
0-89791-993-9/97 $10.00 1997 IEEE

Generalized Resource Sharing

S. Raje R. A. Bergamaschi

IBM T. J. Watson Research Center, NY, USA

Abstract

Resource sharing is one of the main tasks in high-
level synthesis, and although many algorithms have ad-
dressed the problem there are still several limitations
which restrict the generality and applicability of cur-
rent algorithms. Most clique-partitioning-based algo-
rithms use local and inaccurate cost-functions which
result in ine�cient results. This paper presents algo-
rithms for the resource sharing problem on registers
and functional units, and shows how they overcome
the limitations of existing algorithms.

The main characteristics of this work are: inter-
leaved register and functional unit merging in a global
clique partitioning based framework, accurate merging
cost estimation, accurate interconnect cost estimation,
relative control cost taken into account, and e�cient
false loop elimination. The results obtained show sig-
ni�cant improvements in the delay of designs, while
also minimizing area, specially for large designs with
many sharing possibilities.

1 Introduction

Resource sharing is one of the main problems in
high-level and register-transfer-level synthesis. The
problem consists in minimizing the number of regis-
ters and functional units used in a design with the
primary goal of minimizing area. Extra cost metrics
such as delay and power have also been considered.

Several algorithms have been proposed for sharing
registers and functional units. These algorithms can
be broadly classi�ed into constructive or global algo-
rithms. Constructive algorithms, such as EMUCS [1],
build the data-path one element at a time. Global
algorithms [2], are usually based on clique partition-
ing techniques. The registers or functional units to be
merged are mapped onto a Compatibility Graph, which
is partitioned into cliques. The advantages of this ap-
proach are that it allows for more global solutions than
the (greedy) constructive approaches, and tend to pro-
duce better results. Although clique partitioning tech-
niques for resource sharing have been widely adopted
by several systems, strong limitations which have not
yet been addressed still remain. This paper presents
a generalized formulation and algorithms for global
clique-partitioning-based resource sharing which over-
come many of the limitations of current algorithms.
It also detects and eliminates false loops, possibly in-
troduced by sharing, more e�ciently than previously
published. The following paragraphs explain these

limitations and introduce the algorithms in this pa-
per which overcome them.
Sharing order: In all algorithms to date, sharing of
registers is done separately from sharing of functional
units, that is, either register sharing is done �rst fol-
lowed by functional unit sharing (as in Facet [2]), or
vice-versa. This is ine�cient because it directly im-
pacts the accuracy of the cost computation. The al-
gorithm presented in this paper shares both registers
and functional units in the same clique partitioning
formulation.
Cost computation: In most systems, the cost asso-
ciated with merging resources is a purely local metric,
which can severely impact the advantage of a global
clique partitioning approach, and produce poor re-
sults.

In this paper, the primary cost metric is based
on a projected area savings that would result if the
whole clique were actually formed. That is, instead
of measuring the cost of a single merging, the algo-
rithm computes the �nal cost as if the whole clique is
merged. Moreover, this cost takes into account actual
technology-dependent values and accurate intercon-
nection costs (using multiplexer-based point-to-point
interconnections).
Interconnect costs: When sharing two elements,
one can compute the resulting interconnection costs
based on the inputs and outputs of the two elements
at that stage. However, future mergings involving
elements connected to the inputs or outputs of the
merged nodes may change the interconnection cost,
invalidating the original computation.

In this paper, the cost function also considers
whether the inputs and outputs of the two elements
being merged are compatible. If so, they may be
merged in the future, which will reduce the intercon-
nection cost of the current merging. This compatibility
look-ahead mechanism is called Future Connectivity.

Another source of inaccuracy is the handling of
commutative inputs to functional units. The approach
presented in this paper allows all elements to swap all
inputs every time a new element is added to a clique.
False loop elimination: The algorithm in [3] identi-
�es a number of potential loop-forming mergings and
removes the corresponding compatibility edges from
the compatibility graph. This algorithm can be very
ine�cient because it removes far more compatibility
edges than really needed, which in turn prevents pos-
sible cost-e�ective mergings.

The algorithm in [4] uses zero-one quadratic pro-
graming to do resource sharing. It eliminates false

loops by imposing additional constraints to their
mathematical program. Additional constraints costs
run-time, which is already high for algorithms that
use quadratic programing.

