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The generalized word length pattern of an orthogonal array allows 
a ranking of orthogonal arrays in terms of the generalized 
minimum aberration criterion (Xu and Wu 2001). We provide a 
statistical interpretation for the number of shortest words of an 
orthogonal array in terms of sums of R2 values (based on 
orthogonal coding) or sums of squared canonical correlations 
(based on arbitrary coding). Directly related to these results, we 
derive two versions of generalized resolution for qualitative 
factors, both of which are generalizations of the generalized 
resolution by Deng and Tang (1999) and Tang and Deng (1999). 
We provide a sufficient condition for one of these to attain its 
upper bound, and we provide explicit upper bounds for two classes 
of symmetric designs. Factor wise generalized resolution values 
provide useful additional detail.  

 

1. Introduction 
Orthogonal arrays (OAs) are widely used for designing experiments. One of the most important 
criteria for assessing the usefulness of an array is the generalized word length pattern (GWLP) as 
proposed by Xu and Wu (2001): A3, A4, … are the numbers of (generalized) words of lengths 3, 4, …, 
and the design has resolution R, if Ai = 0 for all i < R and AR > 0. Analogously to the well-known 
minimum aberration criterion for regular fractional factorial designs (Fries and Hunter 1980), the 
quality criterion based on the GWLP is generalized minimum aberration (GMA; Xu and Wu 2001): a 
design D1 has better generalized aberration than a design D2, if its resolution is higher or – if both 
designs have resolution R – if its number AR of shortest words is smaller; in case of ties in AR, 
frequencies of successively longer words are compared, until a difference is encountered.  

The definition of the Ai in Xu and Wu is very technical (see Section 2). One of the key results of this 
paper is to provide a statistical meaning for the number of shortest words, AR: we will show that AR is 
the sum of R2 values from linear models with main effects model matrix columns in orthogonal 
coding as dependent variables and full models in R−1 other factors on the explanatory side. For 
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arbitrary factor coding, the “sum of R2” interpretation cannot be upheld, but it can be shown that AR is 
the sum of squared canonical correlations (Hotelling 1936) between a factor’s main effects model 
matrix columns in arbitrary coding and the full model matrix from R−1 other factors. These results 
will be derived in Section 2. 

For regular fractional factorial 2-level designs, the GWLP coincides with the well-known word length 
pattern (WLP). An important difference between regular and non-regular designs is that factorial 
effects in regular fractional factorial designs are either completely aliased or not aliased at all, while 
non-regular designs can have partial aliasing, which can lead to non-integer entries in the GWLP. In 
fact, the absence of complete aliasing has been considered an advantage of non-regular designs (e.g. 
those by Plackett and Burman 1946) for screening applications. Deng and Tang (1999) and Tang and 
Deng (1999) defined “generalized resolution” (GR) for non-regular designs with 2-level factors, in 
order to capture their advantage over complete confounding in a number. For example, the 12 run 
Plackett-Burman design has GR=3.67, which indicates that it is resolution III, but does not have any 
triples of factors with complete aliasing. Evangelaras et al. (2005) have made a useful proposal for 
generalizing GR (called GRes by them) for designs in quantitative factors at 3 levels; in conjunction 
with Cheng and Ye (2004), their proposal can easily be generalized to cover designs with quantitative 
factors in general. However, there is so far no convincing proposal for designs with qualitative 
factors. The second goal of this paper is to close this gap, i.e. to generalize Deng and Tang’s / Tang 
and Deng’s GR to OAs for qualitative factors. Any reasonable generalization of GR has to fulfill the 
following requirements: (i) it must be coding-invariant, i.e. must not depend on the coding chosen for 
the experimental factors (this is a key difference vs. designs for quantitative factors), (ii) it must be 
applicable for symmetric and asymmetric designs (i.e. designs with a fixed number of levels and 
designs with mixed numbers of levels), (iii) like in the 2-level case, R+1 > GR ≥ R must hold, and 
GR = R must be equivalent to the presence of complete aliasing somewhere in the design, implying 
that R+1 > GR > R indicates a resolution R design with no complete aliasing among projections of 
R factors. We offer two proposals that fulfill all these requirements and provide a rationale behind 
each of them, based on the relation of the GWLP to regression relations and canonical correlations 
among the columns of the model matrix.  

The paper is organized as follows: Section 2 formally introduces the GWLP and provides a statistical 
meaning to its number of shortest words, as discussed above. Section 3 briefly introduces generalized 
resolution by Deng and Tang (1999) and Tang and Deng (1999) and generalizes it in two meaningful 
ways. Section 4 shows weak strength R (in a version modified from Xu 2003 to imply strength R−1) 
to be sufficient for maximizing one of the generalized resolutions in a resolution R design. 
Furthermore, it derives an explicit upper bound for the proposed generalized resolutions for two 
classes of symmetric designs. Section 5 derives factor wise versions of both types of generalized 
resolution and demonstrates that these provide useful additional detail to the overall values. The paper 
closes with a discussion and an outlook on future work. 

Throughout the paper, we will use the following notation: An orthogonal array of resolution R = 
strength R−1 in N runs with n factors will be denoted as OA(N, s1 … sn, R−1), with s1, …, sn the 
numbers of levels of the n factors (possibly but not necessarily distinct), or as OA(N, s1

n1…sk
nk, R−1) 

with n1 factors at s1 levels, …, nk factors at sk levels (s1, …, sk possibly but not necessarily distinct), 
whichever is more suitable for the purpose at hand. A subset of k indices that identifies a k-factor 
projection is denoted by {u1,…,uk} (⊆ {1,…,n}). The unsquared letter R always refers to the 
resolution of a design, while R2 denotes the coefficient of determination.  
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2. Projection frequencies and linear models 
Consider an OA(N, s1 … sn, R−1). The resolution R implies that main effects can be confounded with 
interactions among R−1 factors, where the extent of confounding of degree R can be investigated on a 
global scale or in more detail: Following Xu and Wu (2001), the factors are coded in orthogonal 
contrasts with squared column length normalized to N. We will use the expression “normalized 
orthogonal coding” to refer to this coding; on the contrary, the expressions “orthogonal coding” or 
“orthogonal contrast coding” refer to main effects model matrix columns that have mean zero and are 
pairwise orthogonal, but need not be normalized. For later reference, note that for orthogonal coding 
(whether normalized or not) the main effects model matrix columns for an OA (of strength at least 2) 
are always uncorrelated.  

