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主論文

京都大学審査博士学位論文

Generalized Retarded Functions and Analytic Function 

in Momentum Space in Quantum Field Theory*

Huzihiro Araki

     The analytic n-point function in momentum 

space in quantum field theory is studied. Its 

different boundary values for real value of the 

argument are determined, and a necessary and sufficient 

condition for them to be obtainable from the Wightman 

functions is given. The conditions are relativistic 

covariance, support properties in coordinate space 

(retardedness), two-term identities for momentum 

below threshold (corresponding to spectrum conditions) 

and 4-term identities (Steinmann relations). The 

first three conditions are translatable into a 

statement about the domain of analyticity of the 

n-point function: it is analytic in a union of 

various extended tubes plus the points of contact of 

two neighboring tubes for real part of one momentum 

below threshold.
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                         1. INTRODUCTION 

      The retarded functions (the vacuum expectation values of 

retarded  producttof field operators) in quantum field theory 

are, as is well known, boundary values of an analytic 

function in momentum space. In this paper, we will attempt 

a systematic investigation of this analytic function and its 

boundary values. Such an investigation has also been made 

independently by Ruelle,l Steinmann,2 and Burgoyne.3 The 

present work puts emphasis on the geometrical nature of the 

problem in contrast with the algebraic method of Steinmann 

and Burgoyne. The method of Ruelle has some common 

features with the present work but we believe that ours 

is more explicit and detailed. 

     First we consider the analytic function in the energy 

component only, and we easily obtain all its boundary 

values which include all the conventional retarded and 

advanced functions. These boundary values will be 

called generalized retarded functions ( r-function). 

Their number is 6, 32, 370, and 10932 for 3, 4, 5, and 

6-fold in contrast with 6, 24, 120, 720, for the Wightman 

functions. 

     Using a generalization of the 0-function, we can 

express generalized retarded functions in terms of 

Wightman functions and the latter in terms of the former
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in a compact manner. Furthermore, we obtain necessary 

and sufficient conditions for generalized retarded functions 

to be obtainable from Wightman functions satisfying the 

usually considered conditions, namely  (W1) relativistic 

covariance, (W2) local commutativity or anticommutativity, 

and (W3) certain mass spectrum conditions. The resulting 

conditions on the r -function are (R1) relativistic 

covariance, (R2) support properties in x-space (retardedness 

or advancedness), (R3) two-term identities in momentum 

space for momentum below threshold, (R4) 4-term identities. 

The 4-term identities have first been found by Steinmann4 

for the 4-point function. 

     The above mentioned analytic function can be extended to 

a covariant analytic function in all energy momentum components. 

The properties (R1), (R2), and (R3) are translatable 

into a statement about the domain of analyticity of this 

analytic function. Namely it is analytic in the union of 

various extended tubes plus points of contact of two 

neighbouring tubes for real parts of one momentum below 

threshold. We have not succeeded to translate (R4) 

into a statement about the domain of analyticity. 

     The time ordered function can also be expressed as 

a boundary value of the same analytic function. The 

boundary values must then be approached from a direction 

which depends on the value of the real part of the momenta.
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     All the results are valid for arbitrary types of 

fields, Bosons and Fermions. 

     In section 2 we collect our main results (Theorems 1 

through 3), together with definitions of notations necessary 

for the statement of our results. In section 3, the 

properties of generalized 0-functions are studied and they 

are applied in sections 4 through 6 for the proof of our 

main results. 

     In section 7 we make a few remarks about the class 

of functions for which our results hold. If the behavior 

of Wightman functions for large energy momentum is not 

sufficiently good, we have been unable to obtain our full 

results. As for the behavior at large coordinate separation, 

the truncated Wightman functions are expected to tend to 

zero in contrast to the Wightman functions themselves. 

Hence the truncated functions are used extensively in this 

work and their properties are studied in Appendix B. 

     The spectrum condition assumed in the main text is 

the existence of a single lowest positive mass. The case 

of more general mass spectrum conditions is treated in 

Appendix A. We obtain two term identities for momentum 

below threshold and the corresponding analyticity. However, 

the sufficiency of this condition has not been fully 

established for a general mass spectrum condition  .
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     In Appendix C, we collect definitions and known results 

concerning convex polyhedral cones which are extensively 

used in the main text. 

                2. NOTATIONS AND  MAIN RESULTS 

     In this paper, we consider the quantum theory of 

several covariant fields Ai(x) satisfying (1) the invariance 

under the inhomogeneous Lorentz group, (2) the local 

commutativity or anticommutativity and (3) spectrum conditions. 

As spectrum conditions, we assume (3a) the existence of the 

vacuum (the non-degenerate invariant state), (3b) the 

positiveness of energy, and (3c) the existence of a lowest 

positive mass m. In appendix A, we treat the case where 

(3c) is replaced by more complicated mass spectrum conditions. 

     The above conditions can be used in a most compact 

way5 for the truncated vacuum expectation values as we will 

see in the following. The Wightman functions are denoted by 

w(x) = O" (~Ca AP(1)(xP(1))...AP(
n+l)(xP(n+l})'p) 
                                                    (2.1) 

where P denotes the permutation of 1...(n+l), 6-p  is the 

signature of the permutation of anticommuting fields6 

and 

  x = (x1 , xn+l)(2.2) 

Throughout this paper we shall take xi as the argument 

of the field A..
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The truncated Wightman functions are defined recursively by7 

 (I°,  Ai (xi )...Ai (xi )10) = (Ai (xi )...Ai (xi ))T 
     1 1 m m1 1in in 

^ E 6(A.1(xi) ...)T(A. (x.) .. _) T... (2.3) 
          11kk 

wp(x) = 6P(AP(1) (xp(1)) • • •AP(n+l)(xP(n+l)))T(2.4) 

where the summation extends over all grouping of points 

x1...x
m, the A in each ( )T of (2.3) are in the same order 

as on the left hand side, 6-is  the signature of the 

permutation of anticommuting fields which brings Ai...Ai                                                           1
1m 

to the order of the A in that term and 6- is as in (2.1). 

The purpose of this definition is to subtract from the 

Wightman functions in a symmetric manner the contributions 

from the vacuum intermediate states. 

     Because of the translational invariance of the theory, 

x can be taken modulo (1,..., 1) The 4n dimensional vector 

space formed by x modulo (1,..., 1) is denoted by X. 

     The Fourier transform of a Wightman function is 

denoted by 

    4n+li(q,x)      (2T0o (Eq )wN (q) = e w (x)dxl.. •dx
n+1 (2.5) i=1 i PP 

where 
n+1 

  (q,x) = E (gi,xi)(2.6) 
               i=1 

and (gi,xi) is the conventional inner product in Minkowski 

space.8 The 4n dimensional vector space formed by
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   q =  (q1,  ..., qn+1)(2.7) 

 such that Eqi = 0 is denoted by Q. The P(q) are functions 

 of q in Q. 

