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Generalized resolution for 0-1  linear inequalities * 

J.N. Hooker  

Graduate School of Industrial Administration, Carnegie Mellon University, 
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We show how the resolution method of theorem proving can be extended to obtain a 
procedure for solving a fundamental problem of integer programming, that of finding all 

valid cuts of a set of linear inequalities in 0-1 variables. Resolution generalizes to two 
cutting plane operations that, when applied repeatedly, generate all strongest possible or 
"prime" cuts (analogous to prime implications in logic). Every valid cut is then dominated 
by at least one of the prime cuts. The algorithm is practical when restricted to classes of 
inequalities within which one can easily tell when one inequality dominates another. We 
specialize the algorithm to several such classes, including inequalities representing logical 
clauses, for which it reduces to classical resolution. 
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1. Introduction 

Resolut ion is a well-known inference or theorem-proving procedure  that can 

be applied to propositional or predicate logic [5]. In proposit ional logic it not 

only determines,  in finitely many steps, whether  a set of  logical clauses is 

satisfiable, but  Quine [12,13] showed over 30 years ago that it can be used to 

generate  all "p r ime"  or "strongest  possible" implications of the set (defined 

below). Any other  implication of the set follows on inspection from at least one 

prime implication. Thus resolution reduces the problem of finding the implica- 

tions of  a set of clauses to that of finding the implications of a single clause, and 

the latter problem is trivial. 

The notion of a prime implication has an obvious analog for 0 -1  linear 

inequalities (i.e., linear inequalities with integer coefficients and variables that 

take the values 0 and 1). We  say that one inequality implies or dominates 

another when all the 0 -1  points satisfying the former satisfy the latter. We show 

below that a generalization of  resolution can be used to obtain all "pr ime 

inequalities" of a given set of  0 -1  inequalities. Fur thermore,  a resolvent can be 
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interpreted as a certain type of cutting plane, and we generalize resolution by 

using a broader class of cutting planes. 

In [8] we pursued this idea to generalize resolution to apply to an extended 

class of logical clauses that assert that at least/3 of the literals in the clause are 

true (in ordinary clauses, /3 = 1). Here we pursue it further to identify two 

particular types of cutting planes that, when generated repeatedly, yield all 

prime inequalities for a given set of 0-1 inequalities. 

In this way we reduce the problem of finding the implications of a set of 0-1 

inequalities, i.e. the problem of finding all "valid cuts", to that of finding the 

implications of a single inequality. But in contrast with the case of logical 

clauses, finding the implications of a single inequality is not a trivial task. Our 

algorithm is therefore practical only when applied to classes of inequalities for 

which it is easy to recognize when one single inequality dominates another. In 

this paper we specialize the algorithm to several such classes: set covering 

inequalities, for which the algorithm is a trivial operation of deleting absorbed 

inequalities; set covering inequalities with right hand sides larger than one, for 

which it generates a well-known type of cutting plane; set packing inequalities, 

for which it generates another well-known cut, logical clauses, for which it 

reduces to classical resolution; extended clauses, for which it reduces to the 

generalized resolution mentioned above; and certain clauses with coefficients in 

{0, _+1, _+2}. 

Prime inequalities are in a sense the "strongest" valid inequalities of a set of 

0-1 inequalities. Another class of inequalities that might be so described are the 

facet-defining inequalities of the convex hull of the 0-1 point satisfying the 

system. But the two concepts are quite different. We will see that a prime 

inequality may fail to be facet-defining, and a facet-defining inquality may not 

be prime. A prime inequality may even strictly dominate a facet-defining 

inequality, in the sense that some points violating the former satisfy the latter. 

Since classical resolution has exponential complexity in the worst case [7], the 

same is true of our procedure. 

Sections 2 and 3 are devoted to basic definitions concerning logic and 0-1 

inequalities. Section 4 introduces the two types of cutting plane operations we 

use, and section 5 proves that they generate all prime inequalities. The remain- 

ing four sections apply the procedure to the special cases mentioned above. 

2. Logical preliminaries 

A clause in propositional logic is a disjunction of literals, which are atomic 

propositions or their negations. An example is x I v --1 x2, in which v means 

"or" and --1 means "not".  A truth assignment assigns "true" or "false" to every 

atomic proposition x i. A set S of clauses logically implies a clause C if every 

truth assignment that makes all the clauses in S true makes C true. A clause C 
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absorbs a clause D when  every literal of C occurs in D. Clearly C logically 

implies D if and only if C absorbs D. C is a prime implication of a set S of 

clauses if it is a strongest  possible implication of S; i.e., S implies C but  implies 

no other  clause that  absorbs C. S is logically equivalent to its set of pr ime 

implications (i.e., ei ther set logically implies all the clauses in the other). S is 

unsatisfiable if and only if it implies the empty  clause, which is false by 

convention.  A clause containing a variable and its negat ion is tautologous. 