We write the model matrix for the full model in normalized orthogonal coding as 

M = (M0, M1, …, Mn), (1) 

where M0 is a column of “+1”s, M1 contains all main effects model matrices, and Mk is the matrix of 

all ( )n
k  k-factor interaction model matrices, k = 2,…,n. The portion Xu1…uk

 of Mk = (X1…k,…,Xn−k+1…n) 

denotes the model matrix for the particular k-factor interaction indexed by {u1,…,uk} and is obtained 
by all products from one main effects contrast column each from the k factors in the interaction. Note 
that the normalized orthogonal coding of the main effects implies that all columns of Mk have squared 
length N for k ≤ R−1. Now, on the global scale, the overall number of words of length k can be 
obtained as the sum of squared column averages of Mk, i.e., Ak = 1N

T Mk Mk
T 1N / N

2. Obviously, this 
sum can be split into contributions from individual k-factor projections for more detailed 
considerations, i.e., 

{ }
{ }

( )
{ }

{ }
1 1

1 1

T T 2
... ... 1

,..., ,...,
1,..., 1,...,

: ,...,
⊆ ⊆

= =∑ ∑k k
k k

k N u u u u N k k
u u u u

n n

A N a u u1 X X 1 , (2) 

where ak(u1,…,uk) is simply the Ak value of the k-factor projection {u1,…,uk}. The summands 
ak(u1,…,uk) are called “projection frequencies”. 

Example 1. For 3-level factors, normalized polynomial coding has the linear contrast coefficients 
23− , 0, 23  and the quadratic contrast coefficients 21 , 2− , 21 . For the regular design 

OA(9, 33, 2) with the defining relation C=A+B (mod 3), the model matrix M has dimensions 9x27, 
including one column for M0, six for M1, twelve for M2 and eight for M3. Like always, the column 
sum of M0 is N (here: 9), and like for any orthogonal array, the column sums of M1 and M2 are 0, 
which implies A0=1, A1=A2=0. We now take a closer look at M3, arranging factor A as (0 0 0 1 1 1 2 2 
2), factor B as (0 1 2 0 1 2 0 1 2) and factor C as their sum (mod 3), denoting linear contrast columns 
by the subscript l and quadratic contrast columns by the subscript q. Then, 
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Half of the squared column sums of M3 are 243/8 and 81/8, respectively. This implies that the sum of 
the squared column sums is A3 = a3(1,2,3) = (4*243/8+4*81/8)/81 = 2.  

Table 1. A partially confounded OA(18, 2132, 2) (transposed) 
A 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 
B 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 
C 0 1 2 1 2 0 0 2 0 1 1 2 2 1 2 0 1 0 
 
Example 2. Table 1 displays the only OA(18, 2132, 2) that cannot be obtained as a projection from the 
L18 design that was popularized by Taguchi (of course, this triple is not interesting as a stand-alone 
design, but as a projection from a design in more factors only; the Taguchi L18 is for convenience 
displayed in Table 4 below). The 3-level factors are coded like in Example 1, for the 2-level factor, 
normalized orthogonal coding is the customary -1/+1 coding. Now, the model matrix M has 
dimensions 18x18, including one column for M0, five for M1, eight for M2 and four for M3. Again, 
A0=1, A1=A2=0. The squared column sums of M3 are 9 (1x), 27 (2x) and 81 (1x), respectively. Thus, 
A3 = a3(1,2,3) = (9+2*27+81)/324 = 4/9.  

The projection frequencies ak(u1,…,uk) from Equation (2) are the building blocks for the overall Ak. 
The aR(u1,…,uR) will be instrumental in defining one version of generalized resolution. Theorem 1 
provides them with an intuitive interpretation. The proof is given in Appendix A. 

Theorem 1. In an OA(N, s1 … sn, R−1), denote by Xc the model matrix for the main effects of a 
particular factor c ∈ {u1,…,uR} ⊆ {1,…,n} in normalized orthogonal coding, and let 
C = {u1,…,uR} \ {c}. Then, aR(u1,…,uR) is the sum of the R2-values from the sc−1 regression models 
that explain the columns of Xc by a full model in the factors from C. 

Remark 1. (i) Theorem 1 holds regardless which factor is singled out for the left-hand side of the 
model. (ii) The proof simplifies by restriction to normalized orthogonal coding, but the result holds 
whenever the factor c is coded by any set of orthogonal contrasts, whether normalized or not. (iii) 
Individual R2 values are coding dependent, but the sum is not. (iv) In case of normalized orthogonal 
coding for all factors, the full model in the factors from C can be reduced to the R−1 factor interaction 
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only, since the matrix Xc is orthogonal to the model matrices for all lower degree effects in the other 
R−1 factors.  

Example 1 continued. The overall a3(1,2,3) = 2 is the sum of two R2 values which are 1, regardless 
which factor is singled out as the main effects factor for the left-hand sides of regression. This reflects 
that the level of each factor is uniquely determined by the level combination of the other two factors.  

Example 2 continued. The R2 from regressing the single model matrix column of the 2-level factor on 
the four model matrix columns for the interaction among the two 3-level factors is 4/9. Alternatively, 
the R2-values for the regression of the two main effects columns for factor B on the AC interaction 
columns are 1/9 and 3/9 respectively, which also yields the sum 4/9 obtained above for a3(1,2,3). For 
factor B in dummy coding with reference level 0 instead of normalized polynomical coding, the two 
main effects model matrix columns for factor B have correlation 0.5; the sum of the R2 values from 
full models in A and C for explaining these two columns is 1/3 + 1/3 = 2/3 ≠ a3(1,2,3) = 4/9. This 
demonstrates that Theorem 1 is not applicable if orthogonal coding (see Remark 1 (ii)) is violated. 

Corollary 1. In an OA(N, s1 … sn, R−1), let {u1,…,uR} ⊆ {1,…,n}, with smin = mini=1,…,R(sui
). 

(i) A factor c ∈ {u1,…,uR} in sc levels is completely confounded by the factors in  
C = {u1,…,uR} \ { c}, if and only if aR(u1,…,uR) = sc−1.  

(ii) aR(u1,…,uR) ≤ smin − 1. 
(iii) If several factors in {u1,…,uR} have smin levels, either all of them are or none of them is 

completely confounded by the respective other R−1 factors in {u1,…,uR}. 
(iv) A factor with more than smin levels cannot be completely confounded by the other factors 

in {u1,…,uR}. 

Part (i) of Corollary 1 follows easily from Theorem 1, as aR(u1,…,uR) = sc−1 if and only if all 
R2 values for columns of the factor c main effects model matrix are 100%, i.e. the factor c main 
effects model matrix is completely explained by the factors in C. Part (ii) follows, because the sum of 
R2 values is of course bounded by the minimum number of regressions conducted for any single factor 
c, which is smin − 1. Parts (iii) and (iv) follow directly from parts (i) and (ii). For symmetric s-level 
designs, part (ii) of the Corollary has already been proven by Xu, Cheng and Wu (2004). 