The false loop elimination algorithm described in
this paper is more e�cient because it is embedded
within the clique partitioning algorithm. Once a com-
patibility edge is selected for merging, the algorithm
checks whether that merging will de�nitely cause a
false loop by doing a topological analysis of the result-
ing network, and if so, the merging is not carried out
and the edge is deleted. In this way, only a minimal
number of edges is removed from the compatibility
graph, thus allowing for more mergings to be consid-
ered.
Control logic e�ects: Resource sharing is usually
done with little or no knowledge of the e�ects on con-
trol area. In general, control area is di�cult to es-
timate because of the logic optimizations of the con-
troller during the logic synthesis step.

The resource sharing algorithm presented in this
paper looks at the control equations associated with
each data-path element and uses that as a secondary
decision metric when selecting elements to be merged.

2 Framework

The starting point for this resource sharing algo-
rithm is an initial data-path and controller gener-
ated from a scheduled control and data ow graph
[5]. Based on this initial data-path and controller,
and the scheduled control/data ow graph, the com-
plete compatibility graph (CG) is derived. This graph
is the union of the compatibility graphs for registers
and functional units.

Figure 1 shows a simple VHDL description and
the corresponding scheduled control/data ow graph.
This example uses \wait until not clock'stable and
clock='1'" statements to represent either the sched-
uled states (as given by a scheduling algorithm) or
states explicitly declared by the designer, resulting
in a �nite-state machine controller with �ve states.
The initial data-path and controller and compatibility
graph for this example are given in Figure 2, where
o1 to o5 are operations and a, b, c, d are registers.
Among the control signals generated by the controller
there are some which are needed in the initial data-
path (e.g., ld a, represented by solid arrows) and some
which are potential control signals (represented by
dashed arrows), that are not needed in the initial data-
path but may be needed if elements are shared. For
example, signal o1 sel associated with adder o1 is not
yet needed because o1 is a single function operator.
However, if o1 is merged with o5 then both controls
o1 sel and o5 sel will be needed to select the di�erent
functions in the resulting ALU. This resource sharing
algorithm looks at both types of controls for determin-
ing control costs as well as detecting false loops due to
sharing.

3 Cost Computation

The heuristic for forming cliques is fully based on
costs. These costs are not necessarily proportional to

-- in1, in2, in3 are inputs
-- out1, out2, out3 are outputs

if (c1) then

else

 if (c2) then

 else

 endif;

endif;

(o1)

(o2)

(o3)

(o4)

(o5)

 a:=in1+in2;

 b:=in1+in2;

out1<=a;

 c:=in2+in3;
 d:=in1+in3;

 c:=in3;

 out2<= b;

 out3<=c-d;

wait until not clk’stable and clk=’1’;

wait until not clk’stable and clk=’1’;

 wait until not clk’stable and clk=’1’;

 wait until not clk’stable and clk=’1’;

 wait until not clk’stable and clk=’1’;

wait until not clk’stable and clk=’1’;

process
begin

end process;

wait until clk

if(c1)
State S0

a:= in1+in2; b:= in1+in2;

if (c2) State S1

c:=in3;c:=in2+in3

d:=in1+in3

endif;

out2<=b;

State S2

State S3

State S4

endif;

out3<=c-d;

out1<=a;

wait until clk

wait until clk

wait until clk

wait until clk

wait until clk

Figure 1: Behavioral Description and corresponding
scheduled Control/Data-ow graph

mx_s1:=S1.c2

in1 in2

out2

Control/Data-path

+ +

b
ld_b

ld_c

o3

o1 o2

o4

o5

a
b

dc

G:compatibility graph

a

out1

o1_sel

ld_a

o2_sel

-

in3

out3

+ +

d

c

mx_s1

o4_sel
o3_sel

mx_s0

o5_sel

ld_d

(a)
(b)

o1_sel:=S0.c1

o2_sel:=S0.c1

o3_sel:=S1.c2

o4_sel:=S1.c2

o5_sel:=S3

ld_a:=S0.c1

ld_b:=S0.c1

ld_c:=S1;

ld_d:=S1.c2

mx_s0:=S1.c2

Figure 2: (a) Compatibility graph (b) Initial data-
path and controller.

the size of the cliques or to the minimum number of
cliques. The partitioning algorithm selects compati-
bility edges for merging based on the costs of all edges
at any time. As a result, several cliques may be formed
concurrently, instead of the traditional clique heuristic
which forms cliques one-by-one with the goal of min-
imizing the cost of the clique being formed and the
total number of cliques. The goal of this algorithm
is to minimize the cost of all cliques together, which
may or may not result in the minimum number of
cliques. The primary cost is measured as area, but by
accurately estimating interconnection costs, the inter-
connections are minimized, which has a direct e�ect
on delay.