Given two nontautologous  clauses, if exactly one variable xj appears  negated  

in one clause and unnega ted  in the other,  the clauses have as their  resolvent on 

xj the clause consisting of all literals in ei ther parent clause except x~ and -7 x i. 

For  instance, the resolvent of x 1V -1 x 2 and x 2 v x  3 is x 1 Vx  3. Quine  [12,13] 

showed that  resolution generates  all pr ime implications of a set of nontautolo-  

gous classes. The  problem of checking whether  a given clause is a pr ime 

implication is NP-complete  because the satisfiability problem (checking whether  

the empty  clause is a pr ime implication) is NP-complete  [4]. 

A formula in disjunctive normal form, such as x 1 �9 -'1 X 2 V X  2 "X3, is a disjunc- 

tion of terms, each of which is a conjunction of literals. Consensus operates  on 

such formulas in a manne r  dual to resolution. For instance, the consensual  

formula for x~ �9 --1 x 2 v x  2 .x 3 is x I �9 -1 x 2 v x  2 .x 3 vx~ .x 3. A prime implicant C 

of a formula F is a te rm that  is a weakest  possible implicant;  i.e., C implies F 

but  implies no o ther  te rm that  implies F. The  not ion of pr ime implication, 

ra ther  than pr ime implicant,  is appropria te  here,  because clauses (and not 

terms) are naturally expressed as linear 0-1  inequalities. Quine 's  result is 

actually the dual of that  cited above, since it deals with consensus ra ther  than 

resolution. 

3. Prime inequalities 

We will restrict our  at tent ion to the class ~ of 0 -1  inequalities ax > a o for 

which a = (as, . . . ,a , , )  and ao, a l , . . . ,a , ,  are integers. It will somet imes be 

convenient  to write ax > a 0 in the form ax >/3 + n(a), where  n(a) is the sum of 

the negative componen ts  of a, and /3 is the degree of the inequality. For  

instance, we write 2x 1 - 3 X  2 ~> --1 as 2 x ~ -  3x 2 >~ 2 -  3, which has degree  2. 

We suppose  without  loss of generality tha t /3  > 1, since otherwise the inequality 

is, so to speak, tautologous.  An  inequality ax >~/3 + n(a) is feasible (satisfiable) 

when E j l a j  I >/3. We can make  all the coefficients of an inequality nonnegat ive  

by complementing variables; that  is, by replacing varaibles xj having a negative 

coefficient with (1-Yj.) .  In the example we get 2x I + 3~" 2 >t 2. W h e n  this is 

done,  the degree  is identical to the r ight-hand side. It is useful to think of the 

degree  as the " t rue"  right hand  side, which is "disguised" by the presence  of 

negative coefficients. 
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It is well known that a nontautologous logical clause, such as x 1 V "7 X2, can 

be writ ten as a 0-1  linear inequality, in this case x 1 + (1 - x  2) >/1 or xl - x  2 >/1 

- 1. We interpret  xj = 1 to mean  xj is true and xj = 0 to mean  xj is false. Note 

that these clausal inequalities (inequalities representing logical clauses) have 

degree  one. 

We will state our theorems for >/ inequalities, because the latter are related 

to logical clauses and permit  somewhat  more  natural  arguments.  But all our  

results can be restated for ~< inequalities by complementing every variable and 

multiplying every inequality by - 1. Thus an inequality ax >~ ~ + n(a) becomes 

a~ <~p(a) - fl, where  p(a)  is the sum of the positive components  of a, and /3  is 

again the degree.  

Let us say that the extension of a 0-1  linear inequality ax >~ a 0 is the set of 

0-1  vectors x that satisfy it. The extension of a set of 0-1  inequalities is the 

intersection of the extensions of the inequalities in it. A set is feasible if its 

extension is nonempty.  A set (strictly) dominates an inequality if the extension 

of the set is a (proper) subset of the extension of the inequality. Two inequalities 

are equivalent if they are coextensive (either dominates the other). For clausal 

inequalities, feasibility is satisfiability, domination is logical implication, and 

equivalence is logical equivalence. In general  it is not  obvious whether  two given 

inequalities are equivalent, or whether  one dominates the other  (see [2,1]). But 

there are two useful sufficient conditions for domination. 

Let  us say that one inequality ax >1 a o absorbs another  when the latter is the 

sum of ax >i ao and zero or more  inequalities of  the form xj >f 0 (provided 

aj./> 0), - x j  >1 - 1 (provided aj 4 0), and 0 >/ - 1. For  instance, 2xa - 3 x  2 >i 2 -- 3 

absorbs 4xa - 3x 2 >1 2 - 3, as well as 4x I - 3x 2 >/1 - 3 and 4x I - 4x 2 >/1 - 4. 