Table 2. An OA(8, 4122, 2) (transposed) 
A 0 0 0 0 1 1 1 1 
B 0 0 1 1 0 0 1 1 
C 0 2 1 3 3 1 2 0 
 
Example 3. For the design of Table 2, smin = 2, and a3(1,2,3) = 1, i.e. both 2-level factors are 
completely confounded, while the 4-level factor is only partially confounded. The individual R2 
values for the separate degrees of freedom of the 4-level factor main effect model matrix depend on 
the coding (e.g. 0.2, 0 and 0.8 for the linear, quadratic and cubic contrasts in normalized orthogonal 
polynomial coding), while their sum is 1, regardless of the chosen orthogonal coding.  

Theorem 2. In an OA(N, s1 … sn, R−1), let {u1,…,uR} ⊆ {1,…,n} with smin = mini=1,…,R(sui). Let 
c ∈ {u1,…,uR} with sc = smin, C = {u1,…,uR} \ {c}. Under normalized orthogonal coding denote by Xc 
the main effects model matrix for factor c and by XC the R−1 factor interaction model matrix for the 
factors in C.   
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If aR(u1,…,uR) = smin – 1, XC can be orthogonally transformed (rotation and or switching) such that 
smin – 1 of its columns are collinear to the columns of Xc. 

Proof. aR(u1,…,uR) = smin – 1 implies all smin – 1 regressions of the columns of Xc on the columns of 
XC have R2=1. Then, each of the smin – 1 Xc columns can be perfectly matched by a linear combination 
XCb of the XC columns; since all columns have the same length, this linear transformation involves 
rotation and/or switching only. If necessary, these smin – 1 orthogonal linear combinations can be 
supplemented by further length-preserving orthogonal linear combinations so that the dimension of 
XC remains intact.  /// 

Theorems 1 and 2 are related to canonical correlation analysis, and the redundancy index discussed in 
that context (Stewart and Love 1968). In order to make the following comments digestible, a brief 
definition of canonical correlation analysis is included without going into any technical detail about 
the method; details can e.g. be found in Härdle and Simar (2003, Ch.14). It will be helpful to think of 
the columns of the main effects model matrix of factor c as the Y variables and the columns of the full 
model matrix in the R−1 other factors from the set C (excluding the constant column of ones for the 
intercept) as the X variables of the following definition and explanation. As it would be unnatural to 
consider the model matrices from experimental designs as random variables, we directly define 
canonical correlation analysis in terms of data matrices X and Y (N rows each) and empirical 
covariance matrices Sxx = X*TX*/(N − 1), Syy = Y*TY*/(N − 1), Sxy = X*TY*/(N − 1) and 
Syx = Y*TX*/(N − 1), where the superscript * denotes columnwise centering of a matrix. We do not 
attempt a minimal definition, but prioritize suitability for our purpose. Note that our Sxx and Syy are 
nonsingular matrices, since the designs we consider have strength R−1; the covariance matrix (X* 
Y*)T(X* Y*)/(N − 1) of the combined set of variables may, however, be singular, which does not pose 
a problem to canonical correlation analysis, even though some accounts request this matrix to be 
nonsingular. 

Definition 1. Consider a set of p X-variables and q Y-variables. Let the Nxp matrix X and the Nxq 
matrix Y denote the data matrices of N observations, and Sxx, Syy, Sxy and Syx the empirical covariance 
matrices obtained from them, with positive definite Sxx and Syy. 

(i) Canonical correlation analysis creates k = min(p, q) pairs of linear combination vectors 
ui = Xai and vi = Ybi with px1 coefficient vectors ai and qx1 coefficient vectors bi, i = 1,…,k, 
such that  
a) the u1,…,uk are uncorrelated to each other 
b) the v1,…,vk are uncorrelated to each other 
c) the pair (u1, v1) has the maximum possible correlation for any pair of linear combinations 

of the X and Y columns, respectively 
d) the pairs (ui, vi), i=2,…,k successively maximize the remaining correlation, given the 

constraints of a) and b). 
(ii) The correlations ri = cor(ui, vi) are called “canonical correlations”,   

and the ui and vi are called “canonical variates”. 

Remark 2. (i) If the matrices X and Y are centered, i.e. X = X* and Y = Y*, the u and v vectors also 
have zero means, and the uncorrelatedness in a) and b) is equivalent to orthogonality of the vectors. 
(ii) It is well-known that the canonical correlations are the eigenvalues of the matrices 
Q1 = Sxx

−1SxySyy
−1Syx

  and Q2 = Syy
−1SyxSxx

−1Sxy
  (the first min(p, q) eigenvalues of both matrices are 
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the same; the larger matrix has the appropriate number of additional zeroes), and the ai are the 
corresponding eigenvectors of Q1, the bi the corresponding eigenvectors of Q2.  

According to the definition, the canonical correlations are non-negative. It can also be shown that ui 
and vj, i ≠ j, are uncorrelated, and orthogonal in case of centered data matrices; thus, the pairs (ui, vi) 
decompose the relation between X and Y into uncorrelated components, much like the principal 
components decompose the total variance into uncorrelated components. In data analysis, canonical 
correlation analysis is often used for dimension reduction. Here, we retain the full dimensionality. For 
uncorrelated Y variables like the model matrix columns of Xc in Theorem 1, it is straightforward to 
see that the sum of the R2 values from regressing each of the Y variables on all the X variables 
coincides with the sum of the squared canonical correlations. It is well-known that the canonical 
correlations are invariant to arbitrary nonsingular affine transformations applied to the X- and Y-
variables, which translate into nonsingular linear transformations applied to the centered X- and Y-
matrices (cf. e.g. Härdle and Simar 2003, Theorem 14.3). For our application, this implies invariance 
of the canonical correlations to factor coding. Unfortunately, this invariance property does not hold 
for the R2 values or their sum: according to Lazraq and Cléroux (2001, Section 2) the afore-mentioned 
redundancy index – which is the average R2 value calculated as aR(u1,…,uR)/(sc−1) in the situation of 
Theorem 1 – is invariant to linear transformations of the centered X matrix, but only to orthonormal 
transformations of the centered Y matrix or scalar multiples thereof. For correlated Y-variables, the 
redundancy index contains some overlap between variables, as was already seen for example 2, where 
the sum of the R2 values from dummy coding exceeded a3(1,2,3); in that case, only the average or sum 
of the squared canonical correlations yields an adequate measure of the overall explanatory power of 
the X-variables on the Y-variables. Hence, for the case of arbitrary coding, Theorem 1 has to be 
restated in terms of squared canonical correlations: 

Theorem 3. In an OA(N, s1 … sn, R−1), denote by Xc the model matrix for the main effects of a 
particular factor c ∈ {u1,…,uR} in arbitrary coding, and let C = {u1,…,uR} \ {c}. Then, aR(u1,…,uR) is 
the sum of the squared canonical correlations from a canonical correlation analysis of the columns of 
Xc and the columns of the full model matrix FC in the factors from C. 

