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1. Introduction.

In this paper we investigate the generalized Stokes resolvent problem on
some domain @SR, n=2,

Au—Au+9p=f in 2
dvu=g inf (1.1)
=0 on af2
where the resolvent parameter 4 is contained in the sector
S, = {0#z=C; |argz|<m—¢}, 0<er;

=y, -, foeLli2)", 1<g<o, is the prescribed force and g is the given
divergence of the problem. We are interested in L%estimates of the unknown
velocity field u=(u,, ---, u,) and the pressure 5. In particular we have the
following aims:

—Up to now most research concerns the resolvent problem (1.1) when div «
=0; the case g+#0 seems to be a rather new aspect although there are
many important applications (e.g. for treating more general boundary
value problems and for using cut-off procedures).

—We include new unbounded domains having noncompact boundary ¢£ such
as perturbed half spaces.

—We give a self-contained approach to the half space problem which rests
on the multiplier technique.

—We assume that the boundary is of class C*!only and include results for
cones in R*, n=3, with opening angle close to x.
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of Hydrodynamics”, Universities of Bayreuth and Paderborn.
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—Solving (1.1) yields an important special class of solutions weW?*1()"
NWEa™ of the divergence problem div u=g.

To describe our main results we formulate some assumptions on the domains
under consideration and introduce some notations. In this paper, 2 is the R",
the half space

R: = {x=(x', x,)eR"; x,>0},

a bounded or exterior domain or a domain which is obtained from the half
space by a perturbation within a finite region. In Section 3 we also consider
the bended half space H, defined by x,>w(xy, ---, Xx._1) where |0,w]-, =1, -,
n—1, are sufficiently small. The precise description for @=R" and 2+H,
reads as follows.

ASSUMPTION 1.1. Let QS R*, n=2, be ¢ domain with boundary o0f2<Ch!
and suppose one of the following cases:
(1) 8 is bounded
(ii) 8 is an exterior domain, i.e., a domain having a compact nonempty com-
plement
(ili) 2 is a perturbed half space, i.e., there exists some open ball B such
that §\B=R"\ B,

The last condition (iii) means that £ behaves like R? for sufficiently large
{x]. The assumption d2< C*! means that for each x=02 there exists an open
ball B, centered at x and a function = C"(G) on some domain GESR*"! such
that after a rotation of the Cartesian coordinates, if necessary, the following
holds: y,>w(y’) for all (3", ¥y.)EQ2NB., y.<w(y") forall (¥, y,)S(R2)N\B.
and y,=e(y’) for all (', y.)=0@2)N\B., where y'=(y,, -, yn_1).

We will use the standard notations L%(£) with norm | -] 9., (or |-], if the
underlying domain is known from the context), Lfc(2), Lic(2) and W),
Wi, W>4R), etc. for Sobolev spaces of scalar functions. In particular, ue
L% (2) where 2 is the closure of 2 means that us LY(2\B) for all balls B
with 2B+ @. For vector-valued functions in L%2)*, etc. we will use the
same symbol |-J, for the L%norm ; more generally [[(f1, -+, fulle=(2%: | f:[DV2
for fi=LY) or LY2)", etc.. For 1<g<<e let ¢’ denote the dual exponent,
i.e.,, 1/¢+1/¢’=1, and let {-, -> denote the L%— L% -pairing of scalar, vector or
matrix functions on £. If X is a Banach space and X* its dual space, then
we write [x*, x] for the evaluation of x*=X*in x=X. However for the trace
space W' YV?%9Q) and its dual W~V ¢(32) we use [-, -Jao. Further let 9,=
0/0x;, =1, -, n, V=(0,, -+, 8,), A=di+ --- +9} and V*=(3.0,)7 .. Finally let

DAy = WH(DNWEA(2)
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denote the usual domain of definition of the Laplace operator A=A, in L%space
with zero Dirichlet boundary condition.

In this paper we need the homogeneous Sobolev space W*9(Q) with norm
containing only the first order expression |[Vull;=(|8,ull3+ -+ +|d,ul}??. We
put

WryQ) = {ue Lib(2): Yue LY2)"}

with norm |[u|y1.e0,=|Vul, where we have to identify two elements differing
by a constant. If £ is bounded, L%.(£2) may be replaced by L%L). If 2 is
unbounded, then

C3(D) = {ulo: us C5R")},

the space of the restrictions to £ of all functions u=CG(R"), is a dense sub-
space of W*4®), see Lemma 5.1, i.e., we have

C(Q) 71 = We(Q).

Observe that if (u;) is a Cauchy sequence in C$(£2) under |V-|,, we know that
there are constants c;, €N, such that (u;-+c¢,) is converging in L%.(2), i.e., in
each L¥QNB) where B is any ball.

1f Q is bounded, then we may fix a representative u& W"4(Q) by SQua’x:o,

Therefore, setting
Lg(Q) = {ILELQ(Q) . SQudx:O} s

we may identify
Wy = Wha(Q)N LYQ)
in this case.
Let
W Q) = [ (2)]*

be the dual space of W"?'(Q) endowed with the norm

lglw-rea =lgll-re= sup [[g v1]/Voly .

0 veW . ¢/ ()

If 2 is unbounded, each functional g& W*%Q) is determined by its restric-
tion to the dense subspace CS(2)SW'4'(), thus we have
lgllci, = sup ILg, v]I/| Vol
020ECT (D)
and the further restriction to C5(£2) vields a well defined distribution in the
usual sense. Consider now any g&W"%2) for unbounded £. Then the func-
tional
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g, riv—>{g, v> = Sggva’x, ve C3(2),

being identified with g, yields a well defined element in W~%Q) if and only if
it is continuous under [|Vol, ; we write g€W (AW 9Q) in this case. Thus
we set

WhA(QNW-9(Q2)

= {geW*yQ): {g, -> continuous on CF(Q) under |V-[,}.

Observe that the test functions ve C(2) used here may be nonzero on 62 and
easy examples show that not every geW'4(#) yields a functional in W-%4Q),
see the Appendix. Thus the space W %) should not be confused with the
usual space W HYH={Wi¥(2)]* which is too large for our purpose, we need
the restriction geW" 4N\ W-4Q2) for solving the system (1.1).

However, if 2 is bounded, each g=W'4Q) with Sogdx:O yields a func-

tional <g, ->:v—<{g, v> which is continuous on W"?(Q). Thus we have
WraDNLYSW-+4Q) in this case. See the Appendix for further properties
on Whi(Q).

The spaces W482) and W %) are natural for the problem (1.1); W*%(Q)
is the space for the pressure p and Wr9(@NW-1%Q) is the natural space for
the divergence g=div u in the system (1.1} if £ is unbounded.

In this paper ¢, ¢y, ¢s, -+, C, Cy, C,, --+ are positive constants which may
change from line to [line.

The next theorem is our main result. [t yields the unique solvability of
the system (1.1) for A1&5, as well as a priori estimates. These are valid away
from A=0, i.e., for || =d>0 with a constant C depending on ¢ which is arbi-
trarily given. Then we give conditions for the validity of the a priori esti-
mates even near A=0, i.e. the constant C does not depend on 4. Just these
properties for small |1] have important consequences later on.

THEOREM 1.2. Let 1<g<oo, 0<e<n, 0>0 and let Q= R", n=2, be a domain
satisfying the Assumption 1.1. Then for every A&S., [ LY and geWr1(Q)

NWL9Q) if Q is unbounded or g&W“i(Q) with Sdix:O if 2 is bounded,

there exists a unique solution (u, P)ES DAY X W UR) of the generalized resolvent

problem
Au—Au+Vp = f, divu=g.

The solution (u, p) satisfies the a priori estimales

[Aull g+ VPull VDI £ CUF o+ Vgla 48] 21, ) (L.2)
and
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[Aullqt+ | —Au+Vpl, = CU fllet 14110, (1.3)

where C=C(L, q, &, 6)>0 is a constant and || =0.
The constant C in [(1.2) 1s independent of & tf one of the following conditions is
satisfied

(1) 2 s bounded. In this case the term ||V'ull, in (1.2) may be replaced

by lullweewy and A=0 is included.

(iiy £ is an exterior domain or a perturbed half space and 1<q<n/2, n=3.
Further the constant C in (1.3) is independent of 0 if one of the following con-
ditions is satisfied :

(iii) R 7s bounded.

(iv) 2 is an exterior domain or a perturbed half space and n/(n—2)<g<oo,

n=3.

In the whole space 2=R" problem (1.1) has the form

Au—Aut+Vp=f
(L.4)
divu =g
and D(A)=W=»R"). Next we formulate our results for the whole space and
half space problem. In these cases there are no restrictions on the validity of
the estimates and (1.3) for small |4].

THEOREM 1.3 (whole space and half space). Let n=2, 1<g<oo, 0<e<r and
let Q=R" or Q=R?. Then for every fSLUM", geWA(DAW-4Q) and
AES, there exists a unique solution (u, p)E DAY X WUQ) of

Au—Au+Vp=f, divu=g.

(1) C(estimates) The inequalities (1.2} and (1.3) hold true for all A in S, with
some constant C=C(n, q, €)>0.

(il) (regularity) If for some s&(1, «) additionally feLi(2)" and ge
WEs(QNW5(Q), then uSDA,)" and pSW(Q).

Taking the limit 2—0 we obtain existence, uniqueness and regularity results
for the Stokes system (1.4) or (1.1) in £=R"™ or R* when 1=0; see
2.6. By a perturbation argument similar results as in are obtained
for the bended half space

H, = {x=(x', x,)ER"; x,>0(x")}

with x'=(x, ---, x,_,) where w: R*'->R is a function in WiLiR"*"!) with
100w, =1, ---, n—1, sufficiently small; see [Theorem 3.1. As a special case
we consider the convex or concave cone
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H, = {x=(x', x,)ER"; x,>alx’|},
where o(x)=a|x'|=a(xi+ - +x37_)"2

COROLLARY 1.4 (cones). Let n=3, 1<qg<n—1, 0<e<n, acR. Then there
exists a constant K=K (n, q, e)>0 such that if |a| <K, then for every fe LYH )",
gEWY HINW T H,) and ASS. there is a unique solution (u, p)ED(A)"X
WHa(H.,) of

Au—Au+-Np=f, divu=g.

Furthermore (u, p) satisfies the inequality (1.2) for all A€S, with some constant
C=Cla, n, q, )>>0.