      Thewp(q) are defined in a similar manner, namely 

    wP(q) =` l (q° x) wP (x) dx,qEQ(2.8) 

wP (x) = ( 27r) -41 e i (q x) wP (q) dq, xEX(2.9) 

 where dx and dq are the volume elements of X and Q, 

      dx = dx1...dxn, dq = 5(Zgi)dgi...dqn+1(2.10) 

       In order to control the combinatorical difficulties 

 for large n, it is essential to introduce a compact though 

 somewhat involved notation. A set of integers is 

 generally denoted by I, in particular the set [ 1,..., n+1} 

by I (n+l) and 

{P(1),... P(k)1 = I(P, k)(2.11) 
 The set (of sets) {I(P,k);  k = 1,...n } will be called 

P"       We define 

  q(I) = E qL(2.12) 
PEI 

 Note that 

q(I(n+l)) = 0, q(I(n+l) - I) = -q(I)(2.13)
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q(I), with  IE/P are the energy momentum vectors of 

intermediate states in the Wightman function wp. 

     The peoperties of w/ which follow from the assumptions 

(1) - (3) on the theory are (see Appendix B) 

(W1) The wP(x) are covariant functions of x€X. 

     (W2) If P' results from P by an interchange of the 

     indices P(k) and P(k+l) , and if xP(k)-xP(k+l) is 

     space-like, then wP(x) = wp,(x). 

(W3) wP(q) = 0 unless q(I) 2> m, q0(I) > 0 for 
     all IE(d)P. 

     We now turn to the main subject of the paper, the 

analytic function in momentum space. This function will 

be defined by Eq. (2.27) or in explicitly covariant form 

by (2.39). To show the equivalence of this definition 

with conventional usuage, let us start from the 

customary definition of a retarded function for Bose 

fields: 

r(x1;x2...x11+1)=(-i)nEe(x10-xp(2)0)...e(xP(n)0-xP(n+1)0) 

( ,[... [[A1(xl) DAp(2) (xp(2))J,A(x )A)J                              P(3) P(3),...P(n+l) (x
P(n+l)J0) 

(2.14)
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where the summation is over all permutations P of  2,...,n+l. 

Expanding the multiple commutators, this can be written 

as  9 

j-1 r(x1;x2...xn+1)(-1),-1(-i) 
p°01)--.1Tre(xp° (y+1)X, (y) ) 

n+1 

 V=i 
e(°(V)_x°( 

1)+1))g°(x)(2.15) 

Because the time components appear explicitly in (2.15), 

we consider the n dimensional vector space T formed by 

the time component of xEX, 

x°= (x0..xn+10) mod (1...1)(2.16) 

and the n dimensional vector space S formed by the energy 

component of q€Q. We use the following inner products, 

n+1n+1 

   q.t= Z qit,, s.x=Es.x,(2.17) 
i=1~°i=1i 

n+1 
s.t = s.t.(2.18) 

i=1~°~° 

where x€X, q€Q, t ET, and s ES. The inner products 

in (2.17) are Minkowski vectors while the inner product in 

(2.18) is a number. The space Q is the dual of X relative 

to the inner product (2.6) and S is the dual of T relative 

to the inner product in (2.18). The complex vector spaces 

corresponding to X, Q, T, and S are denoted by Z, Z°, U 

and V, respectively. (2.6), (2.17) and (2.18) are used also 

for these spaces.
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     If we define t(I) by 

 t(I)L = 1if YEI(2.19) 

        = 0if v4I 

the q(I) can be written as q.t(I). In a similar manner we 

define 

s(ij)=ip -bjP(2.20) 

which will be used to express xi-xjas s(ij). x. Using the 

notation of (2.19), we can write the Fourier - Laplace 

transform of r as 

r(v,~q) = E 5dq°(q) (27r)-nfr(v-q) • t(I)J -1(2.21) 
PIEJ(P)L 

Here dq0 is defined in an analogous way to dq in (2.10). 

The w in (2.15) and (2.21) can be replaced with the wP 

as will be seen in Appendix B. Due to (W3), r(v,q) is 

analytic everywhere except at the cuts 

    Im v-t(I) = 0, Re v • t(I)~(2+((q~-t(I))2)~~2              m(2.22) 

If we fix the sign of every Im v • t(I), and let Im v tends 

to zero, then r(v,q) approaches to one boundary value. 

Geometrically speaking, the family HR-1of hyperplanes 

(in the space S of Im v) defined by 

    HR-1 ,h(I) :IC I(n+1)} , h(I) =Ls;s.t(I) = 0}(2.23) 
divide the entire space S into several convex polyhedral 

cones which we shall call C. If Im v stays in the interior
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of one cone  C, then the sign of Im V. t(I) stays constant, 

while if it moves from one cone to another the sign of 

some Im v. t(I) changes. Thus as Im v tends to zero from 

inside each cone Ci, r(v,q) approaches to one of its 

boundary values which we shall call ri(q). The ri(q) 

exhaust all boundary values of r(v,q). In particular we 

obtain the Fourier transform of the retarded function 

(2.15) as the boundary value corresponding to the cone 

Im v • t(I) < 0 for I = [2} L3} , ... [n + 1 j , i.e., 

for Im vi < 0 for i = 2,..., n + 1. 

     We shall use the generalized e-function: 

e(t:c) = 1 if t€C 

    = 0 if tC(2.24) 

If C is a pointed convex polyhedral cone10 the Fourier-

Laplace transform of e, 

   0(v;C) = 5e1t  e(t;C)dt(2.25) 
is a rational function of v. Its boundary value (considered 

as a distribution), as Im v tends to zero from within a 

cone C° of the space of Im v, is denoted by e(s;C/C') and 

its inverse Fourier transform is denoted by e(t;C/C'). If 

C' is the positive polar10 of C, then e(t;C/C°) is equal 

to 0(t;C). Similar definitions hold for e(s;C), 0(u;C), 

e (t ; C/C ') and 0 (s ; C/C °) . The properties of these 

functions will be studied in section 3.
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     As an example, let us consider the cones  Cp in T defined by 

    CP= Lx°;x°(1)xP(2)>...>XP(n+l)J(2.26) 

Then (2.20) with wp replaced by wP can be written as 

    r(v, I)=Z Jdq p(q) e(v-q0; Cp)@$ti)-n(2.27) 

P We remark that though the starting Eq. (2.14) referred to 

the Bose case, (2.27) is the appropriate definition of the 

retarded function for an arbitrary collection of local 

Bose and Fermi fields, i.e., theormes 1 and 2 below are 

true always. 

     Our first main Theorem lists the necessary and 

sufficient condition for the r to be obtainable from the 

wP satisfying (W1) - (W3). 

     Theorem 1.11 If wp(x) satisfies (W1) - (W3) then 

ri (x) defined by 

ri (x) = (-i) n~ e(x; Cp/Ci) wp(x) (2.28) 

P satisfies 

(R1)ri(x) is a covariant function of x€X. 