This algorithm uses a single compatibility graph
which is a union of the functional unit compatibil-
ity graph and the register compatibility graph. Edges
connecting registers or functional units may be se-
lected at any time and merged in di�erent cliques,
e�ectively interleaving register and functional unit

merging. This allows for more accurate estimation of
the interconnection costs and makes the algorithm less
dependent on the order in which registers and func-
tional units are shared.

The partitioning algorithm works iteratively by se-
lecting a compatibility edge based on the cost function
and merging the nodes connected by the edge.

The cost function is actually not a single number
but a decision tree based on di�erent metrics. The
decision tree for selecting an edge works as follows:
Step 1: Compute the Projected Area Savings of all
compatibility edges. Select the subset of edges whose
Projected Area Savings fall within N% of the top sav-
ings value. The value for N was empirically chosen to
be around 80%. These initial set of edges then go to
the secondary selection criteria.

Step 2: Compute the Future Connectivity of all edges
selected in Step 1. Select the subset of edges with Fu-
ture Connectivity within 80% (empirically chosen) of
the best value. Pass this subset of edges to the ter-
tiary selection criteria.

Step 3. If more than one edge is left in Step 2,
compute the Control Similarity of those edges and se-
lect the edge that has the highest Control Similarity.
Remaining ties are broken by using the highest
Projected Area Savings followed by the highest Fu-
ture Connectivity.

3.1 Projected Area Savings

The Projected Area Savings for a compatibility
edge estimates the area savings resulting from merg-
ing, not only the two nodes (connected by the edge)
but also any other node that could end up in the same
clique. In other words, it estimates the cost of the full
clique, if formed. This helps overcome the locality ef-
fect of computing the cost based on the two end nodes
alone.

This saving is the product of the total area sav-
ings (active area and interconnection area saved) when
merging the two end-nodes of an edge and the number
of common neighbours to the two nodes being merged,
as described in the formula:

Projected Area Savings(e) =
(Active Area Savings(e)+Connectivity Savings(e))

�(Commonality(e) + 1)
Algorithms for computing Active Area Savings(e)

and Connectivity Savings(e) are given in the following
sections. Commonality(e) is the number of common
neighbours to both end nodes of edge e. Although
there is no guarantee that the whole clique will be
formed, this projected area is a more global cost than
the edge cost alone.

3.1.1 Active Area Savings

Active Area Savings is de�ned as the di�erence be-
tween the sum of the areas for the two end-nodes and
the area of the shared resource that would implement
the operations in the two nodes if the edge were to
merge. In the formula below, edge e connects nodes
vi and vj :

c

R3

final configuration

a b b c

R2R1

a b c

R123

a b c d a c

+ + + o3

d b

+

o4

+

o5

a e

Connectivity_Savings=
 area of 1 mux-input.

Compatibility graph

(a)

Total No. of
of mux-inputs:3

o1 o2

partial clique1

partial clique2

compatibility
 edge

(b)

a

m1

bc d c

m2

+

a d b e

m3 m4

+

+

m5

a d b c e

m6

Total No. of mux-inputs:8

partial configurations

(c)

Total No. of
mux-inputs:4

Total No. of
mux-inputs:8

Connectivity_Savings=
 area of 3 mux-input.

Figure 3: (a) ComputingConnectivity Savings for reg-
isters (b) Compatibility graph for operations and ini-
tial multiplexer con�gurations for the partial cliques.
(c) Multiplexer con�guration for the �nal clique and
computation of Connectivity Savings for operations.

Active Area Savings(e) = area(vi) + area(vj)
�area(vi; vj)

The area values are computed based on a technol-
ogy library using the estimation algorithms described
in [6].