There are many references on (1.1) if g=divu=0 and if 2 is a bounded

or exterior domain with boundary of class C? at least, see [7], [11], [18], [19],
[227, [25], [29], [30]; for results on half spaces see [2I], [28]. If £ is bounded
with 8 C*#, 0<u<1, Giga [18] proved the estimate and
(i) in the case g=0 by the theory of pseudo differential operators; if £ is an
exterior domain with 02 C?# and g=0 he proved the estimate only for
A2€S,, |4|=d6>0. This restriction on || could be removed by Borchers-Sohr
[7] if n=3 (and g=0). A completely different proof of the estimate if
g=0 and @S R?® is a bounded or exterior domain with 2= C* has been given
by Solonnikov [25]; here 0<e<z/2 could not be prescribed arbitrarily ; see v.
‘Wahl for n>>3. For the generalized Stokes problem with 1=0 and g=0
we refer to [9], [13], [16] [17], [26], but for the crucial case 1#0, g#0 we
only know the references [12], [19]; in some cases g+0 are treated in
exterior domains while (1.1) in R*, R} and bended half spaces is investigated
in [12Z]. Even for the case g=0 we have no reference on 4+0 for cones or
perturbed half spaces.

Let us consider some consequences of the theorems above.
yields a new approach to the divergence problem

divu=g in £

1.5
u =0 on 8% . 1.5

For a bounded domain £ with boundary in C*' Bogovski [3], constructed
a bounded linear operator R : LY{2)—-Wie2)* such that u=Rg is a solution of
(1.5) satisfying [Rgllwrewy=clgll,, Additionally R maps W) LYQ) into
we2)m. See also [8], [30]. However, although important it has not been
proved up to now whether or not this operator R is continuous from W*4(Q)N
L¥D) to W2UQ)y"NWU(82)". Our operator R in below has this
property and the a priori estimates are not available up to now from the other
approaches to (1.5); for partial results in bounded domains see [2]. Setting
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f=0 and, e.g., A=1 in (1.1), Theorems [.2 and yield the following result
on (1.5).

COROLLARY 1.5 (divergence problem). Let Q=R" or let QS R*, n=2, be a
domain satisfying the Assumpiion 1.1. Further let 1<g<oo. Then there exists
a linear bounded operator R:W'U@DNWID—DA)" if 2 is unbounded or
R:iWYIDNLYUD)—DAY" if 2 ¢s bounded such that u=Rg is a solution of (1.5)
for all geW I @NW9Q) or geWr«DNLYR) respectively; u=Rg salisfies
the estimates

fully < Clgllorg and  fuflweag, < C(IVglle+lgl-10)
where C=C(L, q)>0 is a constant.

Another application of our results concerns the analytic semigroup generated
by the Stokes operator—a major tool when solving the instationary Stokes or
Navier-Stokes equations. For the definition of the Stokes operator we recall the
Helmholtz projection

Py LYYy —> LYD)

from L%£2)* onto the subspace LY)=CP Q)" where C3,(2)={ucCy2)";
div =0} ; for the construction of P, for all classes of domains considered in

this paper see [15], [22], [24], and The Helmholtz projection
P, is a bounded linear operator with null space YW Q)= {Ip: p= W (D)}
yielding the decomposition

J=Fo+Vp with fo=PRf, pe W Q),
for fe LY2)*. Then the Stokes operator A, with domain of definition 9(A4,)=
DAY*NLYL) is defined by
Ay DAY — LYD),  Au= —PAu.

Considering problem (1.1) when g=0 and applying the operator P, we get that
(1.1) is equivalent to

A+AQu=fe LL2), u&cDA). (1.6)

COROLLARY 1.6 (Stokes operator). Let 1<qg<oo, 0<e<n and let Q=R" or
let QESR*, n=2, be a domain satisfying the Assumption 1.1. Then for each
AES, the inverse operator (A4 A" exists as a bounded operator on LI(Q).

(i) Excepting the case that 2 is an exterior domain or a perturbed half

space in R* the operator estimate

1A+ A)7H = C/1A1 for all 2E€S. (1.7

holds true with a constant C=C(Q, q, €)>0. The same result is obtained
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for a come H, with |a| sufficiently small, if n=3 and 1<g<n—1.
(ii) If QCR? is an exterior domain or a perturbed half space, then

IA+AQ™ = Co/1A1 for all A=S., 12120>0, (1.8)

with Cs=C(&, g, &, 6)>0.
(ili) A, is a closed operator and its dual operator A¥ equals Ay, where 1/q
+1/q¢=1.

The assertion [(1.7) implies that —A, is the infinitesimal generator of a uni-
formly bounded analytic semigroup {e *4¢},., and that ¢ *4q1,—0 as t—oco for all
u,=LY2). By (1.8) again — A, generates an analytic semigroup but we do not
know whether {e~'44},., is uniformly bounded for {=0. As mentioned earlier

the resolvent estimates and (1.8) are known by [7], for bounded and
exterior domains with a more regular boundary of class C*#, 0<{pu<1.

REMARK 1.7. We note that the results for perturbed half spaces can be
improved. There is a constant C independent of 6>>0 such that the a priori
estimate holds true for 1<g<n, n=2, and (1.3) for n/(n—1)<g<oo, n=2.
Analogously the Stokes operator satisfies for 1<g<eo, n22, with C=
C(£, q, e)>0. For the proof we need some technical extensions in the proof
of below by exploiting the zero boundary values of u on the non-
compact boundary of the perturbed half space.

The organization of this paper is as follows. In Section 2 we consider the
resolvent problem (1.1) in the whole space and in the half space where the
major tool is the multiplier theorem. The problem for bended half spaces and
for cones is investigated in Section 3 by using a perturbation criterion and
referring to the half space problem. In Section 4 we use the localization method
and perturbation arguments to prove in a series of lemmata, and
finally we prove Corollary 1.6l In the Appendix we prove some properties of
the spaces We(Q) and WH4(DNW%Q) and of the Helmholtz projection.

2. The whole space and the half space.

Consider the generalized resolvent problem (1.1) for R® and R?. We start
with the proof of when £=R"; in this case (1.1) has the form
(1.4).

PROOF OF THEOREM 1.3 FOR 2=R". Using W*4R")=C7(2) ", by the
well known fundamental solution for A and the Calderén-Zvgmund theorem we
see that the operator

—A: WHURY — WHRY,  p—[—Ap, -],
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where the functional [—Ap, -] is defined by
[—Ap, o1 =<Vp, Vo, =CHRY),

is an isomorphism. In particular the equation —Ap=F<=W-1%R™ has a unique
solution peW LA R") such that [|[Vp[,<cl|F|_.,, (for the corresponding result for
the Stokes equation in R” see [13]). In the first step to solve (1.4) we find a
vector field u,=L%R™)" of the divergence equation divu,=g=W "%R") in the
form u,=YP; we choose P=TW"I(R") to be the weak solution of AP=g. Hence

luglly =VPlq = cllgil-1q.

Since geW"4R") we easily get that |V2u,|< LYR") and |Vu,|,<cl|Vgl, By
an interpolation argument, | v]A1Vu,llo<c(|Au |+ 1|V?u,lly); this inequality also
implies that ||g[, may be estimated by |g|_., and |Vg|, Next we solve

—Ap = —div f+(A—A)g & WYR™)
and get a unique peW"YR"™) satisfying
IVplle = cllf, VOllaT 28] -1 -
Finally we find a solution veW?*YR")" of the equation
(A—Ap = f—A—Au,—Vp
using Fourier transform. By the multiplier theorem
12w+ vV TATTol + 1Vl < ¢l f —(A—A)u ,—Vpll,
= (7, Vel t+liaghi- g -

Then u=v+v, together with p is a solution of (1.4) satisfying the resolvent
estimate [1.2). To prove uniqueness let (u, p) be a solution of the homogeneous
Stokes system (1.4). Then Ap=0 which yields Vp=0. Thus (A—A)u=0. Since
A&R_, the only solution in LI(R™)" of this equation is u=0.

To prove the estimate (1.3) consider the solution (u, p)€D(A,)"» X W' 4R™)
of (1.4). Further for given f& LY (R™" let (i, P)SD(A,)* X W ¥'(R") be a solu-
tion of

Mi—AG+9p=F, divi=0 in R*.
Then
Cu, > =<u, Ai—Ai+Vp> = Qu—Au, i>—[g, §]

Using the L¢-estimate for (if, p) we get that
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l<u, F>| £ %(f!flfqilﬂﬁllwrHigii_l,qHVﬁHq')
< l—j|~<nfnq+uzgu-l.qnifr!qr :

Since feLY(R™" was arbitrary, the estimate (1.3) now follows easily. Thus
(i) is proved.

For the proof of the regularity property (ii) let s&(1, ) and assume that
additionally f& LS(R™)" and geW*(R")N\W*(R"). According to the preced-
ing part we find an additional solution (%, P)ESD(A)*X W's(R") of (1.4). By
our proof the solution (u, p) has an explicit representation in the sense of dis-
tributions which only depends on f and g and which is independent of 4.
Therefore this construction leads to the same pair when ¢ is replaced by s.
Thus u=1#, Yp=YH and the assertion (ii) is proved. o

REMARK 2.1. (i) Since in the previous proof the condition g= LY(2) was
not needed we have shown that W ¥(@Q)NW14Q) coincides with W92
W-r4Q) for 2=R". By a simple reflection argument this results also follows
for 2=R?. See for this property in other unbounded domains
satisfying the Assumption 1.1.

(i) Write f=(f’, f») with f'=(f,, -+, fa_1) and analogously u=(u’, u,).
Assume that f/ and g are even functions with respect to x, and that f, is odd
in x,. Then an easy symmetry consideration implies that »” and p are even
in x, while u, is odd. In particular u,(x’, 0)=0 for all x'=(x,, -, x,_)&
R,

Proor OF THEOREM 1.3 FOR £=RZ. Using a scaling argument, see e.g.
[5], it suffices to consider A=S,, 0<e<m, with |2]=1. Let us introduce the
notion of an even and odd extension of a given function ¢: R?—R: the even
extension ¢, is defined by

o0, 1) for 1,30
(Pe(x) ==

(P<x” _'xn) fOI' 7611.<O

while for the odd extension @u(x)=—¢(x’, —x,)if x,<0. Now we proceed with
the first four steps of the proof assuming that |2|=1.