(R2)ri(x) = 0, if x°)/ CI . (C+ is the positive polarl0 
     of C.) 

(R3)r(q) = r (q), if dim (CinC. (- h(I)) = n-112 

     and q(I) 2< m2. 

     (R4) r++(x)-r+_(x)-r_+(x )+r__(x) = 0, if
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    dim(C++nC+-nC-+[1C--nh(i),h(I")) = n-212                                 /I

/ 

   61n6~I'empty, C66/c(t(I))6n C(t(I'))d  (6,6'= + or -) 

     Conversely if ri(x) satisfies (R1) - (R4), then 

wP(x) defined by 

    wp(q) = (i)n e(q°;Ci/gip) 1(q) ,(2.29) 

satisfies (W1) - (W3) and the original ri(x) is given by 

(2.28) in terms of this wP. 

Remarks: 1) Note that the conditions (R1), (R2), and 

(R3) in this theorem are almost dual to the conditions 

(W1), (W3), and (W2). In fact, (W2) can be rewritten in 

our notation as (W2') W;(x) = WI(x) if 

dim (Cp n Cpe n h(ij)) = n - 113 and if (s(ij). • x) 2< 0 

where h(ij) is the hyperplane orthogonal to s(ij). 

           2) The support condition in x-space, (R2), 

expresses the retardedness in certain variables. Namely, 

if we denote the 1-facets10 of C by C(sX), then (R2) is 

equivalent to 

(R2') ri (x) =0 unless si T 0x -EV+ (the future light cone) for all 'A. 

                                                                      Actually, ri has in general more retardedness than (R2'), 

which, however, invariably contains alternative statements. 

This retardedness is, of course, implied by (R1) - (R4) 

but not immediately apparant.14 

          3) The condition (R4) has been first noted by 

Steinmann4 for the four point function (n=3). The
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intersection of two  (n-1) planes10 h(I) and h(I') 

(II') is a (n-2)-plane.10 This intersection is not 

contained in any other h(I°°) if and only if +I and +I' 

has non-empty intersection for any combination of the signs 

where we have denoted I(n+l)-I by -I. If this is the case, 

the (n-2)-plane h(I)n h(I') is divided into several 

polyhedral convex cones by h(I")(It$'I,I') and corresponding 

to each of these cones, there are exactly 4 cones Ci which 

have that cone as a (n-2)-facet10 and which are on different 

sides of (n-1)-planes h(I) and h(I'). The condition (R4) 

gives a linear relation among the corresponding four ri 

which are denoted by ri (6,6' _ + or -). 

     Our second main task is to convert conditions (R1) - (R4) 

on ri to a condition on the domain of analyticity of the 

analytic function in p-space. We have succeeded in this 

only for (R1) - (R3). 

     To state our result, we need further definitions. We 

define open convex cones V4 in Q by 

VR
~ 

= {q; q • t(I)EV+, IE~(2.30) 

where V is the interior of the future light cone and c9 i 

is the set of IcI(n+l) such that C(t(i)), IEJi 

constitute the 1-facets of Ci+. (The h(I), IE,Pi are 

boundary planes of Ci.) If C. and C, are neighbouring 

cones across the (n-1)-plane h(I0), (namely 

dim(Cif)C.f) h(I0)) = n-1), the interior of the set
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 (TT?. n V(1) is denoted by S4(ij). 

SQ(iJ)= jq; q• t(I0)=0, q • t(I)EV+ for IEci or J j 

  and I io }(2.31) 

The tube T(VQ) is the subset of Z° defined by 

   T(VQ) ={EZ ° ; Im  EVQ(2.32) 

The extended tube T°(VQ) is the union of images of T(VQ) 

under all complex proper Lorentz transformations. The 

corresponding definitions in X are 

VP = {xeX; s(P(k) ,P(k+1)) • x€V-, J:=1, ... , nI(2.33) 

S(P,k)={x€X; s(P(k),P(k+1))•x=0, 

s(P(m),P(m+l)) •xcV- for m/k j-(2.34) 

T(VP) _ { z€Z; Im z€Vp }(2.35) 

If the two cones CP and C neighbouring, namely if 

P(i) = P' (i) for ilk, k+l and P(k)=P°  (k+l) , P (k+l) =P' (k) , 

then 

S(P,k)=S(P°,k) = the interior of VP V,. (2.36) 

     We are now ready to state our second main Theorem. 

     Theorem 2. The i(q) satisfying (R1) - (R3) are 

boundary values of one analytic function r(-) as tends 

to q from inside the tube T(VQ). r(g) is analytic in 

the union of T°(VQi) for all possible i and in the sets 

Z(ij,m)= tEZ°; ImrESQ(ij), (Re -t(i))2<m21 (2.37)
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for all  i, j, I such that C. and C. is neighbouring across 

h(I). r(L) is analytic at a real point = q, if all 

q(I)2 are smaller than m2. Conversely if r(') is analytic 

in the above region and has a certain boundedness property,15 

then its boundary values '(q) satisfy (R2) and (R3). 

     This will be proved in section 6. For the sake of 

comparison we mention the corresponding Theorem for wP. 

     Theorem 3. The wP(x) satisfying (W1) - (W3) are 

boundary values of one analytic function wT(z) as z tends 

to x from inside the tube T( g). wT(z) is analytic in the 
union of T'(4) for all possible P and in the sets 
E(P,k)= tzEZ; Im zES(P,k) , (Re s(P(k) ,P(k+1)) • x) 2< 0 J 

                                                 (2.38) 

wT(z) is analytic at a real point z = x if all s(ij) s x 

are space-like. Conversely if wT(z) is analytic in the 

above region and satisfies a certain boundedness condition,15 

then its boundary values wT(x) satisfy (W2) and (W3). 

     Covariant formulas which express r( and w(z) in 

terms of boundary values of the other are given by 

r(~)=(-i)nE Efdx ei(.T,x)e(x0;Cc/IqO)e(x;Aa)wap(x) 
           a V 1 

          çd(2.39) wT(z)=(i)nzEq e-i(q°z)e(q 7CQ/Im z0)e(q;(m))~y(q) 

P (2.40)
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HereDa and  Ai(m) designate various regions in X or Q 
where w(z) or ) have different number of boundary values. 

Namely we divide the space X into several La according to 

whether each s(ij) x is space-like or time-like and the 

different regions are distinguished by subscript a. A 

similar definition holds for [(m). 