3.1.2 Connectivity Savings

When two nodes are shared, the inputs have to be re-
connected to the merged node possibly causing the cre-
ation of multiplexers. Connectivity Savings is de�ned
as the di�erence between the sum of the interconnec-
tions to the two elements and the �nal interconnec-
tions to the merged element, where interconnections
are implemented as point to point multiplexers. The
unit used is not number of inputs but the actual area
of the multiplexers needed.

Connectivity Savings(e) = mux area(vi)
+mux area(vj)�mux area(vi; vj)

Calculation of Connectivity Savings for edges with
register end nodes is straightforward and is derived
from the current data path. Special care is taken to
consider the actual inputs independently of any ex-
isting multiplexer. In Figure 3a for example, the al-
gorithm looks at the multiplexer inputs connected to
R1 and R2 and at the �nal multiplexer connected to
the merged node R123. Trees of muxes in the initial
data-path are collapsed into single-level muxes, so that
the input count reaching the registers or operations is
accurate.

Calculation of Connectivity Savings for operations
is a more involved procedure. It is critical to the accu-
racy of this computation to be able to permute inputs
to commutative operations, as this a�ects directly the
required number of inputs to the multiplexers.

Most algorithms use a purely greedy permutation
each time a new element is added to a clique. Suppose
that operations o1 to o5 in Figure 4 are gradually com-
bined into a clique one by one. Using a greedy permu-
tation of the new element inputs leads to suboptimal
results as indicated in the top part of Figure 4.

The algorithm used in this paper permutes all the
inputs each time a new element is added to the clique

Add o3
permute
inputs of o3

Greedy

b d a c b d c

++

dca b d c

+

a c d b dc e

+and o2
Merge o1

a c

Add o3
permute

Add o3
permute

inputs of o4 inputs of o5

e

a c b d

+ +

a d b c da

+

b c a d b c e

+
o5

Merge Merge
and o2

Merge o1

o1, o2, o3

Merge

o1, o2, o3, o4 o1, o2, o3, o4,

permutations
Global

a b c d a c

o1 o2 ++ +

+ +

o5o4

d b a

o3

Figure 4: Comparing greedy and global input permu-
tations on commutative operations.

and is able to �nd the optimal permutation resulting
in the minimum number of multiplexer inputs, as in-
dicated in the bottom part of Figure 4. For a full
detailed description of the algorithm , see [7].

As an example of Connectivity Savings for opera-
tions, consider the compatibility graph in Figure 3b,
in which two partial cliques have already been formed
and the algorithm needs to compute interconnection
costs involved in merging them. The Connectiv-
ity Savings is the di�erence in the areas of input mul-
tiplexers to both partial cliques and the areas of the
input multiplexers in the �nal merged clique. Permut-
ing the inputs of all operations using the algorithm
above results in the multiplexers shown in Figure 3b
(for the partial cliques) and Figure 3c (for the merged
clique). The Connectivity Savings equals the area of
three fewer multiplexer inputs.

3.2 Future Connectivity

Future Connectivity is a measure of savings in in-
terconnections due to future mergings involving inputs
and outputs of the current nodes being merged. Dis-
tinct inputs and outputs of two nodes may eventually
be merged into a single resource; this is not reected
in the Connectivity Savings number for an edge but is
captured in the Future Connectivity.

Figure 5 shows an initial data-path and the associ-
ated compatibility graph, where a, b, c, d, e are reg-
isters and o1, o2, o3, o4 are operations, all of which
have a common input b.

The Connectivity Savings for each of the com-
patibility edges (o1; o2), (o1; o4), (o2; o3), (o3; o4) is
�2 multiplexer inputs, as a 2-input multiplexer will
be required for any of these mergings (and there
were no multiplexers in the initial data-path). Con-
nectivity Saving therefore cannot decide on which
edge is better for merging (note that the Pro-
jected Area Savings are also the same for all edges).

Future Connectivity looks at the registers con-
nected to the inputs of the operations and checks if
they are compatible. Register a and d are compati-
ble and could eventually be merged, whereas register
a and e are not compatible and could not share the
same register. It follows that preference should be

Data-path with no FutureConnectivity

b

a

dc

o4

o1 o2

o3

e

a d b c e

+ + + +
o4o3o2o1

a,d b c,e

+ o1 o2 + o3 o4

m1

a, d

m3

+ o1 o4

m2

c,e

m4

+o2 o3

b

(a) (b)

(c) (d)

G: compatibility graph Current data-path

Final data-path

Figure 5: (a) Compatibility graph (b) Initial data-
path (c) Final data-path using Future Connectivity as
a criteria (d) Data-path using only Connectivity as the
criteria

given to merging operations o1 and o2 instead of op-
erations o1 and o4 because the inputs to o1 and o2
are likely to be merged in the future resulting in fewer
interconnections (when compared to merging o1 and
o4). Similar arguments can be made about merging
o1 and o2 over o2 and o3. Future Connectivity is a
measure of the above preference.