Since the bounds xj >~ 0 and - x j  >/ - 1 are valid for 0-1  inequalities, it is clear 

that an inequality dominates  any inequality it absorbs. For  clausal inequalities, 

absorption is logical absorption. 

Let  us also say that one inequality ax >~ a o reduces to another  if the latter (the 

reduction) is the sum of ax >/a 0 and zero or more  inequalities of the form xj >f 0 

(provided aj < 0) and - x j  >/ - 1 (provided aj > 0). For  instance, 2x 1 - 3 x  2 >i 4 

- 3 reduces to x~ - 3x 2 >/3 - 3, as well as to x~ - x  2 >i 1 - 1, and so on. 

When  defining prime inequality, it is convenient to specify a set T of 

inequalities within which it is a strongest possible implication. Thus a 0-1  

inequality I ~ T is a prime inequality for a set S of 0-1  inequalities, with respect 

to T, if S dominates  I but dominates no inequality in T that strictly dominates 

I. A prime inequality with respect to ~ is a prime inequality simpliciter. Prime 

clausal inequalities (i.e., prime inequalities with respect to the class of clausal 

inequalities) are prime implications in the logical sense. 

A prime inequality is a "strongest  possible" implication in the sense that its 

extension properly contains that of  no other  implication in T. But a prime 

inequality may be equivalent to a number  of other  (prime) inequalities. This 

contrasts with prime logical implications, which are in a sense "un ique"  because 
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distinct clauses necessarily have distinct extensions. It follows that  a pr ime 

inequality need  not in general  be the "bes t"  or " t ightes t"  representa t ion  of its 

extension. For  instance, if 2x 1 + x 2 >/1 is a pr ime inequality, then  so is x I + x 2 

>/1, which is equivalent to it. The  latter might  be regarded as a " t ighter"  

representa t ion  because of its smaller coefficients. (See [1,2,6,11] for various ways 

to define and compute  a "bes t"  or " t ightes t"  representat ion.)  

A cut (or valid cut)  for a set S of 0-1  linear inequalities is simply a linear 

inequality that  S dominates .  (The hyperplane bounding  the halfspace def ined by 

a cut is a cutting plane.) Thus pr ime inequalities are cuts of a part icular  sort. If 

B is the set of bounds  0 ~< xj. ~< 1, a rank one cut for S U B is the result of taking 

a nonnegat ive linear combinat ion of the inequalities in S U B and rounding up 

any nonintegers  that  result [3]. 

A particularly "s t rong"  cut is a facet-defining inequality for the convex hull of 

S's extension. But there is no simple relation between facet-defining and pr ime 

inequalities. Obviously a pr ime inequality may fail to be facet-defining. But, 

curiously, a facet-defining inequality may fail to be prime,  and it may even be 

strictly domina ted  by a pr ime inequality that  is equivalent to no facet-defining 

inequality. For example let S = {x 1 -t-X 2 ~ 1, x~ + x 3 >~ 1}, whose extension is 

{(1, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0), (1, 1, 1)}. The  inequality x 1 + x 2/> 1 defines 

a facet of the convex hull of this extension, but  it is not  pr ime because it is 

strictly domina ted  by 2xl  + x  2 + x 3 >~ 2, which S dominates.  The  latter inequal- 

ity is satisfied by all points satisfying the former  except (0, 1, 0) and is equivalent 

to no facet-defining inequality. 

4. Resolution and diagonal sums 

Two general  operat ions on a set S of inequalities suffice, when  applied 

repeatedly,  to genera te  all pr ime inequalities of the set. One application of 

ei ther yields a rank one cut with respect to S u B. One operat ion is simply 

resolution. Suppose for instance that  each of the two inequalit ies below is 

domina ted  by an inequality fn S. 

x I - x  2 ) 1 - 1 

x 2 + x 3 >/1. 

Then  we genera te  their resolvent, 

X 1 -t-X 3 ~ 1. 

(1) 

(2) 

(3) 

Note  that  (3) is a rank one cut with respect  to (1), (2), x 1 >/0, and x 3 t> 0. Just 

take a linear combinat ion in which each receives weight 1 / 2  to obtain Xl + x 3 >~ 

1 /2 .  Round ing  up the 1 /2 ,  we have (3). In general  the resolvent of two clausal 

inequalities ax >i a o and bx >~ b o satisfying aiby < 0 for exactly one j is the result 

of adding the following inequalities, each mult ipl ied by 1 /2 ,  and rouding up the 
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right-hand side: ax >/a0, bx >1 bo, xj >~ 0 for each j such that aj. + bj = 1, and 

- x j  >/ - 1 for each j such that aj + bj = - 1. (See [9,10] for further connections 

between resolution and cutting planes.) 

The second type of operation can be illustrated as follows. Suppose that each 

of the following inequalities is dominated by an inequality in S. 