    Ott= {xeX;~(ij) (s(ia)'x)2>0~'(2.41) 

      (m) = q€Q;6f3(I) C(get(I))2-m2J>0 }(2.42) 

where 6aand(5-are + or -. For each regionavectors 
(s (k -L) • x) with d'(k.L) > 0 can be either positive or 

negative time-like. To distinguish such possibilities 

we use the cones C
ain T which are defined by 

Cali= teT; (s (kL) • t) (5- 0 for all k,1 such that 
 6-(k > 0 J(2.43) 

where as V varies v(k..t) exhaust all possibilities for 

consistent assignment of signs to s(k-L) • t.. For example, 

if all a(k t) > 0,then Cacoincideswi thjC} .In 
general, Ca y is a union of several Cp.CQare similarly 
defined and coincides with [C.3 if 6n(I) > 0 for all I. 

The summation over a in (2.39) extends over a such that the 

Ca are pointed. (In other words, if the s(k 1.) for which 

(5-a (k J_) >0 span S.) For each a, the summation over 1J



 18. 

extends over all possibilities. Similar prescription applies 

for the summations in (2.40). 0(x0;Cay/Im0) is the 
6 (x0; Ca /C°) where CB is determined by Im EC ̀ . It is in- 

variant if xE Aa and all Im r.t(I) are time- or light-like. 
6(q ;C~V/Im z0) is similarly defined. 

    wT is the wT with P such that CgGCa.Due to (W2), 
if x D

a,then the wT(x) are all equal for different P as 

long as CP stays in one Caa1311istheriwithi such 
that Ci G Cp 

     Finally we note that the vacuum expectation value of 

time ordered product, t(x), and its Fourier transform Z(q) 

can be expressed as 

  t (x) = limw(z)(2.44) 
Im z€VT (x) 

    (q) =1imin r( .5 )(2.45) ~'- q Imr€VT() 

where V°T and 7•T defined by 

TT(x) =T(CP) , if x0ECp; VT(q) =T(Ci) , if q ECi (2.46) 

3. PROPERTIES OF GENERALIZED 0-FUNCTION 

     First let us consider the generalized 0-function 

defined by (2.24) for the special case of a simplex cone 

C.10 Suppose 1-facets of C and C+ are tl...tn and sl...sn 

where S. s t, = 6iJ 0( d€t (t.) A0 .) Then we have
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 n 

 e(t;C) = iT e(s, • t)(3.1) 
         i=1 1 

e (v;C) =in (det(ti)Ii'(v •ti)-1(3.2) 
                             i=1 

If we define associated simplex cones CC by 

(CC=C (61t1... (5-ntn)(3.3) 

where theC are +1, then, we have the formulas, 

                  n 
e (v; 6C)=( T i)e (v;C)(3.4) 

i=1 

    e (t;C/CfC+)=(1T~)e (t;6C) 16(3.5) 
i=1 

We note that the poles of e(v;C) appears at v - ti = 0, 

i = 1...n and discontinuity of e(t;C/6 C+) appears at 

si t=0, i=1...n. 

     We now turn to the case of general convex polyhedral 

cones C. 

     Lemma 1. Let C be a pointed polyhedral convex cone.10 

The integral in (2.25) defines an analytic function of v 

in the tube T(C+)= [v;Im vE interior of C+ J (which is 

non-empty). This analytic function is a rational function 

with simple poles at v -t=0, for t€F1(C)(the set of all 

1-facets of C). 

     Lemma 2. (Addition theorem.) Let C and C
a be 

convex polyhedral cones such that C is the union of Ca 

and the C
a are mutually almost disjoint (C= U Ca, oC 

dim (Ca / i y < n for a/P) . Then
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  MN 

   Ee(v;c
a)=e(v;C) if  lin C=0 (3.6) 

a 

         =0if lin C/0 lin C
a=O (3.7) 

    Ee(u;Ca)=6(u;C+) if dim C+=n(3.8) 

     a 

           =0if dim Ca=n and dim C+yn (3.9) 

     For the proof, we first note that if vET(C+), then 

Im v. t>0  for tEC and as t ---)o within C, the integrand of 

(2.25) tends to zero exponentially. Hence it defines an 

analytic function of v- Next, we obviously have 

    e(t;C)=Ee(t;Ca) almost everywhere (3.10) 

            a Because C
a+J C+ and C+ is non-empty, the integral 

representation (2.25) can be applied to all e(v;Ca) and 

e(v;C) if vET(C+). Hence we get (3.6) from (3.10) as 

a relation between analytic functions. To prove that 

Ai 
e(v;C) is rational, we invoke the simplexial decomposition 

of C: C= V Ca. We already know that/for simplex cones Coe 

         a 0(v;Ca) is rational. Hence e(v;C) is also rational by 

(3.6). Moreover, because F1(Ca)C F1(C) for standard  

simplexial decomposition and the latter is possible if 

lin C=0,17 we see that the singularities of e(v;C) occur 

only at y•t=0, tEF1 (C) . 

     To prove (3.7), we first consider a special case 

where C= UC6,=C(Omtm,tl...tn),dim Cd=n, 

and 6i=+1. Since C- is simplex, we easily get (3.7) from 

(3.4). Using this result, we make generalizations in two steps.
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First consider the case where  C=
° C.= C (TO U To.), 

                          6 dim C(T0)=n-m,  lin C(T0)=0,  T6 ={ 61t1' .. crmtm i , 
C5'i=+1 and dim C6- We make a simplexial decomposition 

of C(T0) in h(T0) :C(T0)= tC(Tp) . Setting CPK=C (TPLIT) 

andC~= Uc~6,andusing (3.6) for C6= U Cand (3.7) 
6le06 

for C = ~C~6,we havea9 (v;C6)=Z(Z(v;C,6_)~=0. 

Finally for the most general case, let C= U C,lin C=m, 
                                            oca 

L(C)=h(E) , and E= {s1.. osm I . Let E 6= {61st. . 6 sm) , 
C 6 =C (E6i4?\c, and Ca 6 =Ca (Co . Since lin C6, =0 by 
construction, we have 6(v;C-)=E 8 (v;Ca 6-) due to (3.6) . 
Since lin Ca=O by assumption, we have 8(v;Ca)=E 6(v;Ca d). 

a By the (3.7) for the previously proved case, we have 

Ee(v;C 6 )=0. Combining these, we get the (3.7) for the 

most general case. 

     (3.8) and (3.9) can be proved at the same time. (If 

                ..r 

dim Cjn, e(u;C)=0)o First consider a special case where 

C=C1\-)C2° c1=C /)c (-s)+, C2=C (\C (s)+, and s, -si/c o+ The 

(n-1)-planes in Hn-1(C+)18 divides CI and C2 into several 
convex cones. Let this decomposition be CZ=C+ U((/C+a) and 

                                                                                             o,, 

C2=C+ U(U C+").Since and andC2are pointed, we have from 

(3.6) 
        ,„p 

      (u;c1)=e(u;c+)+Ee(u;C+a) anda(u;C2+)=0(u-C+)+Ee (u;C+) 

Since C1C2+is not pointed, we have from (3.7) 

e(u;C+)+Ee(u;Ca+)+E9(u;Cp+)=0o Hence we get (3.8) and 

(3.9), for this case. Next consider the case where C is 
                                                                                            "L` 

cut into several Ca by a family of planes h(s),s E So.
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By applying the previous result, every time one cuts C by 

a  h(s)L , one gets the (3.8) or (3.9)for C= UCa. Finally, 
consider the most general case C= U Ca. The (n-1)-planes 
in UHn-1(Ca) cut C and Ca into several convex cones. Let 

this decomposition be Ca= UCaiand C=UCai. Then by 
ai 

applying the previous result for C
a and C, we get (3.8) 

and (3.9). This completes the proof of Lemas 1 and 2. 