Let f., g. denote the even extensions of f'< LYR%)"! and geW{R)N
W-t9(R"). Further let f,, be the odd extension of the nth component f, of f.
According to let (U, VP) denote the solution of the generalized
resolvent equation (1.4) with right-hand side F=(f/, fr. )€ L¥R")" and G=g.E
WhRHNAW-4R™). By Remark 2.1 (ii) the nth component U, of U vanishes
on ['=oR! while U'| p=¢’eW? Y29 [")*~! may be nonzero. Let ||-|,_,,,, denote
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the trace norm in W2 Y%¢([™), Since |1|=1,
16l-1/0.¢ = CIU w2 acam)
= CUIF, V&) e wmy + | Gliw-1.aceny) (2.1)
= CU, Vollat+lgli-ig)-

Subtracting (U, VP) the generalized resolvent problem (1.1) is reduced to the
problem

Au—Au+Vp =90 in R}
divu =0 in R?

W=¢ onl

2.2)

Uy = 0 on ['.

Given ¢’'eW?* 2e([")»~' and A&S., |Al=1, we prove the existence of a unique
solution (u, V)W YR X LYYR™)" of (2.2); moreover we show that

G, Vu, Vou, VD)g = Cllg [e-1/0.q - (2.3)

Then a combination of and of (2.3) will complete the proof of
1.3 (0.

In the second step of the proof we eliminate »’ and the pressure p. Let
V', A’ and div’ denote the gradient, the Laplacian and the divergence with re-
spect to the n—1 variables x’ only. Further let 6,=d/0x,. Then apply d,div’
to the first n—1 equations of (2.2) and —A’ to the nth equation of (2.2); adding
both scalar equations and inserting d,u,=-—div’ «’ on [* we are left with the
fourth order equation

—AA—ANu, =0 in B
U, =20 in I (2.4)
anun = —diV’QS’ On F.

~

We solve (2.4) by introducing the partial Fourier transform ~=F’ with re-

spect to the variables x’ in the sense of distributions,

1

(), xa) = Frul, 2 = ot

SRn_iu(x’, Xp)e ' dx!, Rt

Then (2.4) is transformed into a fourth order ordinary differential equation for
#,(l, x,) with respect to the variable x,; using the notation s={f’| for the
Euclidean norm of ’eR"! we get that
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(s*—8A+s =8, x)=0  in (0, o)
8L, 0)=0 2.5)
8attn(l’, 0) = —il'- ' .

For fixed 0={'eR"! and 2= S,, |A]=1, there is a unique bounded solution %,
of which is a linear combination of ¢~**= and ¢~*#***%n : to be more precise,

ﬁn(cly xn) = Z‘C/ 'm()(S: xn)é’
where
ma(s, X)) = (¢ A en—gmeTn) (WA si—s) ", 2.7)

In the fourth step we give an explicit representation of the solution (u, p)
=((u’, u,), p) of (2.2). Applying div’ to the first n—1 equations of (2.2) we get

B, ) = ~g§<z+sz—aa>anan 2.8)

since div u=0. Defining u’ by &', x,)=0(T"/s)0.@, will yield a solution of
the homogeneous Stokes system but generally u’|r#¢’. Thus we add a term
from the kernel of A—A with vanishing divergence in R*"'. A simple calcula-
tion yields

W, ) = o+ (1= )R, 5.
o g A (2.9)
= —dami(s, %" 5 ¢EH(I-=3)AC, %)
with
R, x0) = e T gy (2.10)

where I denotes the identity matrix in R*"**" ! and {'{’ the dyadic product of
' with itself.

Before proving the L2(R")-estimates of (u, ¥p) and of the derivatives of u
we recall the multiplier theorem of Hoérmander and Michlin and give estimates
of the multipliers involved in (2.6), ---, (2.10).

DEFINITION 2.2. (i) A function meC~(R*'\{0}) is said to satisfy the
multiplier condition (M) if there are constants ¢,>0, £=0, 1, ---, [(n—1)/2]+1,
such that

sEIN Eml)) < ey for all 'R '\ {0},

where V'*=(3/0L;, --- 0/0C; )it i =1

(i) A function m*< C=((R*"\{0})X R,) satisfies the multiplier condition
(M*) if there are constants ¢,>0, k=0, 1, ---, [(n—1)/21+1, and a positive 6>>0
such that
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k PRk P! <
ST, 20| S

for all ’eR* '~ {0} and x,>0.

THEOREM 2.3 (see e.g. [27]). Let SIR™™), n=2, denote the Schwartz space
of rapidly decreasing functions on R"' and let me C*(R* ™\ {0}) satisfy the
multiplier condition (M). Then the operator T defined on S(R"™) by Tf=
(FYyYmF'f) admits an extension to a bounded operator T : LY(R**)— LYR"™1)
for each g=(1, ). Furthermore the norm of the operator T may be estimated
by ¢(g, n)-max{c,;0=k=[(n—-1)/2]+1}.

LEMMA 2.4, Let meC=(R"\{0}) satisfy the multiplier condition (M) and
let m*< C((R**\{0})XR,).
(i) If m* is a funclion only of (s, x,)ER? where s=1{{’| and if m* satisfies
the condition

-4
. Cre sxq

14+x, '

for some 0>0 and with constants c,, k=0, ---, [(n—1)/2]+1, then m*
satisfies the multiplier condition (M*).

(ii) If m* salisfies (M*), then e®Tam*({{’, x,) satisfies (M*) for some posi-
tive 0.

(iii) If m* satisfies (M*), then mm* satisfies (M*).

(gg)km*(s, Xz)

s < s>0, x,>0,

PROOF. (i) is an easy consequence of the chain rule. Note that the same
0>0 may be used in condition (M*). The assertion (ii) follows from Leibniz's
formula and the trivial estimate (sx,)*<c.(e)e®**=» for all s>0, x,>0 and suf-
ficiently small ¢>0. If m* satisfies (M*) with a given §,>0, then &®Znm*
satisfies (M*) for all d=(0, §,). Finally (iii) is a trivial consequence of Leibniz’s
formula. Obviously the same >0 may be used. n

LEMMA 2.5. Let A€S., 0<e<x, with |A|=1. Then the functions ¢~ ****=n,
smy(s, x,) and 0,my(s, x,) salisfy the multiplier condition (M*) with some 6>0
which depends only on ¢.

PROOF. Since |arg 2! <nm—e, £>0, it is easily seen that Re (+/A+5)=6,(1+5s)
for all s=0 with a constant §,=38,(e)(0, 1). Thus le "4+ %n| < %ng=doszn,
Differentiating we get

0

__(e—‘/i+32xn> —

as

Vits®

~Y2+s2zy

and more generally (9/9s)fe™ "4 ¥ Tn==g (s, sxy)e”"**¥%» with functions g,
where
sPlgels, sxa)l Z callH(sxa)t - +(sxa)")
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with constants cs, £=0, -, [(n—1)/2]1+1. Now the assertion for ¢~ ‘*****a fol-
lows from the previous observations and from (i). Considering
sme(s, x,) we prove in a first step the estimate

Cemﬁs.rn

<<
simo(s, Xa)| = x -

(2.11)

Obviously | vA+s2—s|=|4|/| vV/A+s?+s|=a/(1+s) with a constant a=a(e)>0.
Thus
simos, X)) < cs(l4s)e 05 n(g @ 4704 g0 a)

< es(14s)e %%,

Using the inequality sx,<ce‘% %372 we get for 6=(0, d,) if 0<s<1 or if
x,2=1. Finally for 0<x,<1<s the estimate

X
s|me(s, x,)] < csPe**n|l—exp < cstettn I

—AX,
St A/A+s?
yields [2.1T) To prove (M*) for k=1 note that

L ~Vi+s2x,

9 _ 1
55 Mol Fn) = mols, xn)(vmz’ 1n)+ vaitse©

and, by induction, that

(2 mats, x0) = &als, xabms, 2+ huls, wo)e” T
with functions g., A, such that
st 1gr(s, Xl +sP M hals, x2)] = ca(l+(sxa)+ - +(sxa)*).
Then the assertion for sm(s, x,) follows from

J

k .
sk(gag) (smy(s, x,)) = (s*grt ks gy _Dsmot+(s*  hy+hs*h,_Je= 457 %n

the previous inequality, [2.11), the estimates of ¢~ "4*522z and from
(). The third problem is now clear since 9,mo(s, *z)=—smy(s, X )—e" 4 +Zen,
[ -

Now we proceed with the 5th step of the proof of when @=R".
By Lemma 2.4] and Lemma 2.5 the function {’my(s, x,) in the definition (2.6)
of %, is a multiplier satisfying (M*). Thus for fixed x,>0 implies
that u,(-, x,)€LY(R"™Y) and that

fgn sl ety sledr < =B 1granieax.

Integrating with respect to x,=(0, o) we get that u,= LYR?) satisfying [u,|,
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Zc[|¢’||Larn-1,. Analogously (2.9), [2.10), Lemma 2.4, Lemma 2.5 and [Theorem
2.3 imply that ' L%(R%})" and that [u'{;<c|¢'[rerr-1,- Here we use that
{’/s and {'’/s? are multipliers of type (M). In order to estimate derivatives
of u we introduce »(x’, x,) as the L%solution of

(—02A —02)v(x!, x,) =0 in R?
v(x’,0)=¢" on .

From the theory of the Poisson semigroup (see [1], [27)) it is well known that
Yoe LARH*-Y, Ve LYR?) and that |(Vv, V2)[,<cll¢p lo-1/g.e- In terms of
partial Fourier transform, #(f’, x,)=e™%**»4’({’). Writing (2.6) in the form
(L, x2)=1Tmy(s, x,)e®" =, x,) we get that

N SN
Vunll, %) = iCmls, X052 W0, x,),
AN T
3uttn(l, 1) = (Bama(s, X)) divol, x

Thus [Theorem 2.3, Lemma 2.4 and Lemma 2.5 imply that Yu,=L4{R)* and
that [Vu.l,<ell¢' 2174« Analogously we get that (0, u., V2u,) | Scld o 170.0-
Concerning 6%u, we use the identity

B(L mo(s, %)) = [s(smy+e™ 472 7n) 4 oA s2e™ " 4r52 2Tl

and the fact that i{’/s and +/A+s?/(1+s) are multipliers satisfying the condition
(M). Then we proceed as in the previous estimates and get that [03u,],<
cll@’|2-1/0.- To estimate first and second order partial derivatives of u” we use
the representation (2.9), [2.10) and proceed as before. Thus we proved that
[(Vu, V2u)llg=cll¢’lla-1/q.o- Analogously we get an estimate of ¥ pe LY R?)"!
from [2.8). Finally [2.5)] and [2.8] yield anpm—(2+s —02)fi,; hence |[Vpl,=
clé’lso1/q.- Thus inequality (2.3) is completely proved and combining with [2.1}
we get the estimate [1.2).