Future Connectivity for an edge is measured as the
number of compatible edges among the nodes that
form the left input set plus the number of compati-
ble edges among nodes that form the right input set
plus the number of compatible edges among outputs
of the nodes being merged. For operations, this mea-
sure takes place after a \good" permutation of inputs
is found, (see [7]).

In Figure 5, edge (o1; o2) has Future Connectivity
of 1 (since a is compatible with d), whereas edge
(o1; o4) has Future Connectivity of 0. Using Fu-
ture Connectivity as a criteria to merge edges the al-
gorithm results in a �nal data-path as shown in Fig-
ure 5(c). Figure 5(d) shows a possible outcome for the
data-path when Future Connectivity is not considered
as one of the merging criteria.

3.3 Control Similarity

Control Similarity measures the amount of com-
monality between the control conditions associated
with the execution of the two end operation nodes
of an edge or the load-enable conditions of the two
end register nodes. This commonality is measured as
the number of common support variables in the con-
trol conditions for the two nodes. The support vari-
ables are extracted from the BDDs representing the
control conditions. These conditions can either be ac-
tive conditions already present in the initial data-path
or potential conditions activated only when nodes are
merged.

Merging of functional units or registers may result
in extra control logic to be created. In the case of
registers, this extra control logic is represented by the
load enable of the merged register (which should be

State S2

a:= v1; b:= v2;

v4:=b;

(b)
c:=v3;

if(c1)

if (c2)

endif;

endif;

v6:=a;

v5:=c;

State S0

State S1

State S3

a

b c
Compatibility graph

ld_a: S0.c1;
Load-enable logic:

State S4

ld_b: S0.c1;
ld_c: S1.c2;

wait until clk’...

wait until clk

wait until clk

wait until clk

wait until clk

wait until clk

(a)

(c)

Figure 6: (a) Control/data-ow graph (b) Compati-
bility graph for the registers (c) Control Equations for
the load-enable signals for registers

the OR of the original load-enable's) and by the select
signals on input multiplexers. In the case of functional
units, the extra control logic is represented by the se-
lect signals on the resulting ALU (if di�erent functions
are merged) and by the select signals on input multi-
plexers. The higher the number of common support
variables in the OR'ed controls, the higher the proba-
bility that the resulting control can be optimized.

Figure 6a shows a fragment of a scheduled con-
trol/data ow graph. This example has 5 states, S0
through S4. The compatibility graph for registers a,
b, and c is given in Figure 6b and the load-enable con-
ditions, shown in Figure 6c, are a combination of the
state value and the conditions on the branches of the
control/data ow graph.

In this case the Projected Area Savings and Fu-
ture Connectivity are the same for both edges, (a; b)
and (a; c). However, if a and b share a single reg-
ister the resulting load-enable control of this regis-
ter Ra;b will be S0:c1 + S0:c1 = S0, whereas if a is
shared with c the load-enable control of register Ra;c

will be S0:c1 + S1:c2 which requires more gates to
be implemented. The edge (a; b) should therefore be
preferred over the edge (a; c) for merging. The Con-
trol Similarity metric represents such preference.

In Figure 6, the Control Similarity for edge (a; b)
is 1 (c1 is a common support variable) and the Con-
trol Similarity for edge (a; c) is 0. Note that since the
state value is encoded in a state register which is com-
mon to all control signals, the state variable is not
counted.