     Next we investigate the residue of e at its pole. 

We define 

     R(v;C/t)=lim v10 tN8(v°;C) v • t=0(3.11) 
v-v 

     R(v;C/t1...tm)1i~v° . tm R(v° ;C/tl...tm -1) , 

v • ti=0, i=1...m(3.12) 

     Lemma 3. R(V;C/t1) =i€ (C; f1)i (v;C11)(3.13) 

R(v;C/tl...tn)=in det(ti) ITE(Cm-1-fm) 
m=1 (3

.14) 

where C C+h(tl...tm), C0=C, fm C(tm)+h(tl".•tm -1)' 

E (C ; f) =1 if £€Fm(C) 17 for some m 

=-1 if -fEF
m(C) for some m, (3.15) 

=0 otherwise, 

81 is the 8 where the space T mod h(t1) is used instead of 

T and h(t1),' instead of V. The volume element of T mod 

                     N h(t1) in the definition of8 is so chosen that, if 

t1, t2°...tn° span a parallelepiped of unit volume, 

t2°...tn° span the same in T mod h(t1).
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     To prove (3.13), we note that  R(v;C/t1) is a 

rational function of v in h(tlyL in V. We can calculate 

R by 

-27ri6 (v • t
1) R(v;C/t1)=1im [8(v+i€;C)-6(v-i€;C)] 

Ego(3.16) 

where Im v • t1=0 and E • t1> O. From Lemma 1, we have 

R(v;C/tl)=0 unless t1or -t1EF1(C)(3.17) 

Suppose C(6t1)€F1(c) (6=+) . Due to (3.17) and the 

addition theorem (3.6), we can adjoin to C or cut off from 

C any convex cones whose 1-facets do not contain +tl 

without changing R(v;C/t1). By this process, we can 

shift all (n-1)-facets of C not containing +tl, to one 

facet f. Suppose fls and s • t1 > 0. Denoting 

C1=C+h(t1), C'=C11C(s)+, C"=C0C(-s)+, we have 

R(v;C/t1)=R(v;C°/t1) 

On the other hand we know from (3.7) that 6(v-i 6 E;C') 

=-6 (v-i 6 E;C'°) . From these we obtain 

-27ri6(v • t
l)R(v;C/tl)=1im6~~6(v+i6E;C°)+B(v-i6E;C") 

                        0 

                                                 (3.18) 

Since R is rational function, we can easily find an open 

set 0 (relative to h(t1) ) in domain of analyticity of R 

and E satisfying E • t1 > 0, such that 6e+Im v€C° and 

             + -(SE+Imv€C" when v€0. We can use the integral 

representation for both 6 in (3.18) for such v and E, 

and we obtain
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-27ri5(v . t1)R(v;C/t1) =Se'' t 6 (t;C1)dt 
Thus (3.13) is true for v€O. Since both sides of (3.13) 

are rational, it holds everywhere. 

     By repeated application of (3.13), we obtain 

(1T 27x6 (s • tm)) R (v; C/tl ... tn) = n € (Cm-1/vm)$eistdt . 
m=1m=1 

which implies (3.14). This completes the proof of Lemma 3. 

     We now discuss the boundary values of 6. 

     Lemma 4. The boundary value of 6 

8(s;C/s°)=1im 8(s+iks';C) 

    k--)+0(3.19) 

is the same for all s° in the interior of any one cone C' 

of r(H n-1(C+)) .19 
     This is obvious if one recalls that 6(v;C) is 

rational and its poles appear only when Im v is on one of 

planes in Hn-1(C+) =H1(C). 

                  N 

     This justifies the notation 6(s;C/C') instead of 

6(s;C/s9 as long as C' is a cone of,C(Hn -1(C+)) or 

contained in such a cone. 

     Lemma 5. The Fourier transform of 6(s;C/C°), 

    6(t;C/C°)=(eis • t 6(s;C/C°)ds (27)-n(3.20) 

is a function taking integral values (almost everywhere) 

and with discontinuities only at planes belonging to 

Hn-1(C). Furthermore
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 8(t;C/C°)=0 if t/C°+(3.21) 

8(t;C/s°)=0 if t€interior of C and s'/C+ (3.22) 

     To prove the first part of the Lemma, we note that 

this is true for simplex C (cf. (3.5)). For arbitrary C, 

we see by a simplexial decomposition C=EC
a, that dis-

continuities occur on (n-1)-planes. Furthermore, if a 

(n-1)-plane hHn -1(C), then by Lemma C2, we can make this 

decomposition in such a way that h/Hn-1(Ca) for any a. 
Hence discontinuities occur only on planes of Hn-1(C). 

     To prove (3.21),20 we note that if t/C°+ then there 

is a s1EC° such that sly t<0. Using a basis s1...s
n in S, 

    ®(t;C/C°)=(e-iE~jsj•t~det(sj)I8(Efjsj;C/C')T1dJ j 

Since e is analytic for Im J1> 0 with fixed real f j , j 2, 

we have (3.21) by contour deformation in the J01-integration. 

     To prove (3.22), we make a simplexial decomposition 

of C+: C+ = U Co+. Obviously s °/Ca+o Since 8(v;C) =E®(v;Ca) 

due to (3.8) , we have e (t ; C/s ') =E8 (t ; Ca/s °) o If s° 

happens to be on some plane of Hn-1(C+) there is always 

another s°0 near s° which is not on any plane of Hn-1(Ca+) 

nor in C+ and satisfies 8 (t;C/s °)=8 (t;C/s°°) . (s ° Hn-1(C+) .) 

For simplex Ca, we see from (3.5) that 8(t;C/s°)=0 if 

tEC C Ca and s 00Ca+ . Hence we have (3.22) . 

     Finally we prove the following inversion formula, 

     Lemma 6. If dim C=n, lin C=0 and H.Hn -1(C+), then 

         e(v;c°)8(t;c/c')=e(v;c+)(3.23) 
C°Er(H)
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     To prove this, we first consider the case where C is 

 simplex. Since HC H
nm1(C+), each CHEr(H) is contained 

in some Co.+. By Lemma 4, (3.6) , (3.4) and (3.5) , we obtain 

      6(v;C°)6(t;C/C°)E(
aE.6(v;C')e(t;C/C6+))  C1CCC

~ 
=E (v;C+ )6 (t;C/C +) 

                       =E 6 (v;C+) 6 (t;C ) =0 (v;C+) 

For general C, we make a standard simplexial decomposition 

C= U Ca. Since Hn-1(Ca+)CLHn-1(C+), we can use (3.23) for 

every Ca. Hence by using (3.6) and (3.8), we obtain 

(3.23) for the general case. 