The proof of the inequality (1.3) is the same as for R*. We only need the
solvability of the resolvent problem

~

Ai—Aii+Vp =7 in R?%
divi =0 in R (2.12)
=0 on I”

for fe LY (R™)" and the a priori estimate [1.2) (L.2) for d=D(A)", FEWh (RY).

To prove uniqueness let (u, p)E DAY X W YR?) be a solution of the gen-
eralized resolvent equation((l.1) with right-hand side f=0, g=0. Then F=
lu|®2z= LY (R™)" where # means the complex conjugate of u and Fud=

Xufdx:][ul]g<oo. By the existence part of proved just before we
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get a solution (#f, VH)E DAy )" X W (R?) of (2.12). Then simple approximation
arguments justify the following computation :

lullg = <F, u> = QAa—Aid+Vp, u)
=i, Au—Au> = @i, Au—Au+Ip>=0.

Thus =0, and consequently also Vp=0.
The proof of the regularity assertion is completely parallel to the proof for
the whole space problem; the solution pair (x, p) only depends on the distri-

butions f and g and does not depend on ¢. This completes the proof of Theo-
rem 1.2 for 2=R~,

Considering the limit 2—0 we get existence, uniqueness and regularity
results for the Stokes system

—~Au+Vp=/f in R
Vdivu=Yg in £ (2.13)
u=2>0 on o if Q=R".

COROLLARY 2.6 (Stokes system for R", R%). Let n=2, 1<¢<c and let
Q=R" or Q=R?. Then for every fSLUQ)", gcW"I(DNW YD), there exists
a solution (u, PYEWBAD"XWEARQ) of (2.13) with |Vu|sLY2) and the follow-
ing properties:

(1) (u, p) satisfies
V2 ullo+ Vol = CUSAINEND) (2.14)

with some constant C=C(n, q, €)>0. The pressure p s unique up 1o a
constant and the velocity field uis unique up to a linear polynomial a+ Ax
where a=C?, A=C™™ with trace(A)=0, if Q=R", and up to a linear

I

term (%)xn where a’€C™™ Y, if @=R?. If 1<q<n and l/n+1l/r=
1/q then we may single out a special solution by the condition |Vul&
L.

(i) If for some s=(1, ) additionally f& L5(Q)" and geW»s(@Q)NW13(2),
then |V?u|€ L Q) and p<W'(Q).

Proor. First we consider the uniqueness assertion. Let (1, p)EWHLL)" X
W) with |Vu|eLY2) be a solution of (2.13) with f=0, g=0. Then in
the case 2=R" we get Ap=0, and Vpe L(R™)* implies that Vp=0. Thus
Au=0 and A(V?u)=0 yielding V?u=0. Hence u is a linear polynomial a-+Ax
such that 0=div u=trace (4). If 1<¢<n, then Sobolev’s imbedding theorem
yields the existence of a constant c=R™ such that Vu—ce L"(R")™ where
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1/n+1/r=1/4.

Now let 2=R?. Using the notations in the proof of we NOwW
obtain the equations (2.4) with A=0, §’=0, i.e., A%u,=0, u,|r=0 and G.u,|r
=0. To prove that u#,=0 we use the partial Fourier transform #, of u, and
get that

(s*—an)(s*—an)in(l/, x2) =0, 2L, 0)=0, Gnita(l’, O =0

which is for 2=0. Then for s=0 we conclude that &, is a linear combi-
nation of ¢ **» and x,e **» since |Vu,;L%R?). Then the boundary condi-
tions vield 2,(, x,)=0 for £'=0, x,=0. Thus u,(x’, x,) does not depend on
x’. From |Viu,|e LYR") we see that u,=a-+bx, with a=0, b=0 using again
the boundary conditions for #,. Hence u,=0. Then div’#’=0, and the equa-
tion (2.13) for f==0, Vg=0 yields A’p=0. Since |Vp|< LYR"*) we conclude that
Vp=0 and Vp=0. Then —Au'=0 and u(x’, 0)=0 lead to the desired form

I
u(x’, xn):(%)xn with ¢’€C™"'; this is proved by the partial Fourier transform

as before.

The existence assertion immediately follows from by letting
A—0 for fixed f and g. This is possible since the constant C=C(n, g, €) in
does not depend on A. Indeed we may choose any sequence
(4,)=8. with 1,—0 as i—oc and consider the corresponding solutions (u,, P&
DA X WD) of (1.1) or (1.4). Due to we get supgl(Aguq, V2us,
Vpille<eo. Then we may assume, after possibly taking a subsequence, that
there are constants ¢; and linear polynomials a;+A;x, i N, such that u,—
(a;+A;x) and p,—c; converge locally in L? as i—co to some ue Li(2)" and
pe Lio(2), respectively, and that Vu,, ¥p, and ,u, tend weakly in L7 to V2u,
Vp and some u*, respectively. Since 1;—0, we see that V*u*=0 and con-
sequently u*=0 because of |u*|,<Cco. This leads to —Au+Vp=1, Vdivu=Vg
in the sense of distributions and to (2.14). Since divu;=g we conclude that
trace (A;) is convergent as i—-oco; thus we may assume that trace (A4,)=0 for
ieN. If Q=R? we get from u;|r=0 and the trace theorem that a,}+A;x|r
converges locally in LY(R""'); therefore we may suppose that a;=0 and A,x=

7

(Cz)l)x” which leads to u|r=0. If 1<g<n we may assume by Sobolev’s imbed-

ding theorem that |Vu|=L7(2) in both cases. This proves the existence of
some solution (u, p)EWERID)" X Wr4(£2) with ().

In order to prove the regularity property (i) let fe LY(Q)* L) and
gEWDNWS@@DNWHUDNAW3(2). Then the above procedure yields a
solution (i, $)E (Wi NWEL2)") X (W (@)W *(Q)) of (2.13) and i |30=0 if
Q=R". The uniqueness asgertion yields u=1# up to a linear expression and
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p=p5 up to a constant. This yields the desired assertion and [Corollary 2.6 is
proved. |

3. The bended half space.

Let w: R 'R be a Lipschitz continuous function with bounded gradient
V=03, -+, 0»_)w in B, and let H, be the bended half space defined by

H, = {x=(x', x,)&R"; x,>w(x")}.

Considering the generalized resolvent problem (1.1) in H, we get the following
main result which is only partially contained in and which enables
us to consider also cones.

THEOREM 3.1. Let n=2, 1<g<o, 0<e<n and wsCON R HNW IR ).
Then there are constants K=K(n, q, €)>0 and 1,=2,(0, n, q, €)>0 with the fol-
lowing properties:

(1) If |Vol-<K and |V0|.<co, then for all feLYH,)", geW"(H,)N
W-ta(H,) and AeS, with |A| =2, there exists a unique solution (u, p)&
DAY X WYUH,) of (1.1). This solution satisfies the a priovi estimates
(1.2) and (1.3) with a constant C=C(w, n, q, &)>>0.

(i) If additionally feL(H,)", geW s (HINW5(H,) for some s&(l, «)
and if [Vol.< min{K(n, q, &), K(n, s, &)}, |2 = max{(e, n, q, &),
(w, n, s, &)}, then usDA)" and p=W*s(H,).

(i) If nz23, 1<g<n~1, [Vol.=K and if V0| pn-1ge-1, =K or |||V 0.
<K, where |-|:x'—|x"|, then for all feL'(H,)", geW'i(H,)N
W-Y«H,) and all A<S, there exists a unique solution (u, PEDA)tX
Wh«H,) of (1.1). This solution satisfies the a priori estimate (1.2) with
a constant C=C(w, q, n, ¢)>0.

Proor. Following the problem in H, will be reduced to the half
space by elementary transformation and perturbation arguments. Let us intro-
duce the transformation ¢ : H,—R? defined by £=(&', %.)=¢(x)=(x", x,—ao{x")).
Obviously ¢ is a bijection with Jacobian equal to 1. For a function or a vector
field u on H, we define the function or vector field # on R? by #(X)=u(x).
Further we use the notations 5,=8/8%,, i=1, ---, n, V=(V', §,), A and div for
partial differential operators acting on the variables ¥=R". Then we obtain
the relations

aiu = (51_(810))31".)& y Zh:l) Ty n—1 s
Au(x) = [A+| V0|5 —2T', 0)-(76,)— (A0, J2(p(x),
V() = [V—(T'w, 03,15(x)),
div u(x) = [div—(T'e, 0)-5,1((x)

(3.1)
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and a similar formula for V2u(x). For usW?9H,) this leads to

lullacn,, = “ﬁ“Lquzﬁ) ;
IVullpem,, = C(l"]‘“V’CUHM)!WML‘?(R’b ; 3.2)

IVl 220,y S eIV @) V2| 19a7 ¢ | (T 2w)3 0t | 1207, -

w?

Finally, since for geW*¢(H,)"\W-9H,) the identity SH g(pdx:S Z@dx holds
for all p= C5(H,), we obtain v
lgl-1.q = cl&llw-vacrn, .

The estimate of ]I(V""w)énﬁ[qu(Rg) in (3.2) in terms of ]| 22r2, and
IV2@lizexn, is more complicated. By Sobolev’s imbedding theorem there is
a constant ¢>0 such that for all §>0

(T2 )iailean < 5 |V l21@san+017a) o, (3.3)

If 1<g<n—1, nz3, we define s>¢g by 1/(n—1)+1/s=1/g and use for each
%.>0 the inequality

iléna(, %n)”Ls(R"'"I) = C”ﬁ’énﬁ(: JNCn)”Lq(R””) »
the constant ¢ being independent of %,>0. If |[V%w|s L 2(R*"), then Holder’s
inequality yields

ITwiulfoan < ¢ dxa| | dx[(770) i’ 22)19

(3.4)
= Cﬂv'zwﬂ%nﬂ(nn'l)||ﬁ'5nﬁ[|%qm§_) .
If however |-||V?w|eL=(R" ') we use the weighted inequality
I 17008, Za)lltcrn-1y E V8t ¥a)llz2rn1,
for each %¥,>0 and obtain
KV 0)an il frary < cll - IV 2LV Initl$car, - (3.5)

To apply our perturbation argument we introduce the Banach spaces
X = DA KXW H), e, plx = [(Au, Vo, Ip)[,
Y = LYH,)" XW"S(H,)NWH,)),
I(Fs Dy =i, Vella+ildgl-1.q

and the operator
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Sei: X—Y, Spa(u, p) = (Au—Au+9p, —divu).