4 False Loop Elimination

The elimination of false loops is embedded within
the sharing algorithm. No preprocessing is done to re-
move edges that could potentially lead to false loops
as in [3]. When an edge is �nally selected for merg-
ing (based on the cost criteria presented earlier), the

o3_sel-

o3

f g

b

mx_s0:=S0
mx_s1:=S1

mx_s0

o1_sel +
o4_sel

mx_s1

wait until not clk’stable and clk=’1’;

ALU_sel(-) := o3_sel

c:=a*b; o1

o2 e:=f+g;

endif;

if(c<d) then State S0

wait until not clk’stable and clk=’1’;

o3

o4

h:=f-g;

i:=a*h;

wait until not clk’stable and clk=’1’;

State S1

mx_s0:=S0
mx_s1:=S1

o1_sel:=S0
o2_sel:=S0.(c<d)
o3_sel:=S1
o4_sel:=S1

mx_s0

o1_sel +
o4_sel

*

*

mx

<

(c<d)

(c)

a

mx

o1, o4

<

(c<d)

d

b

a

(b)
(a)

h

e

o2_sel
+

o2

f g

o1_sel:=S0
o2_sel:=S0.(c<d)
o3_sel:=S1
o4_sel:=S1

o2, o3

f g
mx_s1

o1, o4

d h

e

+, -
ALU_sel(+) := o2_sel

Figure 7: (a) Behavioral description, (b) Data-path
and controller, (c) Data-path and controller if opera-
tions o2 and o3 are merged.

algorithm checks if merging the two nodes will cause
a false loop in the design. If it does, then the edge is
discarded and removed from the compatibility graph.
The algorithm to detect false loops in the design es-
sentially traverses the data-path graph and the con-
troller (both active and potential controls). A depth-
�rst search is performed starting from the output of
one of the nodes, and follows the combinational data
and control paths. If the traversal reaches the other
node then a false loop exists, in which case the edge
is discarded.

Figure 7 shows a fragment of a behavioral descrip-
tion and the corresponding data-path and controller,
and suppose that o1 and o4 have already been merged.
Operations o2 and o3 have the same inputs and can
also be shared. Based on the Active Area Savings and
Connectivity Savings these two operations are good
candidates for merging. The false loop detection al-
gorithm starts the depth-�rst traversal on the output
of o3, which leads to multiplexer mx, to multiplier
o1; o4, to the comparator and into the controller. As
the output of the comparator is in the support of con-
trol signal o2 sel, the traversal follows o2 sel reaching
adder o2. Operation o2 is therefore reachable from op-
eration o3 and merging the two would lead to a false
loop in the design.

The above false loop elimination approach removes
far fewer compatible edges than the one described in
[3]. An edge is removed only once it is selected for

merging and it is known for certain that merging the
nodes leads to a false loop in the design. This tech-
nique allows for more cost e�ective mergings.

5 Generalized Resource Sharing:

Complete Algorithm

Each step in the algorithm has already been ex-
plained in the previous sections. The pseudo-code be-
low gives the overall sequence of steps involved in the
complete algorithm.

Generalized_Resource_Sharing
(Compatibility graph CG,
Initial data-path DPG,
Initial Controller CTR) {
while (edge_in_CG) {
e = Select_Edge_to_Merge(CG, DPG, CTR);
if (e == NULL) break;
if (False_Loop_Detection(e, DPG, CTR))

remove_edge (e, CG);
else {
merge_nodes(e);
update_compatibility_graph(G);
update_data_path_controller(DPG, CTR);

}
}

}

Procedure Select Edge to Merge computes all
the area, interconnections, future connectivity and
control costs in all edges and selects one based on the
selection criteria described in section 3. Then pro-
cedure False Loop Detection is called to check if
merging the selected edge causes a false loop; in which
case the edge is removed from CG. Otherwise the two
end nodes of the edge are merged and the compatibil-
ity graph, the data-path graph and the controller are
updated. This is repeated until no further edges are
found in CG or no more edges can be found worthy of
merging.

This algorithm does not require all edges in CG
to be merged. If merging an edge is considered
at some point in the algorithm to increase the cost
permanently, then it is never selected. This is
called a stopping criteria. If an edge has negative
Projected Area Savings and has no common neigh-
bours, it is highly unlikely that it will improve the
cost of the design and thus it is not selected (Se-
lect Edge to Merge returns null if all remaining edges
in CG fall in this case).

6 Results

The generalized resource sharing algorithm has
been implemented and tested with benchmarks and in-
dustrial examples. The results were compared against
results produced by a coloring-based resource sharing
algorithm [8] which aims primarily at producing min-
imum number of cliques, thus trying to minimize the
number of functional units and registers. The algo-
rithm in [8] does not attempt to eliminate false loops.