           4. THE NECESSITY PROOF OF THEOREM 1 

     To prove (R1), we rewrite definition (2.28) in a form 

similar to (2.39). Namely, using the notation (2.41) - (2.43), 

we see that CaVis sum of several CPoMoreover, due to (W2), 

if x6.6xthen the w(x) are equal for various P as far as 

C stays in one Ca. Hence using (3.6), we get 

    ri (x) - (-i) nE6 (x;LIa) v6 (x°;CX /Ci) wT (x) . (4.1) 
                 aap 

6(x0;CaX        v /C) is invariant as long as xeaabecause its 
discontinuity occurs only at s(k.~). x0=0 with k,-e such 

that (s(k .e)• x)2)>0 and otherwise it stays constant. 

Since wa 1(x) is covariant due to (Wl) for wp,we have (R1). 

(R2) is an obvious consequence of (3.21).
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     To prove (R3), we note that the difference 

ethe  (s;CP/Ci)-e(s;CP/C~)forneighbouringCiandC~is 

boundary value of  R(v;Cp/t(I)) multiplied by ± 2wri6(s• t(I)) 

(cf. (3.16)). Hence, due to (3.13), only terms with those 

P for which + C(t(I))EF1(CP) survive and, due to the 

presence of the above 6-function and (W3), wP vanishes if 
+ q • t(I) is one of its intermediate momentum. (Note that 

(q(I))2C m2.) Since +C(t(I))EF1(Cp) implies that + q(I) 

is an intermediate momentum of wP,we have (R3). 

     To prove (R4), we first note that, since I(P,k), 

k=1...n is totally ordered by set inclusion, if d In6'I'empty 

then + q(I) and +q(I') can not be intermediate state for 

one wp simultaneously. Thus by Lemma 4 

e(x'CP/C+6,) e(x;CP/C -6i)if +C(t(I)) F1(Cp) 

e(x;CP/C6+)=e(x;CP/C6. )if +C(t(I'))F1(CP) 

Since one of these equalities is true for each Cp, we 

have (R4). 

5. THE SUFFICIENCY PROOF OF THEOREM 1 

     First let us show that if riis obtained from wP as 

in (2.28), then we get the wP by (2.29). Namely we define 

   wT(g/t)=(i)nze(gC;Ci/t)r (q)(5.1) 

Then by substituting (2.28) into (5.1) we have 

  _riq x     w (q/t)=Z 

           P\e wP(x) (le (q ;Ci/t)e (xC;CP/Ci)dx
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 By (3.23) the summation in the parenthesisis equal to 

e(q; Cp/t) . (Note that [ CiS =r(Hn_1) andHn-1pHn-1(Cp).=) Hn-1(CP) 
We now have 

   w(q/t)=Pe (q°;CP/t)wp(q) 
By (W2) wP(q)=0 if q is not in the interior of C. If q0 

belongs to the interior of CP and tiCp , then by (3.22) 
e(q ;CP/t)=0. If q0 is in the interior of CP and t€Cp:, then 

e(go;CP/t)=8(q ;Cp)=1. Thus we have 

  wT(q/t)=wT(q) if tECp(5.2) 

     We now assume (R1) - (R4) for ri(x) and define 

    wT(u;~x)=(-2gi)-n 5dx°6(u_x°;C1)r(x)Ei(5.3) 

           wTr0     (x/t)==1im w(xfiTt;)(5.4) 

~> +0 

IIII We denote UHl (Ci)LLHn-1(C±) by HnWl and pHn-1(Cp) by H11-1. 
We easily see that Hn_1C.HnW1and in fact HnWlis much larger 
set than Hn-1 in general. 

If we denote the cones in (I71) by Cy where 
Cp=JCpland the wT(x/t) with t irtthe interior of Cpl 

by w4(x), then by Lemma 4, WPy(x) is independent of the 
choice of t in Cpl,.However, it depends on Yin general. 

     By Lemma 1, wT(u,x) has singularities for Im u€hcHRW1 

in general. Hence in order to be able to define wP from 
wT(u,) , we have to show that the jump across the cut on

.)
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Im u€h for wT(u,x) vanishes if hEHn-1 and h Hn-1' 
(The wT(u ,x) constructed from riof the form (2.28) is 

regular there.) This follows from (R4) in the following way. 

     By (3.13), what we have to show is 

E(R(u-x0;Ci/s) b (s • (u-x0)) ri (x)dx0=0(5.5) 

for Im s•u=0, h(s)J_EH-Wland h(s)1/Hn-l.This is 
equivalent to 

    E((Ci)
m-l;fm)ri(x)=0(5.6) i=1 

for all s2...sn, where (Ci)m Ci+h m,fm=C(sm)+hm-1, and 

hm h(s,s2°..s
m). The necessity follows from (3.14). For 

the sufficiency proof, we expand the rational function 

R(u;Ci/s) into partial fractions first with respect to 

uL(the first component of u). Each expansion coefficient 

is the residue of R at the pole of that partial fraction 

and is a rational function of u given by some R(u;C/s,s2). 

Repeating this process, we arrive at a formula of the type21 

    R(u;Ci/s)=const.E(I~ E (Ci)m-1` fm))R(u) 
m=1 

where f
m and (C)m-1 are defined as in Lemma 3, the 

summation is over s2...sn and R(u) is a rational function 

of u depending on s, s2...sn. By substituting this 

into (5.5) and using (5.6), we see the sufficiency of 

(5.5) .
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     Next we prove (5.6) from (R4). In (5.6), if 

hm0M(C .) , for all i and for one fixed m, then all  E 
vanishes and the equation is satisfied.  Hence we now 

assume that h
m€Hn(Ci) for some i, namely that hm is a 

m-dimensional intersection of planes h(I1)...h(I
n-m). 

     We first show that there is one and only one Ci for 

a given (1a
m,m=1...n such that 

E ((Ci)m -1' fm) 6-m(5 .7) 

where 6
m-           =+1. If this is true then denoting the corresponding 

ribyrte
'we can rewrite (5.6) as 

    ...0- 3a ~...nYd=0(5.8) 

     To prove the above statement, we note that each h
m is 

divided by planes h(I) not containing h into several (closed) 

convex polyhedral cones, say C(am).For each C(am), there is at 

least one cone Ci for which Ci,hm=C
a(m). Furthermore, 

each h is divided by hm-1 into two sides: hm hm U hm-1 U hm , 
where +smehm- For each Ca(m-1) there are just two C,(m) 
containingC(m-1) (in its boundary), 

ay), one on each side of 

hm-1. Hence by induction we obtain the above statement. 