Further let )?, 17, (-1 % II-liy and §,“~ denote the corresponding expressions when
H,, u(x), V, etc. are replaced by R?, 4(¥), V, etc.. Using (3.1) we get the de-
composition

Sq 2(w, p)(x) = Sq 2(#t, HYE)+R(il, P)(E)
where the remainder R, is defined on X by
Ry(il, §) = (—|Vw|*%ii+2(T o, 0)-V6,1
HA )30 —(T'o, 00,5, (Vw, 0)-0,).

Note that S, , is an isomorphism from X to ¥ due to [Theorem 1.3 Using
3.3), 3.4) or we get that

IR, Pille = kIS, .G, Py with k<1

independent of A provided that |Vwll..<K and additionally || =4,, ||V ?@| rr-1zn-1,
<K or |||-|V?%!..<K for positive constants K and A,. Due to Kato’s pertur-
bation criterion §Q,A+Rq is an isomorphism from X to ¥ and consequently Sz
is an isomorphism from X to Y. Using again (3.3), (3.4) or [3.5)] we obtain the
estimate

I(u, Pix <l Pz < 6lS, (@, Pls
< aal(Se s H R, Bl < eallSq. 2, Iy

with constants ¢,, ¢;, ¢; and ¢, independent of 2. This proves the a priori esti-
mate in (i) and (iii). Finally the estimate (1.3) in (i) follows by duality
arguments as explained in Section 2.

It remains to prove (ii). For this purpose we repeat the previous proof for
both exponents ¢ and s and introduce the notations X, ¥, and X;, Y, in order
to distinguish the spaces X, YV for different exponents. Then we consider the
intersection X,NAX, with norm |-lx ~x,=l-lx,+]-lx, and correspondingly
Y ,"Y. The same perturbation argument as above now yields that the operator

(u, p)— (Au—Au++Vp, —div u)

is an isomorphism from X,NX; to Y ,NY;. Therefore, for given feL4(H,)"N
LsH)", geWr{HINWYSHINW L Y(H)INW5(H,) we find a solution (%, $)
E(@DAY* N DA™Y X (WEUH,INWS(H,)) of (1.1). Since the above solution (u, p)
DA NWHH,) is unique we obtain u=i#, p=p. This proves the desired
regularity property (ii). The proof of is complete. |

ProOF OF COROLLARY 1.4. For the case H,, where w(x’)=alx’|, we use
the condition |||+ |V*w/[.=K in (iii). =
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4. Proof of Theorem 1.2.

In this section let QS R", n=2, be a domain different from R™ and from

R? and satisfying the Assumption 1.1. To prove we use the
generalized Stokes operator S, ; as in the previous section and prove some pre-
liminary properties. This operator

Sea:(u, p)—>Sq {u, p) = AQAu—Au+Vp, —div u)

is defined on D(S; )=DA)"X W (D)= LYD)" X W'4(2) with range R(S, )<
LI xW-t92). Furthermore we define the restriction

9.2 (u, pyr—>8y i(u, p) = Au—Au+Vp
with (S8, )= {(u, P)SD(S, ;) : divu=0} and R(S, ) LUD)".

LEMMA 4.1. Let 1<g<<, 1€8,, 0<e<nm, let (u, p)=D(S, ;) and (f, —g)
:SQ.Z(u: p)'
(1) There exists a bounded subdomain GZQ such that

[, Tu, Tp)l, < CUU, Vgt gl 1ot lulwioe

(4.1)
F I pll2 o+ Aullcwra oy

holds true with a constant C=C(L, G, q, €)>0. Here [W'9(G)]* de-
notes the dual space of WY¥'(G) with 1/g+1/¢'=1. If 8 is bounded the
term ||NPullq on the left-hand side of (4.1) may be replaced by | u|we 9.
(ii) The operator S, i is tnjective. For a bounded domain even S, , is in-
jective.
(iti) The range R(S, ;) is dense in LUQ)"XWLUQ) and R(SY, 2) is dense
in LUy,

The proof of is based on the localization method by which we
reduce the problem to the special cases R", R} and H, where @ even has com-
pact support. Next we will explain this procedure.

First suppose that £ is an exterior domain. According to the Assumption

1.1 we may choose open balls B,=B and B,, -+, B,SR" and nonnegative cut-
off functions ¢,, -+, p,=C(R") with the following properties :
O\B,=R™B,, < ®R~B)yJ\B,, (4.2)
j=1

¢,=0 in a neighbourhood of B,, ¢,=1 outside of some ball B} with B,SB;,
supp o, S B; for 1=<7<m and 2, ¢;=1 in 2. Since 92<=C"!' these balls can
be chosen in such a way that we find for each j&{l, ---, m} with B;"N0Q+ @
(after a translation and rotation of Cartesian coordinates depending on ; which
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for simplicity we will suppress in the following) a function w,=C"*(R*") of
compact support such that {(with HJ-:H,,,J.)

B,N2 < H; and B;Mof2 < 0H;.

We want to apply (i) and (ii) on H; for a finite number of
exponents s=s;, 1=k=k(g), to be fixed later on in the proof of Lemma 4.1
Therefore we need that

”v’ijW g min {K(n‘; q: 5)) K(n; Slr 8): tty, K(n: Sk(q); 5)}. (4'3)

This may be easily achieved by choosing a sufficiently large number of balls B;
such that the support of w; is sufficiently small. Finally let us assume that
B,EQ if B,né2=@, 1=j<m. Summarizing we get two types of balls B; and
cut-off functions ¢;:

type R": ¢, and ¢; if B, 2 2 (1=<j<m)
type H,: ¢; if B;noR + @ A=,;<m).

If Q is a perturbed half space, then we get £\B,=R>\B, leading to a problem
of type R?. Finally for a bounded domain the ball By has to be omitted and
we are left with a finite number of problems of type R* and H,.

Let (u, p) be a solution of the generalized resolvent problem (1.1) and let
@;&CR"), 0=<5=m, be a cut-off function. Then (p,u, ¢;p) satisfies the local
equations

Alpu)—Alpu)+V(pip) = f;

(4.4)
div (p;u) = g;

where
fi= @ f —2p;)Vu—Apu+ e, p @5
gi= g +Nepp-u. .

The equation (4.4) may be considered as a generalized resolvent equation for
(psu, @;p) on R*, R} or H, depending on the type of the function ¢;.

Proor oF LEMMA 4.1. (i) To prove the a priori estimate (4.1) let (u, p)=
DAY X W) and (f, —g)=S, 1(u, p). Using the partition of unity {7
as above we consider the local equations (4.4) if ¢; is of type R" or R?, but

(A+2)(psu)—Al@u)+ V(@i p) = [+ Apsu we
div (pju) = g; ’

if ¢; is of type H,. Here 2,>0 is chosen sufficiently large such that
3.1 (i) may be applied. If £ is unbounded, then let GS& be a bounded sub-
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domain containing (supp Ve;)"\2, =0, ---, m. However for a bounded domain
2 let G=£. Now we apply the a priori estimate to the whole space,
half space or bended half space problems defined in (4.4), (4.6). For the estimate
of the right-hand sides f;, f;+4.¢;u and g; we only mention how to deal with
gy=div (pu)eW-4(R?) if ¢; is of type R?; the other estimates are easy. For

V=CRY) let =¥ —h@) where h(?ﬁ'):SG Ydx/|G;| and G;=supp Ve;. Since
j
SG Tdx=0 we get by Poincaré’s inequality HV(go,-le)]]q,,ggcl[IVzlfilqr,RQ and
j
1V )T llwr.a =6 V¥, pr.  Using the identity

{g; T = div (upy, T
= —Cugp;, VO = —<u, WO+, (To)¥
we conclude that

 (Ken )
- S“p{uwnqr,gz

A o,
< ¢, sup {%ﬁ;% : 0ve WD) )+ caluliowro iore

L 02T e c;mz)}

lgsllw-1.ackm)

= cillgllo-re@+callulrwie gy -

Consequently [|Ag;lw~1.a2, = c([Agla-ra+ [Aullcwre )+). Summing up the
obtained inequalities for j=0, ---, m (>0 if £ is bounded) we get (4.1). 1If Q
is bounded the well known estimate [ullw2.e@,<c|VPull120, for ueD(Ay)" yields
the additional remark in (i).

(i) To prove the injectivity of the operator S, ; let (u, p)EED(Aq)"XW"q(Q)
and S, i(u, p)=0. If g=2 we take the scalar product in L¥2)* of Au—Au+Vp
=0 with u, use integration by parts and conclude that u=0, Vp=0 since div u
=0. For ¢+#2 we will show in a finite number of steps that u=9(A;)" and
pe WA Q) which again leads to u=0, Vp=0.

First let ¢>2. If ¢; has the type R*, we consider the local equations (4.4),
4.5) with f=0, g=0 and use the compactness of supp V¢; in order to get that
fie LR, g,cW A R)NW-"2(R"). Then the regularity assertion in Theorem
1.3 (ii) yields (¢pju, SDjP)EWz'2<Rn)nXWL2(Rn). For a cut-off function ¢; of type
R} we proceed in an analogous way, and if ¢; has the type H, we use (4.6),
the compactness of supp¢; and the regularity assertion of (i1).
Thus (@i, ¢;p)SW>HH,)" X Wr*(H,). Summarizing we get uSD(A,)* and p
WhQ).

If 1<¢<2 we define s,>¢ by 1/n41/s,=1/q. Let ¢; be a cut-off function
of type H,. By Sobolev’s imbedding theorem, (4.3) and (i), we
obtain that f;eLy(H)", g,eW s (H)NWs1(H)) and (pmu, ¢ip)E DA,)" X
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Wrsi(H;). A similar result holds true if ¢; is of type R* or R} applying Theo-
rem 1.3 (ii). Thus (u, p)eﬂ)(Asl)"XW'sl(Q). If s,<<2 we repeat this procedure
a finite number of times getting exponents ¢<s;< --- <Sp(p With sz, =2. Thus
the problem is reduced to the case ¢=2 and we get that u=0, Vp=0.