All examples were synthesized using both algo-
rithms and the numbers of registers, functional units

and multiplexers are compared. In addition, the re-
sults were submitted to logic synthesis for optimiza-
tion and mapping and the �nal values of area and delay
are compared.

For initial reference, Table 1 gives the total num-
ber of register bits, the number and type of functional
units and the number of multiplexer bits present in the
initial data path prior to resource sharing. Note that
chaining is allowed, so operations can be connected to
other operations or registers directly or through mul-
tiplexers.

Benchmarks Initial Data Path

Reg FUs MUX
bits bits

DIFFEQ 176 1(<), 2(+), 6(*), 2(-) 0
ELLIPTF 384 26(+), 4(*) 0

FRISC 96 12(+), 12(-), 3(=), 1(>) 1134

KALMANM 64 5(+), 10(-), 10(=), 1(<=), 5(*) 440
M6502 593 14(+), 6(-), 11(=), 2(>), 2(>=) 1484

MAHA 36 5(=), 8(+), 8(-) 64
RCV8251 19 2(-), 4(=) 53

Example 1 0 20(+), 24(=), 8(<), 8(>) 5192
Example 2 0 55(+), 22(-), 31(=), 2(<), 3402

24(<=), 3(>), 24(>=)
Example 3 0 16(-), 30(=), 4(= =) 3104
Example 4 0 8(+), 4(=) 3998

Table 1: Initial data path: registers bits, functional
units and input multiplexer bits. Each functional unit
is a multi-bit operator.

All results were obtained by directing the two algo-
rithms to merge only operations of the same kind, that
is, adders with adders, subtracters with subtracters,
etc. The algorithm can also handle merging of di�er-
ent operations in a multi-function unit.

Table 2 shows the number of register bits, the num-
ber and type of functional units, the number of mul-
tiplexer bits, and the area and delay values obtained
after logic synthesis for the two resource sharing algo-
rithms. Area and delay values are given in normalized
area units (au) and delay units (du) respectively. Per-
centage improvements in area (%A) and delay (%D)
are also given. From this table it can be seen that the
algorithm in this paper produced better results in al-
most all cases, with several being signi�cantly better
in both area and delay.

The coloring algorithm [8] produced data-path with
false loops in Elliptf, M6502 and Maha, so the delay
values for these examples could not be computed reli-
ably by static timing analysis. The generalized algo-
rithm did marginally worse in Elliptf and Maha and
better in M6502 despite removing some of the com-
patibility edges. The area results for Kalman show
a signi�cant increase because of an extra multiplier
created by the generalized algorithm, which resulted
from the elimination of an edge between two multipli-
cation operations to avoid a false loop. The coloring
algorithm did not create a false loop in Kalman due
to a di�erent merging order among edges which, by
chance, did not produce a false loop.

Table 3 compares the number of edges removed by
the generalized resource sharing algorithm to elimi-
nate false loops against the number of edges removed
by the algorithm in [3]. It can be seen that the gen-

Bench- Coloring [8] New Generalized Sharing Algorithm % Improve-
marks ments

Reg FUs MUX Area Delay Reg FUs MUX Area Delay %A %D
bits bits bits bits

Di�eq 80 1(<), 1(-) 336 4294 26.10 80 1(<), 1(-) 224 3942 24.33 8.2 6.8
1(+), 2(*) 1(+), 2(*)

Elliptf 160 2(+), 1(*) 720 5572 - 160 6(+), 1(*) 720 5998 25.02 -7.6 -

Frisc 96 2(+), 1(-) 990 5011 15.87 96 2(+), 1(-) 910 4786 15.36 4.5 3.2
3(=), 1(>) 3(=), 1(>)

Kalman 40 2(+), 2(-) 668 6677 31.47 24 3(+), 3(-) 496 8089 24.05 -21.1 23.6
3(=), 2(*) 5(=), 3(*)
1(<=) 1(<=)

M6502 119 4(+), 1(-) 1911 11373 - 110 5(+), 2(-) 1273 9484 17.28 16.6 -
4(=), 2(>) 5(=), 2(>)
1(>=) 1(>=)

Maha 12 5(=), 1(+) 100 777 - 12 5(=), 2(+) 112 801 11.83 -3.1 -
1(-) 2(-)