Example 1, continued. smin=3, a3(1,2,3) = 2, i.e. the assumptions of Theorems 2 and 3 are fulfilled. 
Both canonical correlations must be 1, because the sum must be 2. The transformation of XC from 
Theorem 2 can be obtained from the canonical correlation analysis: For all factors in the role of Y, 
vi∝yi (with yi denoting the i-th column of the main effects model matrix of the Y-variables factor) can 
be used. For the first or second factor in the role of Y, the corresponding canonical vectors on the X 
side fulfill  
u1 ∝ BqCl – BlCq – 3 BlCl – 3 BqCq,   

u2 ∝ 3 BlCq  – 3 BqCl – BlCl – BqCq   (or B replaced by A for the second factor in the role of Y), 
with the indices l and q denoting the normalized linear and quadratic coding introduced above.   
For the third factor in the role of Y,   
u1 ∝ – 3 AlBl + AqBl + AlBq + 3 AqBq,   

u2 ∝ –AlBl − 3 AlBq – 3 AqBl + AqBq.  

Example 1, now with dummy coding. When using the design of Example 1 for an experiment with 
qualitative factors, dummy coding is much more usual than orthogonal contrast coding. This example 
shows how Theorem 3 can be applied for arbitrary non-orthogonal coding: A1 is 1 for A=1 and 0 
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otherwise, A2 is 1 for A=2 and 0 otherwise, B and C are coded analogously; interaction matrix 
columns are obtained as products of the respective main effects columns. The main effect and two-
factor interaction model matrix columns in this coding do not have column means zero and have to be 
centered first by subtracting 1/3 or 1/9, respectively. As canonical correlations are invariant to affine 
transformations, dummy coding leads to the same canonical correlations as the previous normalized 
orthogonal polynomial coding. We consider the first factor in the role of Y; the centered model matrix 
columns y1 = A1−1/3 and y2 = A2−1/3 are correlated, so that we must not choose both canonical variates 
for the Y side proportional to the original variates. One instance of the canonical variates for the Y side 
is 1 1= 2−v y , ( )2 1 2= 2 6+v y y ; these canonical vectors are unique up to rotation only, 
because the two canonical correlations have the same size. The corresponding canonical vectors on 
the X side are obtained from the centered full model matrix   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1 1 1
C 1 2 1 2 1 1 2 1 1 2 2 23 3 3 3 9 9 9 9B B C C B C B C B C B C, , , , , , ,= − − − − − − − −F  

as ( )1 2 3 5 6 7 8= 2 2− − + + − +u f f f f f f  and ( )2 1 2 3 4 5 7 8= 2 2 3 3 3 6+ + − − −u f + f f f f f f , with fj 
denoting the j-th column of FC.  
Note that the canonical vectors u1 and u2 now contain contributions not only from the interaction part 
of the model matrix but also from the main effects part, i.e. we do indeed need the full model matrix 
as stated in Theorem 3.  

Example 2, continued. smin = 2, a3(1,2,3) = 4/9, i.e. the assumption of Theorem 2 is not fulfilled, the 
assumption of Theorem 3 is. The canonical correlation using the one column main effects model 
matrix of the 2-level factor A in the role of Y is 2/3, the canonical correlations using the main effects 
model matrix for the 3-level factor B in the role of Y are 2/3 and 0; in both cases, the sum of the 
squared canonical correlations is a3(1,2,3) = 4/9. For any other coding, for example the dummy 
coding for factor B considered earlier, the canonical correlations remain unchanged (2/3 and 0, 
respectively), since they are coding invariant; thus, the sum of the squared canonical correlations 
remains 4/9, even though the sum of the R2 values was found to be different. Of course, the linear 
combination coefficients for obtaining the canonical variates depend on the coding (see e.g. Härdle 
and Simar 2003 Theorem 14.3).  

Canonical correlation analysis can also be used to verify that a result analogous to Theorem 2 cannot 
be generalized to sets of R factors for which aR(u1,…,uR) < smin – 1. For this, note that the number of 
non-zero canonical correlations indicates the dimension of the relationship between the X- and the Y-
variables.  

Table 3 displays the R2 values from two different orthogonal codings and the squared canonical 
correlations from the main effects matrix of the first factor (Y-variables) vs. the full model matrix of 
the other two factors (X-variables) for the ten non-isomorphic GMA OA(32,43,2) obtained from 
Eendebak and Schoen (2013). These designs have one generalized word of length 3, i.e. they are non-
regular. There are cases with one, two and three non-zero canonical correlations, i.e. neither is it 
generally possible to collapse the linear dependence into a one-dimensional structure nor does the 
linear dependence generally involve more than one dimension.  



9 
 

Table 3. Main effects matrix of factor A regressed on full model in factors B and C for the 10 non-
isomorphic GMA OA(32, 43, 2) 

R2 values 
from polynomial coding 

R2 values 
from Helmert coding 

Squared  
canonical correlations 

 
 

Designs 

L Q C 1 2 3 1 2 3 A3  
0.8 0 0.2 0 2/3 1/3 1 0 0 1 1 

0.65 0 0.35 1/8 13/24 1/3 0.75 0.25 0 1 2 
0.5 0 0.5 1/4 5/12 1/3 0.5 0.5 0 1 3,6,8,10 

0.45 0.25 0.3 1/4 5/12 1/3 0.5 0.25 0.25 1 4,5,7 
0.375 0.25 0.375 5/16 17/48 1/3 0.375 0.375 0.25 1 9 

 

3. Generalized resolution 
Before presenting the new proposals for generalized resolution, we briefly review generalized 
resolution for symmetric 2-level designs by Deng and Tang (1999) and Tang and Deng (1999). For 2-
level factors, each effect has a single degree of freedom (df) only, i.e. all the X’s in any Mk (cf. 
Equation (1)) are one-column matrices. Deng and Tang (1999) looked at the absolute sums of the 
columns of M, which were termed J-characteristics by Tang and Deng (1999). Specifically, for a 
resolution R design, these authors introduced GR as  

max1= + − RJGR R
N

,  (3) 

where JR = |1N
TMR| is the row vector of the J-characteristics |1N

TXu1…uR
| obtained from the ⎛ ⎞

⎜ ⎟
⎝ ⎠

n
R  R-

factor interaction model columns Xu1…uR
. For 2-level designs, it is straightforward to verify the 

following identities:  

1 2
1 1

1 ...( ,..., ) ( ,..., )
1 max ( ,..., ) 1 max ( , )ρ= + − = + −

R
R R

R R u u uu u u u
GR R a u u R X X , (4) 

where ρ denotes the correlation; note that the correlation in (4) does not depend on which of the ui 
takes the role of u1. Deng and Tang (1999, prop. 2) proved a very convincing projection interpretation 
of their GR. Unfortunately, Prop. 4.4 of Diestelkamp and Beder (2002), in which a particular 
OA(18, 33, 2) is proven to be indecomposable into two OA(9, 33, 2), implies that Deng and Tang’s 
result cannot be generalized to more than two levels.  