(iii) To show that R(S]. ;) is dense in LYL)* we start with the case ¢=2.
Using the scalar product and Riesz’s representation theorem we easily get that
each feL*Q)" has the unique decomposition (A—A)u+Vp=/f in the sense of
distributions with peW*2(Q) and ucWiH2)"* such that Aues L¥2)* and div u
=0. To show that u=D(A,)* we consider the local equations (4.4) or (4.6)
where g==0 in (4.5). Obviously f,=L¥H,)*, g,c€W A H,)N\W %H,;) and con-
sequently (p;u, @;pP)EW>*(H)" X W*H,) due to if ¢; is of type
H,. Analogous results hold true if ¢; is of type R* or R:. Summarizing we
conclude that (u, p)ED(S% ;). Thus even R(SI ,)=LYUD". If g+2 let f be an
element of the dense subspace L¥)y*"\LYEL)" of LY2)*. By the previous step
there is a unique solution (u, p)=D(S% ) of the equation S§, :(u, p)=f. Re-
peating the regularity arguments of part (i) (with ¢ replaced by 2) we get that
(u, P)ED(SS :). Thus R(S), ;) is dense in LU,

Finally we show the density of R(S, ) in LUD"XW4Q). Let (f, g)
= LU(Q)" X W' (Q), the dual space of L¥Q)*x W14£), and suppose that

[Se.a(u, p), (f', )] = LAu—Au+Np, f'>—[divu, g'1=10

for all (u, p)=D(S, ). In particular {f, f'>=0 for f&R(S] ;) vielding f'=0
due to the density of R(S3 ;) in LYL)". Thus 0=—[divu, g'1=<u, Vg’'> for
all ueC(Q)"SP(A)*. Hence also g’=0in W"¢(2). Now the proof of
4.1 is complete. |

Next we show that we may omit the last three terms on the right-hand
side of the estimate (4.1) thus preparing the proof of inequality and of
(1), (ii).

LEMMA 4.2. Let 1<g<co, 0<e<m, AES,, lel (u, p)ED(Sy ) and (f, —g)
=S¢, (%, P).
(1) If |2|=6>0, then (u, p) satisfies (1.2) with C=C(L, q, &, 6)>0.
(ii) If Q is bounded, then (u, p) satisfies (1.2) with C=C(8, q, §)>0; here
A=0 ¢s admitted.
(iii) If 2 is an exterior domain or a perturbed half space and 1<q<n/2,
n=3, then (u, p) satisfies (1.2) with C=C(L2, q, )>0.

Proor. Assume that under the assumptions (i), (ii) or (iii) the inequality
(1.2) is not true. Then we find sequences (u;, pHEDA)*X WD) and I,=S.
or (4,5, {0} if 2 is bounded), j=N, such that
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125l -1Vl + VD=1 for all JEN, (4.7)
1/l Vg g+ 14g5l-1.e —> 0 as j—oo (4.8)

where (f;, —g7)=S5,1u; p;). We may suppose that Sapjdxzo for all j&eN

with G as in the proof of Lemma 4.1. Without loss of generality we may
also assume that (4,) converges to some A=S,\{w} as j-oo. Since (du;),
(V2u;) and (Vp,) are bounded sequences in L), LU2)"* and LY)", respec-
tively, we finally suppose the weak convergence

ljuy—v, Yu; —N%4, Vp; —Vp as j— oo (4.9)

with some ve LY2)*, some acWELL Q)" such that Va< LU(2)"°, being uniquely
determined only up to a linear polynomial, and some p=W*%(R). Furthermore
due to (4.8), we obtain

v—AfG+VDH =0, Vdiv # = 0, divy=0 in @

(4.10)
and v-N=20 on 042,

where the latter property is understood in the sense of the trace theorem and
N denotes the outward normal vector on ¢f2. Finally in the bounded domain
G we may use the obvious compact imbeddings W2YG)SW'YG), W 4G)S
LYG) and LYG)SW"¥(G)]*. In particular we conclude that the restrictions
to G of the sequences (4;u;) and (p;) converge strongly in the spaces [W" ' (G)]*
and LYG), respectively. Now we distinguish the three cases 4#0, A=co and
4=0.

Let 4,—4%0. Then (4.7) implies that (u;) is a bounded sequence in W#*9(2)".
Now we get the existence of some uEsD(A)™ such that u;— u, Vu; = Vu in
Li), Au—v and V:u=V?*i. Hence S, i(u, p)=0 by (4.10) and «=0, Vp=0 due

to Lemma 4.1. 1t follows p=0 since Sapdx:o. Finally the compact imbedding

W*UG)SWTYG) implies that u;—u in W»9G). Then (4.1) applied to A;u; and
p; together with (4.7) and (4.8) yields the contradiction

1 < clullwrawntlipleee+ Ivlore @ige)

since u=v=0 and p=0.

Let A;—c0. Here (4.7) vields u;—0 in L™ and consequently A#=0.
Thus (4.10) defines the uniquely determined Helmholtz decomposition of the zero
vector field — for details see in the Appendix. Hence v=0, Vp=0
leading together with u;—u in W"4G)* to the same contradiction as in the
previous case. Now (i) is proved.

To prove our Lemma in the cases (ii) or (iii) it remains to consider 4=0.
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If Q is a bounded domain, note that in (i) the term [V?ul, on the
left-hand side of (4.1) may be replaced by | #|wz.qw. Then the proof is com-
pletely parallel to above since here S,.(u, p)=0 and S, , is injective for a
bounded domain.

Next let 1<g<n/2, n=3, and S R" be an exterior domain or a perturbed
half space. Further let r, s be defined by 1/n4+1/r=1/¢ and 1/n+1/s=1/r.
Using Sobolev’s imbedding theorem and (4.7) we obtain

Huslls < el Vuglls £ cal| Vuslle £ e < oo
Thus we may assume In addition to that
u;—u in L@)*,  Tu;—Vu in L7@)"*,  Vu;—Vu in LY

for some ueWhy Q)" with u=0 on 02. Since 2;—0 as j—oo we also get that
v=Au=0. Hence (u, p) solves the Stokes equation

—Au+Vp =0, dive=0 in &

with the boundary condition u=0 on ¢£. Now we argue as in the proof of
(ii) but using the regularity assertion of (ii) rather
than [Theorem 1.3 (ii). After a finite number of steps we arrive at the regularity
results

1(T2u, ID)|a < o0 for a=(l, o),
(4.11)
[Vullg <o for Be(n/(n—1), ),
and

fully <eo for ye(n/(n—2), ).

Here the restrictions on S8, 7 are caused by the above restrictions on ¢, 7, s.
Since n=3 we may define @« by 1/n+1/2=1/a which leads to p—Ce L¥Q)
with some constant C. Further we may choose 8=2 and y=(1/2—1/m)™%.
Then it is easy to see that there is a sequence u,=C%(8)*, k=N, with
IVNu—Yu,|l,—0 as k->co. Thus

0= (—Au-}-vp, ﬁk> = <Vu, VzZ;Q—(;D—C, div ﬂk>

converges to [Vuli—<p—C, 0>=|Vullz as k—co, @, being the conjugate complex
value of u,. Consequently Vu=0 yielding z=0 since w=0 on 0£2. Further-

more Vp=0. This will lead to a contradiction in the same way as in the pre-
ceding steps and is proved. [ |

LEMMA 4.3. Let 1<g< o0, 0<e<n, A€S,, let (u, p)ED(S,, ;) and (f, —g)
=Sq (u, p).

(i) If |A]=06>0 then (u, p) satisfies (1.3) with C=C(£, g, &, 6)>0.

(ii) If R is bounded, then (u, p) satisfies (1.3) with C=C(R, q, €)>0; here
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A=0 75 admitied.
(iii) If Q is an exterior domain ov a perturbed half space and ¢>n/(n—2),
n=3, then (u, p) satisfies (1.3) with C=C(Q, q, )>0.

PrROOF. The proof is based on a duality argument which we already used
in the proof of for 2=R"; for this argument we only need the
density of R(S%. ;) in LY(2)", see (iii), and the a priori estimate
for the dual exponent ¢’=¢/(¢—1). Thus the assertions (i), (ii) and (iii)
are a consequence of (i), (i) and (iii) in Lemma 4.2l ]

The next lemma yields a further information on R(S,, ;).

LEMMA 4.4, Let 1<g<oo and A=S,, 0<e<m. Then R(SS )=LY2)" and
R(S, =LAD" X div DA™ where div DAY = {div u : uS DAY}

PROOF. Due to the a priori estimate [I.2), see (i), the operator
S92 has a closed range which is dense in L%(2)" by (iii). Thus
R(SS, N=LUD)™. To prove the second assertion let (f, g)= LY2)" X div D(A)".
Thus there is some u,=P(A)" with g=div u,, and in particular we get g&
W-te(2). By the first assertion there exists some (u;, p)ED(A)" X Wh(2)
with ,

A —Au+Vp = f—(Au,—Au,), divu, =0 in 2.

Then (uy+uy, P)=D(S,. ;) and S, ;(us+u,, p)=(f, —g). This proves the second
assertion.

Summarizing the results of Lemma 4.1], 4.2, 4.3, 4.4 and using
in Appendix we see that the proof of is complete. For appli-
cations to the Stokes operator we need further properties of the operator S,
and its adjoint S¥ ;. Let A—A, denote the operator A—A with domain of defini-
tion PA)=W2I(D WL S LY(2) and range in LYD).

COROLLARY 4.5, Lot 1<g<oo, 0<e<m, AS=S, and let Q=R", n=2, be a
domain satisfyimg Assumption 1.1.
(i) The operator A—A, is closed and (A—A)*=A—A,. Further i—A;: DAy
— L) is bijective and its inverse satisfies the inequality

[(A—4y7' = C/12]  for all 2&S,,

where C=C(R, g, e)>0 is independent of X except for the case that 2 is
an exterior domain or a perturbed half space in R%: in this case C=
C(R, q, &, >0 for 2&S,, |2 =d>0.

(i) The operator S, ; is closed and S¥ =Sy ...