X 1 + 5X 2 + 3X 3 + X 4 ~ 4, (4) 

2X 1 + 4x 2 + 3 x  3 + x 4 ~ 4, (5) 

2x a + 5x 2 + 2x 3 -I-X 4 ~ 4, (6) 

2x 1 + 5x 2 + 3x 3 >/4. (7) 

Note that each is a reduction of following inequality, 

2X 1 + 5X 2 + 3X 3 + X 4 ~ 5 (8)  

obtained by reducing one coefficient at a time in a diagonal pattern. By 

assigning weight 2 /10  to (4), 5 /10  to (5), 3 /10  to (6) and 1 /10  to (7) we obtain 

the nonnegative linear combination 

2X 1 + 5X 2 -t- 3 x  3 + X 4 ~ 44/10.  

Rounding up the right-hand side, we obtain (8), which we call the diagonal sum 

of (4)-(7). The diagonal sum is obviously a rank one cut and is hence dominated 

by the set (4)-(7) and therefore by S. 

In general a feasible inequality ax >1/3 + n(a) in inn is the diagonal sum of 

the inequalities aix >i/3 - 1 + n(a i) for i ~ J c N = {1, . . . ,  n} when aj 4:0 for all 

j ~ J, aj = 0 for all j ~ t~ \ J ,  and 

a j - 1  i f j = i a n d a j > 0 ,  

i =  a j + l  i f j = i a n d a j < 0 ,  (9) aj 

aj otherwise. 

To verify that ax >~/3 +n(a)  is a rank one cut (when n >f 2), assign each 

a'x >1/3 - 1 + n(a i) weight I ai [ / ( W -  1), where W = Ej I aj 1. The weighted sum 

of the inequalities aix >~/3 - 1 + n(a i) is ax >~ (/3 - 1 ) W / ( W -  1) + n(a). Since 

feasibility implies W>~/3, we have /3 - 1 <(/3 - 1 ) W / ( W -  1) ~</3, so that we 

obtain the desired ax >1/3 + n(a) after rounding up the right-hand side. 

We will use the following algorithm to generate prime inequalities for a 

feasible set S with respect to T. 

A L G O R I T H M  P 

Step 0. Set S'  = S. Remove inequalities from S', if necessary, to ensure that 

no inequality in S' dominates another. 

Step 1. If possible, find clausal inequalities C and D that have a resolvent R 

that no inequality in S' dominates, such that C and D are each dominated by 
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some inequality in S'. Remove from S' all inequalities that R dominates, and 

add R to S'. 

Step 2. If possible, find inequalities I1 , . . . ,  I m in T that have a diagonal sum I 

in T that no inequality in S' dominates, such that I1 , . . . ,  I m are each dominated 

by some inequality in S'. Remove from S' all inequalities that I dominates, and 

add I to S'. 

Step 3. If inequalities were added to S' in either step 1 or step 2, return to 

step 1. Otherwise stop. 

Algorithm P is clearly finite, since there are finitely many nonequivalent 

inequalities in 4 ,  and S' contains no pairs of equivalent inequalities, and an 

inequality is never added to S' once it has been removed. 

A set S'  of prime inequalities for S is complete with respect to T if every 

prime inequality for S with respect to T is equivalent to some inequality in S'. 

We will show that algorithm P generates a complete set of prime inequalities 

with respect to T, provided T is monotone in the following sense: T contains all 

clausal inequalities, and given any inequality ax >1/3 + n(a) in T, T contains all 

inequalities a'x >1/3' + n(a') such that I a~ I ~< I aj I for all j, and 0 ~/3 '  ~</3. The 

set of clausal inequalities is obviously monotone,  as is J~. 

5. The main result 

To prove our main result, namely that algorithm P generates a complete set 

of prime inequalities with respect to T, we begin with two lemmas. Let the 

length of an inequality be the sum of the absolute values of its coefficients. We 

say that an inequality is longest with respect to a property if it has the property 

and would lose it if one or more coefficients were increased in absolute value. 

As usual, S is a set of inequalities. 

LEMMA 1 

Let ax >i 1 + n(a) be a longest clausal inequality that is dominated by S but 

by no inequality in S, and suppose that ag = 0 for some k. Then ax >i 1 + n(a) is 

the resolvent of two inequalities, each of which is dominated by an inequality in 

S. 

Proof 

The clausal inequalities x k + ax >I 1 + n(a) and - x  k + ax >1 1 + n(a) - 1 are 

dominated by S, because they are absorbed and therefore dominated by ax >1 1 

+ n(a). Since they are longer than ax >~ 1 + n(a), each is dominated by some 

inequality in S. But their resolvent is ax >/1 + n(a), and the lemma follows. [] 

The next lemma will form the initial step of an inductive argument. 
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LEMMA 2 

Once algorithm P is applied to S to yield S' for monotone T, any clausal 

inequality dominated by S is dominated by some inequality in S'. 