(Note that Ca(n) coincides with Ci.) We also see that 

Ca(m) can be characterized by the value 6k, k m. Hence 

we use the notation c(m)61 

     Next let us investigate hm more closely. If Ia and 

Ib are proper non-empty subsets of I(n+l), and if
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 6aIa 6bIb for 6-a, 6b= ± , then there are 5 mutually 

exclusive possibilities: (al) I
a n Ib-empty, (a2) IaC Ib 

(a3) Ia:DIb, (a4) Ia~,/Ib =I(n+l) or (p) 6-aIan6bIb=non-empty 

for 6a'6-=+ We now prove that there exists integers k 

and .Q (L < k < n) and the set I (dill) ; 5 m kJ satisfying 
the conditions: (Al) h

n-m(Ih(I m)) , (A2) Iv(m)is a                                ^ =1 
partial sum of I (m°), 4=1/ ...m ° where m< m' , (A3) Ia=I4(m) 

and Ib=IV(m) satisfy (al) for .,y`k and (al) or (f3) for 

m= 2) =k. In the latter case, (¢) holds for fit= ,Q 

     Suppose I v(m) has been defined for m<M satisfying 

(Al) , (A2) and the condition (A3') : I (m) and Ijm) fulfil 
(p). Then we will construct I Y(M) which satisfy (Al), (A2) 

and either (A3) or (A3°). If this can be done, then by in-

duction there is some M=k for which (A3) is true for the 

first time or else we find mutually disjoint Iy(n-1) such 

that hl= U h(I~(n-1)). This latter possibility contradicts 

hl~Hn_l. To construct 1M) , let hn_M=hn_M+lvh(I) 
IfIJI 4(M-1), we replace I by I'=I-I(M1). After doing 
this replacement for eachfit, I' and I(Ml) never satisfy 

(a3) nor (a4). (If M=2, (a4) may happen, but then we 

replace I by -I without harming other conditions.) Now 

if I°I~(M-1)      C(which happensonlyfor one                ppyµa) , we define 

I (M) =I (M-1) for V AL, I (M) =I (M-1)-I', and I (M)=I, and 
Y Y4 4 

they will satisfy (Al), (A2) and (A3°). Otherwise we 

define I4(M)=I4(M-1) and IM(M)=I', and they will satisfy 

(Al) , (A2) and (A3) or (A3') .
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     We now claim that 

   (5n-k+1- .e+1-k+1 n-,e +lr~ 0(5.9) 
(n-k) To prove this, we consider an inner point P of Co-  '~ -k 

in hn -k• In the neighbourhood of P, there are no planes 

h(I) except those containing h
n-k_ We define the point 

P(E
n-k+1° ° °Em)-P(En-k+1° ° °Em-1)+Ems°m(5.10) 

where 5ams
mexcept se                        n-t+1 is chosen to satisfy 

S In -+1• t(I (k))=0 for µ74 ,Land s'Eh  ~n-:2 +ln-4 +1 

Obviously P(E
n-k+l°°'Em)Ehm. If we choose Emsuccessively 

smaller enough, and if (sign E 6m• then P(_..Em) will be111 
in the relative interior of C 6 

~.6 . We now fix Em so 
1'm 

that the point 

P( f'f °)-P(° n-k+l... P°En-.~+1°..En)(5.11) 

is in the interior of C6
°6forJ= 6n-k+11and          1 °'

n 

P°= 6_2,+1. We also define C(y f')=ci~r(f f °)=ri if p(pp) 
jS ;Yt. the interior of C. We now prove that rf +-p - 

is constant inf . This will prove (5.9). 

     For this purpose, we consider the segment 

L+={P(f,+1); 1P~land LP(f,.);~P~<1}and 
consider the question: where L+ and L- meet the boundaries 

of Ci? Since L+ and L- are parallel to sn-k+1Ehn-k+1° they 

will never meet planes containing hn -k+l, namely planes 

                                    (k-1) h(I) where I is any partial sum ofI. On the other
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 hand,  if  the  E  are  sufficiently  small,  L+  are near P and 

will never meet with planes not containing h
n_k. Thus, 

the only planes h(I) which L meets are for I=Ik(k)+Dµ(k) 22 

where the summation is any partial sum of I
µ(k)such that 

Ik(k) and I
µ(k)have the property (al). Land L_may 

meet more than one planes h(I) at one time. In such a 

case we change the choice ofEslightly and then Iµ(k)will 

meet only one plane at a time Since s
n_,e +1.t(Iµ(k))=0 

 for 144.e, and µ=,Q does not appear in the summation in 

 the definition of I, L+ and L_ meet h(I) at the same time. 

      For each fixed I, we fix 
J + and F such that 

P()° 06°) is on the same side of h(I) as P( 6, 6°) and 

 sufficiently near to h(I). We now prove 

r(P+,+1)-r(P+,-1)=r()0-,+1)-r()09-1) 

by proving that r (p +, / ° ) -r ()Q- , j ° ) is constant in 

     Let the segmentP (p~, ID); 1 P ° I < 1 J be L ° . 
We investigate planes h(I°) which L0`meets. Since 

 the L° L.arenearP,h(I")shouldcontainhn _kSince 

                                         (k) L°are parallel to s
n-+1+1and sincesn-.~+lamµ)=0 

forµQ,I cannot be a partial sum of Iµ(k),µ74.i. 

Hence I°=I)Iµ(k) where summation is any partial sum 

of I(k) with .e , k. Suppose P (f 6a J ° (5 ) is sufficiently 

near to h(I) and on the same side of h(I")  as P( 947,  6") . 

Then what we would like to prove is
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     r(,)-r(.P)-r(,f I)=r(f=7,~p)-r(j) . ~ ) 

Because I and  IB satisfies (p), this is nothing but (R4). 

Thus we have succeeded in proving that wT(u;) has no cut 

across the plane Im s • u=0 unless h(s)1E Hn-1. 
     We now prove the properties (W1) - (W3) for wT. 

First (Wl) becomes obvious if we write pT(q) as 

    wp(q)=inEe (q;.613(m)) (ve (q0(q) ) t€CP (5.12) 

where notations are as in (2.40) and the proof is similar 

to that of (4.1) . 

     To prove (W2) or equivalently (W2°), we calculate by 

Lemma 3 the jump of wT (u; x) across the cut Im s • u=0, 

inE R(u-P;Ci/s(µY))6(s(!.^) • (u-x°))ri(x)dx0, Im s(ii)•u=0 

   J 

                                                   (5.13) 

If +s(p.1)) is not a 1-facet of Ci, then R vanishes. If 

+s (u. V) is a 1-facet of Ci and if (Re s (u. v) • x)2.< 0, 

ri(x) vanishes because of (R2')® Thus (5.13) vanishes if 

(Re s (p. Y ) • u) 2< 0, which proves (W2) . 