Rcv8251 11 1(-), 2(=) 76 1551 7.96 12 1(-), 3(=) 50 1366 6.17 11.9 22.5
Example 1 0 4(+), 24(=) 2292 17735 24.84 0 4(+), 24(=) 1940 16525 19.23 6.8 22.6

2(<), 2(>) 2(<), 2(>)
Example 2 0 15(+), 11(-) 2682 50966 25.15 0 15(+), 11(-) 2490 49099 20.29 3.7 19.3

1(<), 16(<=) 1(<), 16(<=)
2(>), 16(>=) 2(>), 16(>=)

31(=) 31(=)

Example 3 0 6(-), 29(=) 1424 3862 15.91 0 6(-), 30(=) 1360 3493 11.18 9.6 29.7
3(= =) 3(= =)

Example 4 0 4(+), 2(=) 1729 6252 9.45 0 4(+), 2(=) 1565 4686 5.17 25.0 45.3

Table 2: Resource sharing results for high-level synthesis benchmarks and industrial examples.

eralized resource sharing algorithm removes far fewer
edges than the algorithm in [3].

The execution time for the generalized resource
sharing algorithm ranged from 0.1 to 7.8 seconds for
the example with the largest compatibility graph. The
largest compatibility graph had over 2000 edges. Ex-
amples with several thousand edges have been syn-
thesized in proportional run times. CPU times were
measured on a IBM RS/6000 133 MHz workstation.

Benchmarks Total No. of No. of Edges No. of Edges Removed
Compatibility Removed by the Generalized

Edges by [3] Sharing Alg.

Frisc 322 63 0
Kalman 376 178 4
M6502 526 157 2
Maha 111 42 5
Rcv8251 13 1 0

Table 3: Number of edges removed to avoid false loops.

7 Conclusions

This paper presented an e�cient algorithm for re-
source sharing in high-level and RT-level synthesis.
Algorithms were given for the most important prob-
lems in resource sharing, namely area and intercon-
nection costs, control cost and false loop elimination.

Among the new concepts presented in this paper
are: interleaved register and functional unit merging;
accurate computation of interconnection cost, includ-
ing global permutation of inputs; future connectivity
costs based on the compatibility of inputs and outputs
of the nodes being merged; control similarity costs;
and e�cient false loop elimination.

These algorithms were integrated into a general-
ized resource sharing system which produces results

with comparable or better area and signi�cantly bet-
ter delay when compared to traditional resource shar-
ing algorithms (targetted to minimizing the number
of cliques).

References

[1] C. Hitchcock III and D. Thomas, \A method of automated
data path synthesis," in Proceedings of the 20th ACM/IEEE

Design Automation Conference, pp. 484{489, ACM/IEEE,
June 1983.

[2] C. J. Tseng and D. P. Siewiorek, \Automated synthesis
of data paths in digital systems," IEEE Transactions on

Computer-Aided Design, vol. CAD-5, pp. 379{395, July
1986.

[3] L. Stok, \False loops through resource sharing," in Proceed-

ings of the IEEE International Conference on Computer-

Aided Design, pp. 345{348, IEEE, November 1992.

[4] W. Geurts, F. Catthoor, and H. De Man, \Quadratic zero-
one programming-based synthesis of application-speci�c
data paths," IEEE Transactions on Computer-Aided De-

sign, vol. CAD-14, pp. 1{11, January 1995.

[5] R. Bergamaschi, R. O'Connor, L. Stok, M. Moricz,
S. Prakash, A. Kuehlmann, and D. S. Rao, \High-level
synthesis in an industrial environment," IBM Journal of

Research and Development, vol. 39, pp. 131{148, Janu-
ary/March 1995.

[6] R. Camposano and R. A. Bergamaschi, \Redesign using
state splitting," in Proceedings of The European Design

Automation Conference, (Glasgow, Scotland), pp. 157{161,
IEEE, March 1990.

[7] R. A. Bergamaschi, The Development of a High-Level Syn-

thesis System for Concurrent VLSI Systems. PhD thesis,
University of Southampton, Southampton, England, Febru-
ary 1989.

[8] R. A. Bergamaschi, R. Camposano, and M. Payer, \Alloca-
tion algorithms based on path analysis," INTEGRATION,
the VLSI Journal, vol. 13, pp. 283{299, September 1992.