Proof 

Suppose otherwise, and let ax >1 1 + n(a) be a longest clausal inequality in T 

dominated by S but by no inequality in S'. Since T is monotone and therefore 

contains all clausal inequalities, ax >/1 + n(a) is a longest clausal inequality 

dominated by S but by no inequality in S'. Since variables can be comple- 

mented, we suppose without loss of generality that a >/0. We claim that a k = 0 

for some k. To see this, note that otherwise the only point x violating 

ax >1 1 + n(a) is the origin, which means that any clause violated by the origin 

dominates ax >t 1 + n(a). If the origin violated no clause in S, S would not 

dominate ax >1 1 + n(a). Therefore the origin violates some clause in S, and this 

clause dominates ax >i 1 + n(a), contrary to hypothesis. We conclude that some 

a k = 0. Given this, lemma 1 says that S' contains a resolvent that dominates 

ax >~ 1 + n(a), contrary to hypothesis. [] 

THEOREM 1 

Once algorithm P has been applied to a feasible set S of inequalities to yield 

S', S'  is a complete set of prime inequalities for S with respect to any monotone 

set T. 

Proof 

We will prove that any inequality ax >~/3 + n(a) in T that is dominated by S is 

dominated by an inequality in S'. The proof is by induction on the degree/3. Let 

sgn(a) be 1 when a > 0, - 1 when a < 0, and 0 when a = 0. 

We first suppose/3 = 1. It is easy to see that any inequality ax >1 1 + n(a) of 

degree one is equivalent to the clausal inequality a'x  >1 1 + n(a'), where a~ = 

sgn(aj). But since T is monotone, we know from lemma 2 that a'x  >1 1 + n(a'), 

and therefore ax >~ 1 + n(a), is dominated by an inequality in S'. 

We now assume that the theorem is true for all inequalities in T of degree 

/ 3 -  1 and show that it is true for inequalities in T of degree /3. Suppose 

otherwise. Let ax i>/3 + n(a) be a longest inequality of degree /3 in T that is 

dominated by S but by no inequality in S'. For all i ~ { j l a j  --/: 0} = J ,  let a i be 

defined by (9). Then ax >_./3 + n(a) is the diagonal sum of the inequalities 

a'x >1 ( / 3 -  1)+ n(a ~) for i ~ J .  We can make the following statements about 

aix >t (/3 -- 1) + n(a  i) for each i ~ J: (a) it is a reduction of ax >t/3 + n(a) and is 

therefore dominated by S; (b) it belongs to T, since T is monotone; (c) since it 

has degree / 3 -  1, (a), (b) and the induction hypothesis imply that it is domi- 

nated by some inequality in S'. But (c), together with step 2 of algorithm P, 

imply that ax >_./3 + n(a) is also dominated by an inequality in S', contrary to 

assumption. The theorem follows. [] 
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6. Set covering inequalities 

Algorithm P does not specify how to check whether an inequality is domi- 

nated by an inequality in S', since this is hard to do in general. But in certain 

special cases it is easy, and we can specify a simple procedure that checks for 

domination. The special case we first consider is that when S consists of set 

covering inequalities, in which each coefficient belongs to {0, 1} and the right- 

hand side is equal to one. The following is obvious. 

LEMMA 3 

One set covering inequality dominates another if and only if the former 

absorbs the latter. Equivalent set covering inequalities are identical. 

To apply theorem 1 we let T be the set of clausal inequalities. But since all 

coefficients of the inequalities in S are nonnegative and resolvents will never be 

generated, all prime inequalities with respect to T are set covering inequalities. 

Also no diagonal sums are performed, and only step 0 of algorithm P is 

operative. We conclude that the unique complete set of prime set covering 

inequalities for S is obtained by deleting from S all inequalities absorbed by 

shorter inequalities in S. 

A more interesting problem is to obtain prime inequalities that are set 

covering inequalities except that they may have an integer right-hand side larger 

than one, which we may call extended set covering inequalities. By generating all 

such prime inequalities we can clearly find a minimum cardinality cover (i.e., we 

can minimize Ejxj subject to the constraints in S). The cardinality of a 

minimum cover is just the maximum degree of the prime inequalities generated. 

To apply theorem 1 we let T contain all clausal and extended set covering 

inequalities. T is therefore monotone. Again since no resolutions are per- 

formed, all prime inequalities with respect to T are extended set covering 

inequalities. The following check for domination is easy to verify. 

LEMMA 4 

An extended set covering inequality ax >/3 a dominates another one bx >/3 b if 

and only if Ejaj(1 - bj) ~</3 a - /3  b. 

Now algorithm P reduces to the following. 