PROOF. Assertion (i) is well known for bounded and exterior domains.
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However, for all domains satisfying Assumption 1.1 we can give the fol-
lowing proof of (i). First we show the estimate

lAuf o+ Aull, < C(2, g, &, O(A—A)ull,

for uc @A), A€S,, |A1=26>0, in the same way as in (i) for Sy, .
It follows that A—A, is an injective and closed operator with closed range. As
in (iii) we see that the range R(A—A,) is dense in L%2). Con-
sequently A—A, is a bijection and (A—A,)*=4—A, due to the closed range theo-
rem. Further we obtain the corresponding results as in (i) and
(iti). Finally an interpolation argument as in the proof of below
implies that C=C(£, ¢, ¢, §) above does not depend on ¢ if £ is not an exterior
domain or a perturbed half space in R?; this is caused by the restriction n=3
in (i), |

(i) To show that S, ; is closed let (u;, p)ED(S, ), JEN, be convergent
in LYQ2)"xX W4() to some (u, p)e LYQ)*X W' «R) and let (f,;, —g,)==Sq 1(u;, D,
converge to (f, —g)eL¥{d*<xW4Q) as j—oo. Then —Au;=f;—iu;—Vp;
converges to f—Au—Vp in LYL)" as j—oo. Since u,€PA)"* and A—A4, is
closed due to part (i) we conclude that uz<D(A)?, (u, P)E9D(S, ;) and that
Sg 2(u, p)=(f, —g). Hence S, ; is closed. Let (u, p)e(S, ;) and (&, p)e
D(S, 1). Then asimple approximation argument and integration by parts yield

[Sq:(u, p), (8, )] = LAu—Au+Vp, #>—[div u, p]
= {u, AL—AG+p>—[p, div &]
= [(u, p), S¢.a(fL, p)] .
Hence S, :£S%. ;. To prove the other inclusion let (u, p)E DSk HS[LY ("X
Wt (Q)1*=LYQ)*x W(2). Then by definition the mapping
(#, B)—> [Sy .28, P), (u, p)] = QA~AG+VP, ud—[div &, p]
= Qu—AG+YP, ud+<a, Ip)

defined for (i, $)€9(S, 1) has a continuous extension to all of L (£2)"x W"2' (2).
Since u, Vp=LU2)* and &, VH= LV (2)* we get that also the mapping #—
{(A—A)¥, uy on D(A,)® has a continuous extension to L¥(2)*. Thus ue
D(A—Ag )" =DUA—A)"=D(A)" and (u, p)=D(S,, ). Consequently S, ;=S¥ ,.
||

It is not difficult to see that S, ; is not a surjective operator. Let us dis-
cuss some consequences of our results for the Stokes operator where we restrict
ourselves to solenoidal vector fields. First we consider the Stokes resolvent
problem
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Au—Aut+Np=f in 2
divu =0 in 2 (4.12)
=20 on 0f.

COROLLARY 4.6. Let 1<g<oo, 0<e<m, A&S, and let QSR n=2, be a
domain satisfying the Assumption 1.1. Then for all f< LYQ™) there is a unique
solution (u, p)e DA X W (D) of (4.12) and

[2ulle+1—Au+Vpl, = Cl fl, (4.13)

with some constant C=C(2, q, e)>0 excepting Q is an exterior domain or a per-
turbed half space in R? where (4.13) holds for all A€S,, 141 =20>0 with C=
CQ, g, &, 6)>0.

PrOOF. By (i) we get the unique solvability of (4.12) thus
defining a linear operator T ;: LYQ)"—Ly()* with u=T, :f. Due to
4.2 and 4.3 the operator T, ; is bounded with norm |T, ;|<C/|4| where C=
C(Q, g, &, 8). However we get C=C(£, g, &) for a bounded domain, for an ex-
terior domain and for a perturbed half space if 1<g<n/2 or n/(n—2)<qg<o
(n=3). Then the Riesz-Thorin interpolation theorem, see [23], [27], proves
the assertion. ]

Finally we prove Corollary 1.6 concerning the Stokes operator A,=—P,A;
for the definition of the Helmholtz projection P, and the space L¥Q) see
Introduction and Appendix.

PROOF OF COROLLARY 1.6. Solving the resolvent equation (A+A)u=f, f&
LY8), may be reduced to (4.12). Then the estimate [(A-+A) | <C/|] follows
from (4.13). In particular (A+A4,)7" is closed. To show that A¥=A, let fe
LYQ) and feL¥(2). Due to define (u, p)=D(SY ;) and (7, e
DSy, ) by f=(A—A)u+Vp and f:(l—A)ﬁ+Vﬁ. Then we see that

CA+AY, o=, Q+AN P
proving [(A4+Ay ']*=(4+Ay)"' and A¥=A,. a

5. Appendix.

First we discuss the space W 4(Q)={ue& L(2): Vuc LU}, 1< g<oo,
with norm ||u|p1qy=[Vull, where we have to identify two elements which
differ by a constant. If Q is bounded, L,c(2) may be replaced by L2). Con-
sidering any Cauchy sequence (u;) in this space it is easy to see that we can
choose constants ¢;, &N, such that (u;+c¢;) converges in L%(2) to some uc
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L%(2) and Vu, converges to Vue LYQ)" as i—co. Thus WH4(2) is a Banach
space which is even reflexive since it is isometric to the closed subspace
(Vue L) : ue Lio(2)} of LI".

Consider the dual space W 4@Q)=[W" ¥ (2)]* of W-¢(Q) where 1/¢+1/¢
=1. Let g:wv—[g, v] be any element of W4f), i.e., any functional on
W< (Q) being continuous under I¥-1,. Using the isometric imbedding abaove
and the Hahn-Banach theorem we see that there exists some ue Li(2)" such
that [g, v]=<(—u, Yv) for all v&W*(Q) and lully=llgll_1,q- The reflexivity of
W) yields

[ (@) = [ ()] = WH(@).

Next we prove that C5(2)={ule¢: uc C(R™)} is a dense subspace of Wha(Q).

LEMMA 5.1. Let 1<g< and let Q=R" or let QSR", n=2, be an un-
bounded domain satisfying the Assumption 1.1. Then for each us WU YR™) there
exists a sequence u;=C5(3), j=1, 2, ---, with im,. ||V —Vu,] 30,=0. Therefore
W\IV-I‘(I:W-Q(Q)‘

ProorF. First we consider the case @2=R". Here we use the well known
Helmholtz projection P,: LYR™)— LYR"™), see for details. It is suf-
ficient to show that C3(R™) is dense in W*%R") under the norm |V-,. Due
to the Hahn-Banach theorem, each linear continuous functional F: u—[F, u]
defined on W*%R") has the form [F, u]=<¢F Vu> with some FeLY(R")*. Sup-
posing [F, u]=0 for all uCH(R"™ vyields

0= <F Tuy = (Fy+Vp, Tu) = Ip, Tuy = —[Ap, u]

for all u=Cy(R™) with FO:quﬁeLg'(R”), Vpe LY(R")". From Weyl’s lemma
we get that p and therefore Vp are harmonic on R®. Since Vpe= LY{(R™)" we
conclude that Vp=0. Using F,=LY(R")=C7(R") "¢ we see that [F, u]l=
F, Jupy=<(F, Vuy>=0 even for all u=W"9(R"). This proves the assertion for
Q=R".

Consider now the case 2+ R"* and let ucW"4®2). Then we can construct
an extension = W"4(R"*) of u such that #|o=u. If 2=R" we define & to be
the even extension of u. For the bended half space H, we use the transfor-
mation to the half space as in Section 3 to get this extension. In the general
case we use the cut-off functions ¢, -+, ¢ as in Section 4 with 1=27, ¢; on
2, write u=>", u; with u;=¢,u, choose extensions #; as above and put #i=
St.@;. Given the extension #<W'YR™ of ueW'4Q2) we find u,&C5(R™)
with [Vi—Vu,l, za—0 as j—co. Then u;|o&C3(2), 7&N, defines an approxi-
mating sequence of u. =

We consider a special subset of W™'9(Q) by identifying ge LL(Q) with
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the functional
g, viv—>Lg, vw= Sggvdx ,  velHQ).

In the next lemma we give some sufficient conditions under which <{g, > is
continuous with respect to |V- |, ; then it extends to a well defined element of
Wre2). The following example shows that even for geC3(f) this is not
always true. Consider an unbounded domain £, let Sggdxio and ¢'=n, i.e.,
g<n/(n—1). Then we know using a cut-off procedure that there exist v,
C3(R™, ieN, with lime.. [Ty 2e=0 and lim,..<g, v:> :Sdix;tO. Thus

{g, -> is not continuous under |V-|,. In particular we see that W"%£) is not
contained in W-t9Q) if £ is unbounded and that the condition

g e WLy DNAW9D) = {geW*«D): {g, > continuous under {|V-[,}
is a strong restriction on the divergence g in [Theorem 1.2

LEMMA 5.2. Let Q=R" or let QS R", n=2, be an unbounded domain satis-
fying Assumption 1.1 and let ge&L%(2). Then each of the following condi-
tions (i), (i) or (iii) implies that the functional

g, »iv—>{g, vw= Sggvdx . velyQ),
" is continuous under the norm ||[Vv|l, .
(i) l<g<eo, g LUQ) with compact support in @ and Soga’x:o;

(ii) g>n/(n—1), g L(Q) where s is defined by 1/n+1/¢=1/s;
(i) g>n/(n-—-1), |-—x,|g(-)&LY2) for some x,=R™.

ProoF. To prove the assertion if (i) is satisfied we choose some ball B’'S R"
with suppgSB=B’'~{. Then Poincaré’s inequality vyields SB{v—vB]q'dxg
| 1Tivdx where v=C3(D) and vy=| vdsx/|Bl. This leads to || gudx|=
\Sgg(v-wvg)dx\éc!!gliqllvmlq: which proves the assertion. If (ii) is satisfied we
have 1< ¢ <n, and by Sobolev’s inequality it follows that g{ggvdx‘g
[glslvle =cliglliVely where 1/n+1/s'=1/¢’, 1/s-+1/s"=1. In case (iii) we use
the weighted inequality SQ(Iv(x)I‘l’/]x—xolq')dxchQIVvlq'dx and get that

| pevax|=|| gtz x| e d| <clgl - —xolll Vol

This proves [Lemma 5.2 m
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In this paper we need some facts on the Helmholtz decomposition which
are well known at least for the whole space, the half space and bounded or
exterior domains with sufficiently smooth boundary [14], [21], [22], [24], [25].
Here we sketch a rather elementary proof based on the localization method of

Section 4, see [24] for details. Recall that LLQ)=C5 ()" where C5,(2)=
{ue C3 ()™ : div u=0}.

LEMMA 5.3. Let 1<g<<o and let Q=R" or let QS R", n=2, be a domain
satisfying  Assumption 1.1. Then there exists a linear bounded projection
operator P, from L) onto L¥R) with null space N(P)={NpeLiQ)*: pe
Lict. In particular, each feL¥(2)® has a unique decomposition f=f,-+Np
with fo=F,f€LYQ), VpEN(P) and | folg+1plleSc]flly where c=c(Q, ¢)>0.

Furthermore L3(Q2)* may be identified with L% (2) and we get PF=P, where
1/g+1/¢'=1.