The quantitative approach by Evangelaras et al. (2005, their eq. (4)) generalized the correlation 
version of (4) by applying it to single df contrasts for the quantitative factors. For the qualitative 
factors considered here, any approach based on direct usage of single df contrasts is not acceptable 
because it is coding dependent. The approach for qualitative factors taken by Evangelaras et al. is 
unreasonable, as will be demonstrated in Example 5. Pang and Liu (2010) also proposed a generalized 
resolution based on complex contrasts. For designs with more than 3 levels, permuting levels for one 
or more factors will lead to different generalized resolutions according to their definition, which is 
unacceptable for qualitative factors. For 2-level designs, their approach boils down to omitting the 
square root from 

1
1( ,..., )

max ( ,..., )
R

R Ru u
a u u  in (4), which implies that their proposal does not simplify to 

the well-grounded generalized resolution of Deng and Tang (1999) / Tang and Deng (1999) for 2-
level designs. This in itself makes their approach unconvincing. Example 5 will compare their 
approach to ours for 3-level designs. The results from the previous section can be used to create two 
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adequate generalizations of GR for qualitative factors. These are introduced in the following two 
definitions. 

For the first definition, an R factor projection is considered as completely aliased, whenever all the 
levels of at least one of the factors are completely determined by the level combination of the other 
R−1 factors. Thus, generalized resolution should be equal to R, if and only if there is at least one 
R factor projection with aR(u1,…,uR) = smin−1. The GR defined in Definition 2 guarantees this behavior 
and fulfills all requirements stated in the introduction: 

Definition 2. For an OA(N, s1 … sn, R−1),   

( )
1min

,...,max1
,...,1

1

},...,1{
},...,{ 1 −

−+=
=⊆ i

R uRi

RR

n
uu s

uuaRGR . 

In words, GR increases the resolution by one minus the square root of the worst case average R2 
obtained from any R factor projection, when regressing the main effects columns in orthogonal coding 
from a factor with the minimum number of levels on the other factors in the projection. It is 
straightforward to see that (4) is a special case of the definition, since the denominator is 1 for 2-level 
designs. Regarding the requirements stated in the introduction, (i) GR from Def. 2 is coding invariant 
because the aR() are coding invariant according to Xu and Wu (2001). (ii) The technique is obviously 
applicable for symmetric and asymmetric designs alike, and (iii) GR < R + 1 follows from the 
resolution, GR ≥ R follows from part (ii) of Corollary 1, GR = R is equivalent to complete 
confounding in at least one R-factor projection according to part (i) of Corollary 1.  

Example 4. The GR values for the designs from Examples 1 and 3 are 3 (GR=R), the GR value for the 
design from Example 2 is 33.39413 =−+ , and the GR values for all designs from Table 3 are 

42.33113 =−+ . 

Now, complete aliasing is considered regarding individual degrees of freedom (df). A coding 
invariant individual df approach considers a factor’s main effect as completely aliased in an R factor 
projection, whenever there is at least one pair of canonical variates with correlation one. A projection 
is considered completely aliased, if at least one factor’s main effect is completely aliased in this 
individual df sense. Note that it is now possible that factors with the same number of levels can show 
different extents of individual df aliasing within the same projection, as will be seen in Example 5 
below.  

Definition 3. For an OA(N, s1 … sn, R−1) and tuples (c, C) with C = {u1,…,uR} \ {c},  

( )
1 1

ind 1 C
{ ,..., } {1,..., } { ,..., }

= 1 max max ;
⊆ ∈

+ − X F
R R

c
u u n c u u

GR R r   

with r1(Xc; FC) the largest canonical correlation between the main effects model matrix for factor c 
and the full model matrix of the factors in C.  

In words, GRind is the worst case confounding for an individual main effects df in the design that can 
be obtained by the worst case coding (which corresponds to the v1 vector associated with the worst 
canonical correlation). Obviously, GRind is thus a stricter criterion than GR. Formally, Theorem 3 
implies that GR from Def. 2 can be written as  
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( )

{ }( )1

1 2

1

1

1 2
,...,

1

,..., :
{ ,..., } {1,..., }

;

1 max
min 1

−

=

⊆

= + −
−

∑ X F
u

R

R i
R

s

j u u u
j

u u i u
u u n

r

GR R
s

. (5) 

Note that maximization in (5) is over tuples, so that it is ensured that the factor with the minimum 
number of levels does also get into the first position. Comparing (5) with Def. 3, GRind ≤ GR is 
obvious, because r1

2 cannot be smaller than the average over all ri
2  (but can be equal, if all canonical 

correlations have the same size). This is stated in a Theorem: 

Theorem 4. For GR from Def. 2 and GRind from Def. 3, GRind ≤ GR. 

Remark 3. (i) Under normalized orthogonal coding, the full model matrix FC in Definition 3 can again 

be replaced by the R−1 factor interaction matrix XC. (ii) Definition 3 involves calculation of ⎛ ⎞
⎜ ⎟
⎝ ⎠

nR R
 

canonical correlations (R correlations for each R factor projection). In any projection with at least one 
2-level factor, it is sufficient to calculate one single canonical correlation obtained with an arbitrary 2-
level factor in the role of Y, because this is necessarily the worst case. Nevertheless, calculation of 
GRind carries some computational burden for designs with many factors.  

Obviously, (4) is a special case of GRind, since the average R2 coincides with the only squared 
canonical correlation for projections of R 2-level factors. GRind also fulfills all requirements stated in 
the introduction: (i) GRind is coding invariant because the canonical correlations are invariant to affine 
transformations of the X and Y variables, as was discussed in Section 2. (ii) The technique is 
obviously applicable for symmetric and asymmetric designs alike, and (iii) GRind < R+1 again follows 
from the resolution, GRind ≥ R follows from the properties of correlations, and GRind = R is obviously 
equivalent to complete confounding of at least one main effects contrast in at least one R factor 
projection, in the individual df sense discussed above.  