ALGORITHM P1 (SET COVERING INEQUALITIES) 

Step 0. Let S be a set of set covering inequalities, and set S ' =  S. Remove 

from S' every inequality that is absorbed by a shorter one in S'. 
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Step 1. If possible, find a set J c N = {1,. . . ,  n} of at least 2 indices and, for 

each i ~ J, an inequality aix >1 j8 - 1 + "Yi such that 

i 
"Yi ~ E aj. 

j~([~\j)t_J{i} 

Let the diagonal sum be ax > ~, where aj = 1 for j ~ J and aj = 0 for j ~ ~ \ J .  

If no inequality in S' dominates the diagonal sum, then remove from S' all 

inequalities dominated by the diagonal sum, and add the diagonal sum to S' .  

Step 2. If an inequality was added to S' in step 1, return to step 1. Otherwise 

stop. 

For instance, the following extended set covering inequalities, 

x 2 +x4> 2, 

x 1 +x 3 > 1, (10) 

X 1 + X  2 +X4~ 2, 

respectively dominate the following inequalities, 

x2+x3 ~ 1, 

X 1 +X3/> 1, 

X 1 + X  2 ~ 1 ,  

which have the diagonal sum, 

x I + x  2 + x  3 > 2. (11) 

Therefore if S'  contains inequalities (10), algorithm P1 generates (11). This type 

of cut is commonplace in cutting plane theory. 

7. Set packing inequalities 

Set packing inequalities have the form ax <~ 1, where each aj ~ {0, 1}. After 

complementing variables the inequality becomes a~ > ~ p ( a ) -  1. Although set 

packing inequalities appear very similar to set covering inequalities, they are 

not, because their degree is p(a )  - 1 rather than 1. 

Absorption for set packing inequalities corresponds to reduction for extended 

set covering inequalities. If ax <~ 1 "absorbs" bx < 1 (i.e., a >/b), then the former 

corresponds to an extended set covering inequality that reduces to one corre- 

sponding to the latter. 

Again resolution does not apply. Fortuitously, diagonal summation is quite 

simple, since the diagonal sum of set packing inequalities is a set packing 

inequality. Thus we can compute prime inequalities for a set S of set packing 
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inequalities without introducing "extended" set packing inequalities. Algorithm 

P simplifies to the following. 

ALGORITHM P2 (SET PACKING INEQUALITIES) 

Step 0. Let S be a set of set packing inequalities, and set S ' =  S. Remove 

from S' every inequality that is absorbed by a longer one in S'. 

Step 1. If possible, find a set J c ~ = {1,. . . ,  n} of at least 2 indices and, for 

each i ~ J, an inequality a'x ~< 1 in S' such that aj. 1 for all j ~ J \  {i}. (We can 

require without loss of generality that a I = 0.) Let the diagonal sum be ax <~ 1, 

where a~ = 1 for j ~ J  and aj = 0 for j ~ N \ J .  If no inequality in S' dominates 

the diagonal sum, then remove from S' all inequalities dominated by the 

diagonal sum, and add the diagonal sum to S'. 

Step 2. If an inequality was added to S' in step 1, return to step 1. Otherwise 

stop. 

For instance, the following set packing inequalities, 

X2+X3+X4<.~ 1, 

x 1 x 3 < 1, (12) 

X 1 + X  2 +X4~ 1, 

respectively absorb the following inequalities, 

X2-'[-X3~ 1, 

x a +x3< 1, 

X 1 + X  2 ~ 1, 

which have the diagonal sum, 

X 1 "+'X 2 + X  3 ~ 1. (13) 

Therefore if S' contains inequalities (12), algorithm P2 generates (13). This is a 

well-known cut for set packing problems. 

The cardinality of the maximum set packing (maximum of Ejx i subject to S) 

is the minimum of n - p ( a )  + 1 over all prime set packing inequalities ax ~< 1. 

8. Logical clauses 

Since clausal inequalities have degree one, we can compute prime clausal 

inequalities (i.e., prime implications) without recourse to diagonal sums. Only 

resolution applies, so that algorithm P reduces to the classical resolution 

algorithm. 



282 J.N. Hooker / Generalized resolution for 0-1 linear inequalities 

We can also specialize the algori thm to inequalit ies that  are clausal except 

that  the d e g r e e / 3  may be larger than 1. We call these extended clauses, which 

assert that  at least /3 of the literals listed are true. Domina t ion  between 

extended clauses is character ized by the following, which we prove in [8]. 

LEMMA 5 

One  extended clause dominates  another  if and only if the former  reduces  to 

an ex tended clause that  absorbs the latter. Equivalent  extended clauses are 

identical. 

F r o m  lemma 5 we have, 

LEMMA 6 

An extended clause ax >1/3a + n(a) dominates  another  one bx >/3b + n(b) if 

and only if E j l % l [ 1 - ( a j b ) + ] < . B a - / 3 b ,  where  a+=o~ if a > 0  and a + = 0  

otherwise. 