PRrROOF. The existence of the Helmholtz projection P, follows from the
unique solvability of the Neumann problem

Ap=divf, N-(f—=VPp)lae=0 6.1

with VpeN(P,) for given feL¥Q2)*. Here N denotes the exterior normal
vector on 0f2 and the last condition is understood in the sense of the trace
lemma which is based on Gauss’s integral theorem, see , [24]. The solu-
tion theory for rests on the variational inequality
[Vpllo<c  sup  [<Vp, Yol /Vuly (5.2)
orveWl, 4 (2)

for all peW¢(). For 2=R" the inequality follows from the Calderén-
Zygmund estimate ; see the proof of [Theorem 1.3, The case 2=R?% can easily
be reduced to R™ by the reflection principle. For the bended half space H,
follows by using the same transformation and perturbation argument as in
Section 3; here we only need that |V'w]. is sufficiently small, see [24]. In the
general case we use the same localization method as in Section 4 with the cut-
off functions ¢;; here the local equations are of the form

Alp;p) = @ div f+2(Vp)(Vp)+(Ap,) D (5.3
for j=0,1, -+, m. Just as in we first get the weaker estimate
IWpllg = e sup  [<Vp, Vopl/|Vulg) (5.4)

oFvEW 1,20 ()

+e( Pty VPl ewrarr1)

with two additional terms on the right; here G is a bounded domain as in (4.1).
Then the compactness argument in the proof of shows that the last
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two terms in [5.4] may be omitted; this leads to [5.2]. Note that the regularity
assumption ¢2< C* is sufficient for proving [5.4).

By a standard argument we conclude from that p—<Np, V-> defines
an isomorphism from W% Q) onto [W* ¢ (2)]*. Thus for given f=1%Q)" there
exists a unique pe W UQ) with <Vp, Tud={f, Yo} for all ve W' (). Then
f—VpeX,={uc LyQ)": (u, V=0 for all veW**'(Q)} and we get the direct
decomposition f=f,+Vp with f,=X,. Observing the symmetry property
KNp, Vor=(Vu, Vp> we see that the dual space X¥ of X, coincides with X,.
Next we show that C7,(2) is dense in X,. Indeed, consider any heX, with
<w, hy=0 for all w=Cq,(2). Then we conclude that A=Y with some ¥e

2(2) by de Rham’s well known argument [10]. Therefore <w, V¢>=0 even
for all weX,. In this case we can replace de Rham’s argument by the following
elementary consideration given in [24]. Let <w, h>=0 for all weCF,(2) as
above. Then a mollification procedure yields a sequence h;, ;& N, of smooth

functions such that the line integral Srhids:() for each piecewise smooth closed

curve [7 in £. By a classical argument h,=V¥,, and letting i—c we get
h=YT as above. So we conclude that X,=L«Q), LY{D*=L(2) and P}=P,.
This proves Lemma 5.3, |

The next lemma yields a regularity property of the Helmholtz decomposi-
tion which is needed to characterize the space Wh«(@) N W 14Q).

LEMMA 5.4. Let 1<g<ce and let 2=R"™ or let QS R", n=2, be a domain
satisfving Assumption 1.1. Suppose f< LY, Vdiv fe LYD)" and N-f];0=0
if 00+ @ and consider the Helmholtz decomposition f=f,+p with f,=LIQ)
and Vpe LYD", pe Li(R). Then Vpe LN and div fe LYQ).

PrOOF. First note that N-flso well defined by the trace theorem since
feLy2)" and div feLlL(2) which follows from Vdiv fe Ly(Q)": see [15],
[24]. For the proof of the lemma we use the local equations and the
same notations as in Section 4. Let ¢ be any of the cut-off functions ¢,, j=
0, ---, m, with compact support and suppose that the local equation ((5.3) is an
equation on some bended half space H,. Then we get f:go div f+2(Ve)(Vp)+

(Apype L1(H,) for the right hand side in [5.3), and p,=¢p is a weak solution
of the Neumann problem

Ap,=f in H,, N-Vp,lon, = N-V)plon,

Using 02 C", feLq(Hw) and the compactness of supp¢ we will show by a
well known procedure of elliptic regularity theory that even {|V?p ll;<<co; the
details are explained as follows.

A calculation shows that this Neumann problem on H, has the variational
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formulation

pe, oy =[F,v], veWvH,),
where

LF, v] =<(Ne)p, Vur—p, Vowy+<Lof, Yoo+{Np)f, v>.

Carrying out the transformation p.(¥)=p.(x) with =¥, #.)=(x', x,—w(x"))
as in Section 3 we get on R? the variational problem

TB,, I+ B0, T, W) = CTw, 0), €W T(RY,

where B(V'w, ﬁﬁw Vo) and G(Vw, 7) are determined by the equations above.
Since in particular 02 C' we may assume that [|V'wl. is sufficiently small and
by for R? and Kato’s perturbation argument as in Section 3 we obtain the
unique solvability of the last variational problem. Next we replace ¥ by a
tangential derivative 0,#, i=1, ---, n—1, and, suppressing a mollification with
respect to %', we obtain an equation of the form

@), Y+ BT w, V0:5,), V1) = GV 0, V@w), 1), t<W(RY),

with some expression G(V'w, ¥'(0,0), ¥). Since d2=C"' we may suppose that
[V2w|..<<co. Then the assumption Vdiv fe LY(2)" vields the unique solvability
of the latter problem. Hence [|V5,f,ll,<oo and |[V25, ] < eo.

The same result is obtained if is an equation on R™ with compact
supp ¢. Consequently V?pe& L%(2)"*. To prove V2 pe LY2)** we must consider
the equation on R” or R} with some cut-off function ¢=¢, as in Section
4 where supp¢ is not bounded. If is an equation on R" let p,=V(pp)
such that Aﬁg,:Vf. Since supp (V) is bounded and Vpe LL(2)"* we obtain
Vi LY(R™" and p,=LYR™™. Then by the Calderén-Zygmund theorem we get
that even \72j7(pefﬂ(1’i!”)’23 and by interpolation we see that Vp & LYR™™. The
same conclusion holds if is an equation on R7; this case can be reduced
to R* by the reflection principle. For this purpose we write V(pp)=(V(¢p),
O.(¢p)), denote by p,, the even extension of V'(pp) or the odd extension of
d,(¢p) from R} to R™ and argue as above. Thus we obtain the assertion V?p
e LYD)"® and Ap=div fe L1 2). Now is proved. [

In the next lemma we give a characterization of the space W 4(@Q)N\W 14 Q)
for unbounded domains.

LEMMA 5.5. Let 1<g<<co and let Q=R" or let QSR", n=2, be an un-
bounded domain satisfying Assumption 1.1. Then
(1) Wra@NAWrYQ) = {div usW (D) : ucs LYD)", N-u|;0=0},

[div #lig-1,00, = Inf [lu+v],
veLID)
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(il) W (@MW Q) = W (@ W-4Q),
(iil) WHAQNW Q) = div H(A)"
where div 2(A)" = {div u: usW>(Q)"NWi«2)"}.

ProOF. (i) Let geW «(@NW98). As we already mentioned in the
beginning of Appendix we find some ue L%(Q2)* such that {g, vp=—<u, VNv>
holds for all v C3(2) and |gll_1.,=llul,. Setting in particular ve C5(2) we get
g=div u and choosing v|;0#0 we see from Gauss’s integral theorem that <{g, v}

::SM(N'u)vdo—%u, Yv> and SaQ(N-u)vdo:O which leads to N-ul|z;0=0; observe

that this trace is well-defined since ve LY, divus LY). This proves (i).

(i) Let geWyQNW-+4Q). Now we only know that g Li(2), Vg&
L¥Q™ and that »—<g, v> is continuous under |Vvl,. As above we find some
ucs LY)" with g=div u and N-u|z=0. Using Vdivue LY{(2)" we get from
that div ue LYQ) and therefore geW " (QNW-14RQ).

(ili) Consider the space Y,={(Vdivu, u) e LYD)*X LU : N-u|:0=0}
equipped with the norm |Vdiv u|,+/ul, From (i), (ii) we conclude that
WheNW-142) with the norm |Vgl,+lgll_., is isometric to the quotient
space Y /N, of Y, modulo the subspace N,={(0, u): usLy2)}. The estimate
shows that div D(A)" is a closed subspace of W' (N\W-1942). There-
fore it remains to prove that div 9(A)" is dense in W YN W-1%4Q) under
INgl,+llgl_1,, For this purpose it is sufficient to show that the space ?qz
{(Vdiv u, u): ueWrUH*NWEi(L2)"} is dense in ¥,. To prove the last asser-
tion we consider any continuous linear functional on Y, vanishing on ?q. Due
to the Hahn-Banach theorem we find F, H& LY (£2)* such that <Vdivu, F>+
u, H>=0 for all ueW>»i(Q)""\Wiy(2)*. Setting in particular u=C(2)" we
conclude that Vdiv F=—H in the sense of distributions. Considering the local
equations (4.4) and admissible functions g in the main theorems on R”, R? and
H, we see that divu]zp takes on all values v|aso, v=C5(2), if u varies in
Wea W), Therefore we conclude in the same way as above in (i)
that N-F|;0=0. Now we use a cut-off function ¥ C3(R") with 0T <], ¥(x)
=1 for |x]=1 and ¥(x)=0 for |x|=2 and put ¥, (x)=¥(x/k), keN. From
we get that div FEL?(2). Since |V ,|.<c/k we see that
(VT ) div u]l—0 and (V¥ ,)div Fjj,—0 as k—co. This yields

KNdiv u, Fy—+<u, H) = lim... KT,V divu, F>+<u, HY)
= lim o (VW div u), FO>+<u, H))
= My (—<div u, T, div F>+<u, H))
= lim e Ku, T,V div F>+<u, H>)
=<u, Vdiv F+H> =10
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for all u= L))" with Vdivue LYD)", N-ul;0=0. This proves the density of
¥, in Y, and is proved. .

We conclude this appendix with a regularity result concerning two different
exponents ¢ and s as used in Sections 2 and 3. By considering first the
cases R*, R? and H, and then the local equations (4.4) or we get the
following

LEMMA 5.6. Let 1<q, s<co and let Q=R" or QS R", n=2, be an unbounded
domain satisfying Assumption 1.1.

(1) Let O0<e<zm, =S, feLi@)"NL()" and geW I (DNW (DN
W-Ls(DNWL5(Q). Then there exists a unique solution (u, p)=(DA)"
NDAYYX (WU (Q)) of Au—Au+Vp=f, divu=g.

(i) Let feLyQ)"N\L()". Then there exists a unique decomposition f=
fotVp with fo= LIANLYEL) and Vps LU LH(2)".
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