Table 4. The Taguchi L18 (transposed) 
Row 

Col.     
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
4 0 1 2 0 1 2 1 2 0 2 0 1 1 2 0 2 0 1
5 0 1 2 1 2 0 0 1 2 2 0 1 2 0 1 1 2 0
6 0 1 2 1 2 0 2 0 1 1 2 0 0 1 2 2 0 1
7 0 1 2 2 0 1 1 2 0 1 2 0 2 0 1 0 1 2
8 0 1 2 2 0 1 2 0 1 0 1 2 1 2 0 1 2 0

 

Example 5. We consider the three non-isomorphic OA(18, 33, 2) that can be obtained as projections 
from the well-known Taguchi L18 (see Table 4) by using columns 3, 4 and 5 (D1), columns 2, 3 and 6 
(D2) or columns 2, 4 and 5 (D3). We have A3(D1) = 0.5, A3(D2) = 1 and A3(D3) = 2, and consequently 
GR(D1) = 3.5, GR(D2) = 3.29 and GR(D3) = 3. For calculating GRind, the largest canonical correlations 
of all factors in the role of Y are needed. These are all 0.5 for D1 and all 1 for D3, such that GRind = GR 
for these two designs. For D2, the largest canonical correlation is 1 with the first factor (from column 
2 of the L18) in the role of Y, while it is 5.0  with either of the other two factors in the role of Y; 
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thus, GRind = 3 < GR = 3.29. The completely aliased 1 df contrast of the first factor is the contrast of 
the third level vs. the other two levels, which is apparent from Table 5: the contrast A = 2 vs A in 
(0,1) is fully aliased with the contrast of one level of B vs. the other two, given a particular level of C. 
Regardless of factor coding, this direct aliasing is reflected by a canonical correlation “one” for the 
first canonical variate of the main effects contrast matrix of factor A. 

Table 5. Frequency table of columns 2(=A), 3(=B) and 6(=C) of the Taguchi L18 

, , C = 0 

   B 

A   0 1 2 

  0 1 0 1 

  1 1 0 1 

  2 0 2 0 

 

, , C = 1 

   B 

A   0 1 2 

  0 1 1 0 

  1 1 1 0 

  2 0 0 2 

 

, , C = 2 

   B 

A   0 1 2 

  0 0 1 1 

  1 0 1 1 

  2 2 0 0  

Using this example, we now compare the GR introduced here to proposals by Evangelaras et al. 
(2005) and Pang and Liu (2010): The GRes values reported by Evangelaras et al. (2005) for designs 
D1, D2 and D3 in the qualitative case are 3.75, 3.6464, 3.5, respectively; especially the 3.5 for the 
completely aliased design D3 does not make sense. Pang and Liu reported values 3.75, 3.75 and 3, 
respectively; here, at least the completely aliased design D3 is assigned the value “3”. Introducing the 
square root, as was discussed in connection with equation (4), their generalized resolutions become 
3.5, 3.5 and 3, respectively, i.e. they coincide with our GR results for designs D1 and D3. For design 
D2, their value 3.5 is still different from our 3.29 for the following reason: our approach considers 
A3 = a3(1,2,3) as a sum of two R2-values and subtracts the square root of their average or maximum 
(GR or GRind, respectively), while Pang and Liu’s approach considers it as a sum of 23=8 summands, 
reflecting the potentially different linear combinations of the three factors in the Galois field sense, 
the (square root of the) maximum of which they subtract from R+1. 

4. Properties of GR 
Let G be the set of all runs of an s1 × … × sn full factorial design, with ∏ =

= n

i is
1

G  the cardinality 

of G. For any design D in N runs for n factors at s1, …, sn levels, let Nx be the number of times that a 
point x∈G appears in D. GNN =  denotes the average frequency for each point of G in the design 

D. We can measure the goodness of a fractional factorial design D by the uniformity of the design 
points of D in the set of all points in G, that is, the uniformity of the frequency distribution Nx. One 
measure, suggested by Tang (2001) and Ai and Zhang (2004), is the variance  

( )2 2 2

G G

1 1V( )
G G

D N N N N
∈ ∈

= − = −∑ ∑x x
x x

. 

Let N = q|G| + r with nonnegative integer q and r and 0 ≤ r < |G| (often q=0), i.e. r = N mod |G| is the 
remainder of N when divided by |G|. Note that NN =∑ ∈Gx x , so V(D) is minimized if and only if 

each Nx takes values on q or q + 1 for any x ∈ G. When r points in G appear q + 1 times and the 
remaining |G| − r points appear q times, V(D) reaches the minimal value r(|G| − r) / |G|2. Ai and 
Zhang (2004) showed that V(D) is a function of GWLP. In particular, if D has strength n−1, their 
result implies that )()( 2 dANDV n= . Combining these results, and using the following definition, 
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we obtain an upper bound for GR for some classes of designs and provide a necessary and sufficient 
condition under which this bound is achieved.  

Definition 4 (modified from Xu 2003).  
(i) A design D has maximum t-balance, if and only if the possible level combinations for all 

projections onto t columns occur as equally often as possible, i.e. either q or q+1 times, where 
q is an integer such that N = q|Gproj| + r with Gproj the set of all runs for the full factorial 
design of each respective t-factor-projection and 0 ≤ r < | Gproj|. 

(ii) An OA(N, s1 … sn, t−1) with n ≥ t has weak strength t if and only if it has maximum t-
balance. We denote weak strength t as OA(N, s1 … sn, t

−). 

Remark 4. Xu (2003) did not require strength t−1 in the definition of weak strength t, i.e. the Xu 
(2003) definition of weak strength t corresponds to our definition of maximum t-balance. For the 
frequent case, for which all t-factor projections have q=0 or q=1 and r=0 in Def. 4 (i), maximum t-
balance is equivalent to the absence of repeated runs in any projection onto t factors. In that case, 
maximum t-balance implies maximum k-balance for k > t, and weak strength t is equivalent to 
strength t−1 with absence of repeated runs in any projection onto t or more factors.  

Theorem 5. Let D be an OA(N, s1 … sR, R−1). Then ( ) ( )1

2

R
ii

R

r s r
A D

N
= −

≥
∏

, where r is the remainder 

when N is divided by 1=∏R
ii s . The equality holds if and only if D has weak strength R.  

As all R factor projections of any OA(N, s1 … sn, R
−) fulfill the necessary and sufficient condition of 

Theorem 5, we have the following corollary: 

Corollary 2. Suppose that an OA(N, s1 ... sn, R) does not exist. Then any OA(N, s1 … sn, R−) has 
maximum GR among all OA(N, s1 … sn, R−1).  

Corollary 3. Suppose that an OA(N, sn, R) does not exist. Let D be an OA(N, sn, R−1). Then 

( )
( )2( ) 1

1

Rr s r
GR D R

N s
−

≤ + −
−

, where r is the remainder when N is divided by sR. The equality holds if 

and only if D has weak strength R.  

Example 6. (1) Any projection onto three 3-level columns from an OA(18, 6136, 2) has 18 distinct 
runs (q=0, r=N=18) and is an OA of weak strength 3, so it has A3=1/2 and GR = 4 − ( )218918 2 ••
=3.5. (2) Any projection onto three or more s-level columns from an OA(s2, ss+1, 2) has GR = 3, since 
N = r = s2, so that the upper limit from the corollary becomes GR = R = 3. 

Using the following lemma according to Mukerjee and Wu 1995, Corollary 3 can be applied to a 
further class of designs. 

