 1

2 @Q* (R)2S̄#. Note that

„R,Q,E* ~R12Q!2Q…

5„R11R22S̄, 1
2 @Q* ~R1!2R2#, 1

2 @Q* ~R1!1R2#…

~36!

in terms of the new variables, by the definition ofR1 andR2
as well as facts 2 and 3.

1. Proof of achievability

„R1 , 1
2 @Q* (R1)2S̄#, 1

2 @Q* (R1)1S̄#… is achievable by Eq.

~19! and „R11Q* (R1)2S̄,0,Q* (R1)… is achievable by
Lemma III.1. By facts ~4!, ~5!, and ~6!, l5@Q* (R1)
2R2#/@Q* (R1)2S̄# is between 0 and 1. Therefore, the co
vex combination

„R11R22S̄, 1
2 @Q* ~R1!2R2#, 1

2 @Q* ~R1!1R2#… ~37!

5l„R1 , 1
2 @Q* ~R1!2S̄#, 1

2 @Q* ~R1!1S̄#…

1~12l!„R11Q* ~R1!2S̄,0,Q* ~R1!… ~38!

is also achievable by time sharing.
9-6
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2. Proof of optimality

We defer the proof of the following lemma, which is
the heart of our optimality proof, to the end of the sectio

Lemma IV.2.If R1 , Q>0 and R2.S̄, then there is a
conversion

~R11R2 ,Q,R21Q!* →~R11S̄,R212Q,0!. ~39!

~Note that whenR25S̄, the conversion always exists, re
gardless of the optimality of the first rate triple.! Now sup-
pose that points of the form of Eq.~36! are not optimal. Then
there exists somee.0 such that

„R11R22S̄, 1
2 @Q* ~R1!2R2#, 1

2 @Q* ~R1!1R2#2e…
~40!

is optimal. We handle the casesR2.S̄1e and R2<S̄1e
separately.

Assume first thatR2.S̄1e, then defineR185R12S̄1e
andR285R22e. Rewriting the triple~40! in terms ofR18 and
R28 , we have that

„R181R28 , 1
2 @Q* ~R1!2R2#,R281 1

2 @Q* ~R1!2R2#… ~41!

is optimal. SinceR28.S̄, we can use Lemma IV.2 to obtai
that „R11e,Q* (R1)2e,0… is achievable. This implies tha
Q* (R11e)<Q* (R1)2e, which is a contradiction since, b
fact ~1!, R1>Hc .

If insteadR2<S̄1e, we apply the conversion (R,Q,E)
→(R,Q1E,0) obtained by using quantum communicati
to establish entanglement,

„R11R22S̄, 1
2 @Q* ~R1!2R2#, 1

2 @Q* ~R1!1R2#2e…*

→„R11R22S̄,Q* ~R1!2e,0…. ~42!

This implies thatQ* (R11R22S̄)<Q* (R1)2e. We also
haveQ* (R11e)<Q* (R11R22S̄) by assumption and the
monotonicity of Q* . As before, we find thatQ* (R11e)
<Q* (R1)2e, which is a contradiction.

Proof (of Lemma IV.2). Performing teleportation yields
the conversion

~R11R2 ,Q,R21Q!→~R11R212Q,0,R212Q!.
~43!

~Note that teleportation is appropriate here instead of R
because the encoding map corresponding to the first tr
will generally produce complicated entangled states betw
Alice and Bob, conditioned on the classical bits being co
municated. Teleportation will preserve this entanglement! It
will suffice to prove that the resulting triple is optimal b
cause an application of Lemma III.2 would then show th
(R11S̄,R212Q,0) is achievable.

Suppose then that (R11R212Q,0,R212Q) is not opti-
mal so that there exists somee.0 such that (R11R2
12Q,0,R212Q2e) is optimal. By Lemma III.2 and then
Eq. ~19!, there is a sequence of conversions
06231
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~R11R212Q,0,R212Q2e!* ~44!

→~R11e1S̄,R212Q2e,0!* ~45!

→„R11e1S̄, 1
2 ~R212Q2e2S̄!, 1

2 ~R212Q2e1S̄!….
~46!

We handle the casesR2>S̄1e andR2,S̄1e separately.
Assume first thatR2>S̄1e. Then if we definel5(R2

2S̄2e)/(R212Q2e2S̄), we have 0<l<1 so the convex
combination

~R11R2 ,Q,R21Q2e! ~47!

5l~R11R212Q,0,R212Q2e! ~48!