Due  to l emma 6, a lgori thm P becomes  the specialized algori thm below. In [8] 

we call essentially the same procedure  generalized resolution. We state the 

p rocedure  somewhat  differently here  because of our  use of l emma 6. 

A L G O R I T H M  P3 (GENERALIZED RESOLUTION) 

Step 0. Set S '  = S. Remove  inequalit ies f rom S',  if necessary, to ensure  that  

no inequality in S '  dominates  another .  

Step 1. If possible, find k ~ N = {1 , . . . ,  n} and inequalities ax >~/3 + Ya + n(a) 

and bx >/3 + Yb + n(b) in S'  (with/3 >t 1, Ya >~ 0, Yb >~ 0) such that  akb k < 0 and 

Ya + "/b = S , j ( - a j b )  + - 1. Let  the resolvent cx >/3 + n(c) be given by c k = 0 and 

by cj = sgn(aj + b )  for all j 4= k for which ajbj > 0. W h e n  a~bj < 0 (and j vak), 

set cj to 1 or - 1  in any fashion that  satisfies 

E ( - a j c j ) + = y ~  and E ( -b ic~)+=yb.  
J J 

ajb~ <O albj<0 

If  no inequality in S '  dominates  the resolvent, then  remove f rom S'  all 

inequalit ies domina ted  by the resolvent, and add the resolvent to S'. 

Step 2. If possible, find a set J = {iD.. . ,  i m} C ~ of indices and define a 

/3-clause cx >/3 + 1 + n(c) with cj. = 0 for all j ~ N \ J ,  such that  S '  contains for 

each  i ~ J a /3-clause aix  >/ /3 + 3/, + n (a  i) for which  Yi > 0 and  

E j ~ l a j l  i + ' -E j~ j \{ ,} (a jc j )  <Yi. If no inequality in S '  dominates  the diagonal  

sum cx >/3 + 1 + n(c), then  remove f rom S'  all inequalit ies domina ted  by the 

diagonal  sum, and add the diagonal  sum to S'. 

Step 3. If an inequality was added  to S'  in step 1 or step 2, re turn  to step 1. 

Otherwise stop. 
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Actually, a lgori thm P adds cx >1/3 + n(c)  to S '  in step 1 only when  /3 = 1, 

since the "resolvent"  cx >t/3 + n(c)  can be a resolvent in the ordinary sense only 

w h e n / 3  -- 1. But  by permit t ing larger/3 in algori thm P3 (as in [8]) we can reduce 

the number  of steps required.  To illustrate the case when /3 = 2, suppose S'  

contains the inequalities, 

x l + x  2 - x 4 + x s - x 6 - x 7 > ~ 2 + 2 - 3 ,  

- -X  1 - - X 3 - - X  4 - - X  5 + X  6 + X  7 ~ 2 + 1 - 4 .  

If  we pick k = 1, they respectively dominate ,  

x l + x  2 - x  4 -x7~> 2 -  2, 

- x  1 - x 3 - x  4 - x  5 + x  6 1> 2 -  4, 

which have the "resolvent" ,  

x 2 - x 3 - x 4 - x 5  + x 6 - x  7 > / 2 -  2. (14) 

So we add (14) to S'. 

To illustrate step 2, suppose that  S '  contains the inequalities, 

X 1 - - X  2 -}-X 3 q'-X 4 - - X  5 ~ 1 -}- 3 - 2, 

x 2 + x 3 - x 4 - x s > > .  1 + 2 - 2 ,  

X 4 - X  5 /> 1 q- 1 --  1. 

If we choose J = {3, 4, 5}, these respectively domina te  

x4-xs>~ 1 - 1, 

x 3 -xs>~ 1 - 1, 

X 3 -]-X 4 ~ 1. 

Thus  if we let the diagonal sum cx >1/3 + 1 + n(c)  be, 

x 3 + x  4 - x  5 >1 1 + 1 -  1, (15) 

the condit ions of step 2 are satisfied, and we add (15) to S'.  

9. First and second degree inequalities with coefficients in {0, + 1, + 2} 

We now enlarge the set T to the set of all first and second degree inequalities 

in ~ with coefficients in {0, + 1, + 2}. Let  us call this set T 2. 

L E M M A  7 

An inequality A (which we write ax >f/3a + n(a)  with a/> 0) in T 2 dominates  

an inequality B (which we write bx >~/3b + n(b))  in T 2 if and only if the following 
are true: 
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(i) If/3a =/3b = 1, bj > 0 whenever  a t > 0. 

(ii) I f / 3 ,  = 1 and /3  b = 2, bj = 2 whenever  a t > O. 

(iii) I f / 3 ,  = 2 and /3 b = 1, then bj = 0 for at most one j for which aj = 1, and 

bj > 0 for any other  j for which aj > O. 