Lemma 1 (Mukerjee and Wu 1995). For a saturated OA(N, s1
n1s2

n2, 2) with 
n1(s1−1) + n2(s2−1) = N − 1, let δi(a, b) be the number of coincidences of two distinct rows a and b in 
the ni columns of si levels, for i = 1, 2. Then  

s1 δ1(a, b) + s2 δ2(a, b) = n1 + n2 − 1.  

Consider a saturated OA(2s2, (2s)1s2s, 2), where r = N = 2s2, s1 = 2s, s2 = s, n1 = 1, n2 = 2s. From 
Lemma 1, we have 2δ1(a, b) + δ2(a, b) = 2. So any projection onto three or more s-level columns has 
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no repeated runs, and thus it achieves the upper limit ( ) ( )2224 −−−= ssGR  according to 
Corollary 3. 

Corollary 4. For a saturated OA(2s2, (2s)1 s2s, 2), any projection onto three or more s-level columns 
has ( ) ( )2224 −−−= ssGR , which is optimum among all possible OAs in 2s2 runs.  

Example 7. Design 1 of Table 3 is isomorphic to a projection from a saturated OA(32, 8148, 2). A3 
attains the lower bound from Theorem 5 (32•(64−32)/322 = 1), and thus GR attains the upper bound 
4−(1/3)½ = 3.42 from the corollary. 

Because of Theorem 4, any upper bound for GR is of course also an upper bound for GRind, i.e. 
Corollaries 3 and 4 also provide upper bounds for GRind. However, for GRind the bounds are not tight 
in general; for example, GRind = 3 for the design of Example 7 (see also Example 9 in the following 
section).  

Butler (2005) previously showed that all projections onto s-level columns of OA(s2, ss+1, 2) or 
OA(2s2, (2s)1s2s, 2) have GMA among all possible designs.  

5. Factor wise GR values 
In Section 3, two versions of overall generalized resolution were defined: GR and GRind. These take a 
worst case perspective: even if a single projection in a large design is completely confounded – in the 
case of mixed level designs or GRind affecting perhaps only one factor within that projection – the 
overall metric takes the worst case value R. It can therefore be useful to accompany GR and GRind by 
factor specific summaries. For the factor specific individual df perspective, one simply has to omit the 
maximization over the factors in each projection and has to use the factor of interest in the role of Y 
only. For a factor specific complete confounding perspective, one has to divide each projection’s aR() 
value by the factor’s df rather than the minimum df, in order to obtain the average R2 value for this 
particular factor. This leads to  

Definition 5. For an OA(N, s1 … sn, R−1), define 

(i) 
{ }
{ } { }

( )
1

,...,,max1 2

i \ ,...,1
,...,)(tot

2 −
−+=

⊆ i

RR

n
uui s

uuiaRGR
R

 

(ii) ( )
R

R
uuinuuii rRGR ...1},...,1{},...,,{)(ind 2

2

;max1 XX
⊆

−+= , with Xi the model matrix of factor i and Xu2…uR
 

the R−1 factor interaction model matrix of the factors in {u2,…,uR} in normalized orthogonal 
coding, and r1(Y;X) the first canonical correlation between matrices X and Y. 

It is straightforward to verify that GR and GRind can be calculated as the respective minima of the 
factor specific GR values from Definition 5: 

Theorem 6. For the quantities from Definitions 2, 3 and 5, we have 
(i) GR = mini GRtot(i) 
(ii) GRind = mini GRind(i) 

Example 8. The Taguchi L18 has GR = GRind = 3, and the following GRind(i) and GRtot(i) values 
(GRind(i) = GRtot(i) for all i): 3.18, 3, 3.29, 3, 3, 3.29, 3.29, 3.29. When omitting the second column, the 
remaining seven columns have GR = GRind = 3.18, again with GRind(i) = GRtot(i) and the value for all 3-
level factors at 3.42. When omitting the fourth column instead, the then remaining seven columns 
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have GR = 3.18, GRind = 3, GRtot(i) values 3.18, 3.29, 3.29, 3.42, 3.29, 3.29, 3.29 and GRind(i) values the 
same, except for the second column, which has GRind(2) = 3. 

GR from Def. 2 and GRind from Def. 3 are not the only possible generalizations of (4). It is also 
possible to define a GRtot, by declaring only those R factor projections as completely confounded for 
which all factors are completely confounded. For this, the factor wise average R2 values for each 
projection – also used in GRtot(i) – need to be considered. A projection is completely confounded, if 
these are all one, which can be formalized by requesting their minimum or their average to be one. 
The average appears more informative, leading to  

{ }
{ }

( )∑
=⊆

−
−+=

R

i u

RR

n
uu

i
R s

uua
R

RGR
1

1

 ,...,1
,...,tot 1

,...,1max1
1

.  (6) 

It is straightforward to see that GRtot ≥ GR, and that GRtot = GR for symmetric designs. The 
asymmetric design of Table 2 (Example 3) has GR = 3 and ( ) 12.33311113 =++−+=totGR
> 3, in spite of the fact that two of its factors are completely confounded. Of course, mixed level 
projections can never be completely confounded according to (6), which is the main reason why we 
have not pursued this approach. 

The final example uses the designs of Table 3 to show that GRind and the GRind(i) can introduce 
meaningful differentiation between GMA designs. 

Example 9. All designs of Table 3 had A3=1 and GR=3.42. The information provided in Table 3 is 
insufficient for determining GRind. Table 6 provides the necessary information: the largest canonical 
correlations are the same regardless which variable is chosen as the Y variable for seven designs, 
while they vary with the choice of the Y variable for three designs. There are five different GRind 
values for these 10 designs that were not further differentiated by A3 or GR, and in combination with 
the GRind(i), seven different structures can be distinguished.  

Table 6. Largest canonical correlations, GRind(i) and GRind values for the GMA OA(32, 43, 2) 
 r1(1;23) r1(2;13) r1(3;12)  GRind(1) GRind(2) GRind(3)  GRind 

1 1.000 1.000 1.000  3.000 3.000 3.000  3.000 
2 0.866 0.866 0.866  3.134 3.134 3.134  3.134 
3 0.707 0.707 1.000  3.293 3.293 3.000  3.000 
4 0.707 0.707 0.866  3.293 3.293 3.134  3.134 
5 0.707 0.707 0.791  3.293 3.293 3.209  3.209 
6 0.707 0.707 0.707  3.293 3.293 3.293  3.293 
7 0.707 0.707 0.707  3.293 3.293 3.293  3.293 
8 0.707 0.707 0.707  3.293 3.293 3.293  3.293 
9 0.612 0.612 0.612  3.388 3.388 3.388  3.388 