1~12l!„R11e1S̄, 1
2 ~R212Q

2e2S̄!, 1
2 ~R212Q2e1S̄!… ~49!

is achievable, contradicting the optimality of (R1
1R2 ,Q,R21Q).

Now suppose thatR2,S̄1e and considera5e1S̄
2R2 , which is by definition positive. Rewriting the triple
~45! in terms ofa, applying the SDC conversion of Eq.~19!
and then regular superdense coding of the cbits gives

~R11R21a,2Q2a1S̄,0!* ~50!

→~R11R21a,Q2a/2,Q2a/21S̄! ~51!

→„0,Q1 1
2 ~R11R2!,Q1 1

2 ~R11R2!1S̄…. ~52!

Choosingl5a/(R11R21a), we can time share to achiev

~R11R2 ,Q,Q1S̄! ~53!

5l„0,Q1 1
2 ~R11R2!,Q1 1

2 ~R11R2!1S̄… ~54!

1~12l!~R11R21a,Q2a/2,Q2a/21S̄!, ~55!

contradicting again the optimality of (R11R2 ,Q,R21Q)
sinceS̄,R2 by the hypotheses of the lemma. j

C. The forbidden region: QË 1
2 „xÀR…

In keeping with the operational spirit of the other arg
ments in this paper, we argue that achievability in this reg
would lead to a violation of causality. A classical channel
dimensiondC and a quantum channel of dimensiondQ can
be used to transmit at most logdC12 logdQ bits of classical
information by the optimality of superdense coding@11,13#.
Success in the ensemble communication task, however
sults in Bob holding a high-fidelity copy ofEB . By using
coding, Alice could then about communicatex(EB) classical
bits to Bob per usage of the protocol@21,22#, a violation of
causality ~for sufficiently high fidelity and smalld in the
notation of Sec. II! if x(EB).R12Q.
9-7
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A simple entropic argument is also possible. Consider
state

r5(
i n, j

pi nu i n&^ i nuX
^ r

i n, j

AB1B2
^ q~ j u i n!u j &^ j uC, ~56!

which represents the output of Alice’s encoding operation
a given~unspecified! protocol of the form of Fig. 1. We can
estimate

1

n
x~$w̃ i n

B ,pi n%!<S~X:B1B2C! ~by monotonicity of x!

~57!

5S~X:B2!1S~X:CuB2!1S~X:B1uB2C!
~58!

< logdC12 logdQ , ~59!

using Lemma IV.3 ~see below! twice and the fact tha
S(X:B2)50 sinceB2 is maximally mixed for alli n. On the
other hand, applying the Fannes inequality@23# and the fi-
delity condition implies that

1

n
x~$w̃ i n

B ,pi n%! ——→
e→0

x, ~60!

giving the constraintx<R12Q.
Lemma IV.3.Let r be a tripartite density operator of th

form

r5(
i

pi u i &^ i uX
^ r i

AB , ~61!

where the states$u i &X% are orthonormal and thepi are prob-
abilities. Then

S~X:AuB!<min~ log dimX,2 log dimA!. ~62!

Proof. We can expandS(X:AuB)5S(XuB)2S(XuAB).
By subadditivity of the von Neumann entropy, the first te
m

A

o

B.

06231
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r

is less than or equal toS(X), which is in turn no more than
log dimX. Moreover, becauser is separable across theX/AB
cut, S(XuAB)>0. ~This follows immediately from concavity
of the entropy@24,25#.!

To prove the second inequality, we expand the definit
of S(X:AuB) differently,

S~X:AuB!5S~AuB!rAB1(
i

piS~AuB!r
i
AB. ~63!

Using subadditivity of the von Neumann entropy aga
S(AuB)<S(A) for any density operator.S(A), in turn, is
always less than or equal to log dimA. j

V. DISCUSSION

The problem we posed here, communication using no
less classical and quantum channels in addition to maxim
entangled states, is the natural setting in which to unify ma
pre-existing results on quantum-classical compression,
mote state preparation and quantum state superdense co
While our goal was to provide a unified synthesis of the
disparate results, our conclusion was ultimately that the g
eral problem can be understood in terms of those basic bu
ing blocks—the surface of optimal rate triples for the trip
resource problem can be assembled by time sharing ap
priately between protocols designed for the special ca
Such a neat resolution confirms the simplifying power of t
resource-based approach and justifies viewing trade-off c
ing, remote state preparation and quantum state superd
coding as fundamental primitives instead of special case
a more general problem.
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