(iv) I f / 3 ,  =/3b = 2, then bj = 2 whenever  a t = 2, and bj > 0 whenever  at = 1. 

Proo f  

We will say J c {1, . . . .  n} is a roof  set (inspired by the notion of roof  point  in 

[2]) of  an inequality ax >i a 0 with a >/0 if 2, given by 2j = 1 if j ~ J and ~j = 0 

otherwise, satisfies a~ >/a 0, but x ~< ~ and x v~ ~ imply that x violates ax >1 a o. 

Let a set J c {1, . . . ,  n} be a satisfaction set for an inequality if setting xj = 1 for 

each j ~ J satisfies the inequality for any set of  values assigned the remaining 

xj's. It is not hard to show that A dominates B if and only if every roof  set of  A 

is a satisfaction set of  B. We consider the four cases separately. 

(i) Here  the roof sets of  A are the singletons {j} with aj > 0. These are 

satisfaction sets of  B if and only if each corresponding b t is 1 or 2. 

(ii) The roof  sets of A are the same as in (i). They are satisfaction sets of  B if 

and only if each corresponding bj = 2. 

(iii) The roof  sets of  A are singletons {j} with a t = 2 and doubletons {j, k} 

with aj = a~ = l. The former  are satisfaction sets of  B if and only if the 

corresponding bj's are 1 or 2. The latter are satisfaction sets if and only if at 

most one of the corresponding bi's and bk's is 0, and the others are 1 or 2. 

(iv) The roof  sets of  A are the same as in (iii). The singletons are satisfaction 

sets of B if and only if the corresponding bj's are 2. The doubletons are 

satisfaction sets if and only if the corresponding bj's and bk's are 1 or 2. [] 

Algori thm P specializes as follows. 

ALGORITHM P4 

Step 0. Set S' = S. Remove inequalities from S',  if necessary, to ensure that 

no inequality in S'  dominates another.  

Step 1. If possible, find inequalities ax >~/3a + n(a), bx >i/3b + n(b)  in S'  and 

indices k ~ ~ = {1, . . . ,n}  and s, t ~ [~ u{0} such that (a) akb k < 0 ;  (b) s > 0 

only if / 3a  = 2 and l a~ I = 1; (c) t > 0 only if /3 b = 2 and I b t I = 1; and (d) for all 

j ~  ~ ,  aib t < 0 only if j ~ { k ,  s, t}. Let  the resolvent be cx >1 1 + n ( c )  to S' ,  

where  c k = 0, c s = sgn(b s) if t ~ s > O, c t = sgn(a t) if s ~ t > 0, and for all 

j ~ N \ { k ,  s, t}, cj = sgn(aj + bj). If no inequality in S'  dominates the resolvent, 

then remove from S' all inequalities dominated by the resolvent, and add the 

resolvent to S'. 

Step 2. If possible, find 2-clause cx >t 2 + n(c),  a set J c [~ of indices, an 

inequal i ty  aix >I/3i "1- n(ai)  in S'  for each i ~ J ,  and an index s i ~ [~d U {0} for 

each i ~ J ,  such that s > 0  only if (a) l a i s [ = l  and /3 i = 2 ,  (b) a~.=0 for all 
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j E ~ \ ( J t . A { s i } )  , and  (c) a~cj>O for  all j ~ \ { s i } .  I f  no  inequal i ty  in S '  

domina t e s  the  d iagonal  sum cx > 2 + n(c),  t h en  r em o v e  f r o m  S '  all inequal i t ies  

d o m i n a t e d  by the  d iagonal  sum, and  add  the  d iagonal  sum to S ' .  

Step 3. I f  an inequal i ty  was a d d e d  to  S '  in step 1 or  s tep 2, r e t u r n  to s tep 1. 

O the rwise  stop. 

T o  i l lustrate  s tep 1, suppose  tha t  S '  conta ins  the  inequal i t ies  

2 x  1 - 2X2--X 3 >/2 -- 3, 

-- X 1 + 2 X  3 - -X4> 2 -- 2. 

T h e y  respect ive ly  d o m i n a t e  

X 1 --X 2 ~ 1 -- 1, 

--X 1 + X 3 >  1 -- 1, 

which have  the  reso lvent  

- x  2 + x 3 > 1 - 1. 

In s tep 2 we may  suppose  tha t  S '  conta ins  the  inequal i t ies ,  

- 2 x 2 + 2 x  3 - x 4 >  2 -  3, 

2 x  1 + X 3 > 1, 

x 1 -  x 2 -  x 3 > 2 -- 2. 

T h e s e  respect ive ly  domina te ,  

--X2q-X3~ 1 - 1, 

x 1 +x3>~ 1, 

x 1 - x  2 > 1 - 1, 

which have  the  d iagonal  sum, 

X 1 - - X  2 + X  3 >~ 2 - 1. 
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