10 0.707 0.707 0.707  3.293 3.293 3.293  3.293 
 

The differentiation achieved by GRind is meaningful, as can be seen by comparing frequency tables of 
the first, third and ninth design (see Table 7). The first and third design have GRind=3, which is due to 
a very regular confounding pattern: in the first design, dichotomizing each factor into a 0/1 vs. 2/3 
design yields a regular resolution III 2-level design (four different runs only), i.e. each main effect 
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contrast 0/1 vs. 2/3 is completely confounded by the two-factor interaction of the other two 0/1 vs. 2/3 
contrasts; the third design shows this severe confounding for factor C only, whose 0/1 vs. 2/3 contrast  

 

Table 7. Frequency tables of designs 1, 3 and 9 from Table 6 

Design 1 

, , C = 0 

 

   B 

A   0 1 2 3 

  0 1 1 0 0 

  1 1 1 0 0 

  2 0 0 1 1 

  3 0 0 1 1 

 

, , C = 1 

 

   B 

A   0 1 2 3 

  0 1 1 0 0 

  1 1 1 0 0 

  2 0 0 1 1 

  3 0 0 1 1 

 

, , C = 2 

 

   B 

A   0 1 2 3 

  0 0 0 1 1 

  1 0 0 1 1 

  2 1 1 0 0 

  3 1 1 0 0 

 

, , C = 3 

 

   B 

A   0 1 2 3 

  0 0 0 1 1 

  1 0 0 1 1 

  2 1 1 0 0 

  3 1 1 0 0 

Design 3 

, , C = 0 

 

   B 

A   0 1 2 3 

  0 1 1 0 0 

  1 1 0 1 0 

  2 0 1 0 1 

  3 0 0 1 1 

 

, , C = 1 

 

   B 

A   0 1 2 3 

  0 1 1 0 0 

  1 1 0 1 0 

  2 0 1 0 1 

  3 0 0 1 1 

 

, , C = 2 

 

   B 

A   0 1 2 3 

  0 0 0 1 1 

  1 0 1 0 1 

  2 1 0 1 0 

  3 1 1 0 0 

 

, , C = 3 

 

   B 

A   0 1 2 3 

  0 0 0 1 1 

  1 0 1 0 1 

  2 1 0 1 0 

  3 1 1 0 0 

Design 9 

, , C = 0 

 

   B 

A   0 1 2 3 

  0 1 1 0 0 

  1 1 0 1 0 

  2 0 0 1 1 

  3 0 1 0 1 

 

, , C = 1 

 

   B 

A   0 1 2 3 

  0 1 0 1 0 

  1 0 1 0 1 

  2 1 1 0 0 

  3 0 0 1 1 

 

, , C = 2 

 

   B 

A   0 1 2 3 

  0 0 1 0 1 

  1 1 0 0 1 

  2 0 1 1 0 

  3 1 0 1 0 

 

, , C = 3 

 

   B 

A   0 1 2 3 

  0 0 0 1 1 

  1 0 1 1 0 

  2 1 0 0 1 

  3 1 1 0 0 

 

is likewise completely confounded by the interaction between factors A and B. Design 9 is the best of 
all GMA designs in terms of GRind. It does not display such a strong regularity in behavior. GRind 
treats Designs 1 and 3 alike, although Design 1 is clearly more severely affected than Design 3, which 
can be seen from the individual GRind(i). However, as generalized resolution has always taken a “worst 
case” perspective, this way of handling things is appropriate in this context.  
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6. Discussion 
We have provided a statistically meaningful interpretation for the building blocks of GWLP and have 
generalized generalized resolution by Deng and Tang (1999) and Tang and Deng (1999) in two 
meaningful ways for qualitatitve factors. The complete confounding perspective of GR of Definition 2 
appears to be more sensible than the individual df perspective of GRind as a primary criterion. 
However, GRind provides an interesting new aspect that may provide additional understanding of the 
structure of OAs and may help in ranking tied designs. The factor wise values of Section 5 add useful 
detail. It will be interesting to pursue concepts derived from the building blocks of GRtot(i) and GRind(i) 
for the ranking of mixed level designs. As was demonstrated in Section 5, GR from Def. 2 and GRind 
from Def. 3 are not the only possible generalizations of (4) for qualitative factors. The alternative 
given in Equation (6) appears too lenient and has therefore not been pursued. The concept of weak 
strength deserves further attention: For symmetric designs with weak strength t according to Def. 4, 
Xu (2003, Theorem 3) showed that these have minimum moment aberration (MMA) and 
consequently GMA (as MMA is equivalent to GMA for symmetric designs) if they also have 
maximum k-balance for k = t+1,…,n. In particular, this implies that an OA(N, sn, t−) with N ≤ st has 
GMA, because of Remark 4. Here, we showed that designs of the highest possible resolution R 
maximize GR if they have weak strength R. It is likely that there are further beneficial consequences 
from the concept of weak strength.  

Appendix A: Proof of Theorem 1 
Proof. Let MC = (1N M1;C … MR−1;C), with Mk;C the model matrix for all k-factor interactions, 
k=1,…,R−1. The assumption that the resolution of the array is R and the chosen orthogonal contrasts 
imply Xc

TMk;C = 0 for k < R–1, with Xc as defined in the theorem. Denoting the R−1-factor interaction 
matrix MR−1;C as XC, the predictions for the columns of Xc can be written as  

( ) ccc N
XXXXXXXXX T

CC
T

C

1

C
T

CC
1ˆ ==

− ,  

since XC
TXC = N Idf(C). As the column averages of cX̂  are 0 because of the coding, the nominators for 

the R2 values are the diagonal elements of the matrix  

cc
N

cccc NN
XXXXXXXXXXXX

IXX

T
CC

TT
CC

T
CC

T
2

T 11ˆˆ
)C(dfC

T
C =

== .  

Analogously, the corresponding denominators are the diagonal elements of  

,)(df
T

ccc NIXX =   

which are all identical to N. Thus, the sum of the R2 values is the trace of ccN
XXXX T

CC
T

2
1

, which 

can be written as  

( ) ( )cccc NN
XXXXXXXX T

C

TT
C2

T
CC

T
2 vecvec11tr =⎟

⎠
⎞

⎜
⎝
⎛ ,  (7) 

where the vec operator stacks the columns of a matrix on top of each other, i.e. generates a column 
vector from all elements of a matrix (see e.g. Bernstein 2009 for the rule connecting trace to vec). 
Now, realize that  
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 ( )
RuuN

gf

N

i
gicfic ...,1

T

),(1
),(),(C

TT
C 1

vecvec X1XXXX ×
=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛= ∑ ,  

where an index pair (i, j) stand for the i-th row and j-th column, respectively, and the columns in 

Ruu ...,1
X  are assumed to appear in the order that corresponds to that in ( )TT

Cvec cXX  (w.l.o.g.). Then, 

(7) becomes  

( )RRNuuuuN uua
N RR

...,1
1

T
1

T
...,...,12 11

=×× 1XX1 ,  

which proves the assertion. /// 
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