     To prove (W3), we first note that if q CP+, then 

qC+for at leastone/, and thereforeq=T  P~PwT()(q)' 

vanishes because each e(q ;Ci/CP y) vanishes due to (3.21). 

SupposeqECp and (q • t(I))2<m2 for at least one 

IEfPWWe will prove w(q)=0 for this case by using the 

following Lemma,
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     Lemma 7. If (q  .  t  (I))  2< m2 for one IEJP and Ap (m) 

contains q, then each cone C contains points outside of 

       .  P 

     If this Lemma is true, then for any point q ECP there 

is a point eoutside the cone Cp which can be connected 

with q0by a continuous line without crossing boundary 

planes of any C~ V.For such aqd,e (q;CQv/CPa,)=8(q0';C~v/CPS,) 
by Lemma 4. Since e (q ° ;CQ /Cp) is a sum of 6 (q' ;Ci/CPS,) 

by (3.6) and the latter vanishes, we have w(q)=0. 

     To prove Lemma 7, it suffices to prove that a`F; 

q(I)2C m2 for at least one IEcyP and a polyhedral convex 

cone C= (\ C(t(I'))} is contained in C, then there is 

at least one I'E) for which q(I')2< m2. To prove this, 

we note that C GCP implies (Lemma C1) that 

T(i)t(I)=> T(I,I')t(I') for IEJp(5.14) 
I ' E) 

where MI) and T (I, I ") are positive integers. By 

comparing any fixed component on both sides of (5.15), we 

easily see 

2(I) E A(I,I')(5.15) 
I° 

If q(I') 2. m2 for all I ° EJ , and if q EC, then each q(I') 

is positive time-like and we have23 

(q(i)2)1/2Z T(I)_l (I,I') (q(I')2)1/2> m2 
IS 

which contradicts with the assumption. This completes the 

proof of Lemma 7.
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     Finally we show that  wP(x) satisfies (2.28). Since 

wP(x)-wPy(x)for any Y , we obtain, due to (3.6), 

    E6(xO;CP/Ci)wP(x)-~Y0(xo'CPU/Ci)wT (x) 

Substituting the definition of wP (x) into this equation 

and using (3.23) we obtain 

    P6(xo;CP/Ci)wP(x)=18(xo;Ci,/Ci)ri°(x) 
By using (R2) and (3.22), the terms with i'i`i vanishes. 

By 6(x0;Ci/Ci)=6(x0;C+), the remaining term is identical 

with r(x). 

                    6. PROOF OF THEOREM 2 

     The Fourier transform of ri(x), 

             i( fix) 
   (~)_ jer(x)dx(6.1) 

is analytic for "ET(VQ) due to (R2). Conversely, if r(37) 
is analytic in T(q) and satisfy certain boundedness 
condition, then its boundary value r(q) has the property 
(R2). Since ri(5") is covariant, due to (R1), it is 
analytic in the extended tube T°(V4) by the theorem of 
Hall and Wightman.24 

     We will now prove from the property (R3), that 

    lira r ( +i€q) =1im r ( 3' -i€q) 
 E-4+0E~+O~(6.2) 

where Ci and C are neighbouring across the plane h(I), 

3° EE(ij ,m)(6.3)
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q€Q, (q  •t(I))2y0 and q • t(I)>0. If this is proved, 

then by the edge of wedge theorem,25 7i are analytic 

at E(ij,m)25 and identical with each other, and therefore 

the theorem 2 is proved. 

     To prove (6.2), we denote the boundary values in 

Eq. (6.2) by (3) and T(- ) . By taking the Fourier 

transform of (3.16) and (3.13), we obtain 

0(xO;C/Ci)-e(xO;C/C .)=6(C;C(t(I)))e((x0)I;CI/Cij) (6.4) 

where C1=C+h(t(I)) (as a set in T mod h(t(I))), 

C.C./)Cj (Eh(I)=h(t(I))), (x0)1 is x0taken mod h(t(I)), 

0 is as described in Lemma 3, and 6 is defined by 

C(t(I)) C.. Using the addition theorem (3.6) for the 

left hand side of (6.4) we easily see 

€( Uc ;c(t(I)))e1((x°)1;(UcP)1/Cij) 

              =EE(C;C(t(I)))8
1((x0)I;(CP)1/Cij) (6.5) 

where LJCP is any partial sum of C and is assumed to be 

a polyhedral convex cone. 

     Using the integral representation (6.1) for (r) and 

r. (7) with .`EE(ij,m) , we obtain by (6,4) 

,x) 
r1(~ S_edx(Irv(Cav;C(t(I))))e1((x0)i; (CaV)i/Cij) 

       0(x'~
a)wT (x)(6.6)
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Since  Ca  v is a partial sum of CP, we can rewrite (6.6) using 

(6.5) as 

              i( ',x) 
r(~)-rj(~)=edx Eel((xo)I;(Cp)I/Cij)E(Cp%C(t(I)))wp(x) 

                                                 (6.7) 

     We now introduce a basis t(i), t2...t
n in T and make 

the transformation of variables x-,y, through 

x-t(I)®y$ E ti®U. , (y and yi are Minkowski vectors.) 
i=2 

Then el in (6.7) is independent of y
land if t(I)EF1(Cp), the 

Fourier transform of wp(x) in yi with fixed yi, i > 2, 

Ti (poY)      wP(p;y2.. =yn)=fewPT(Yt;y2...yn)dyi 

                                        _ 

               =(2~Jn-1fexp(E(q,yi)^t~)s(P-q•t(I))wP(q)dg 
                                    i=2 

vanishes for p2< m2 due to (W3). On the other hand if 

t(I) pF1(Cp), then E(Cp;C(t(I))) vanishes by definition 

(3.15) and hence we have i(3 )=2::j (3) for 'EE(ij ,m) . 

     We note that (2.39) is obtained from (6.1) because 

if 3°ET(V4) then Im BECi. Unlike (6.1) , (2.39) holds 

in all T(VQ). 

     Finally we add the proof of (2.45). By definition 

Z(x)=E0(x0;Cp)wp(x) 

P Using e (x°;Cp) =e (xo;Cp/Cp+) , we obtain 

Z(q)=(276-n E l'e(v-q();Cp/Cp+)wp(q)dqo 

             P
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We now assume that  s  =  Re vECi. If Cp+.7)Ci, the replacement 

of CP+by C.can be done trivially. On the other hand if 

Cp+0C,then s • t(i)< 0 for at least oneIEand due to 

(W3) 5?'(v-q°;c)ç(q)dq°will be analytic. Hence we can 
again replace Cp.+ by Ci. Thus we have the formula (2.45) 

                       7. ADDITIONAL REMARKS 

     To make the Theorem 1 in section 2 precise, one has 

to state the class of distributions to which wT and ri 

belong.16 We do not attempt to make a precise statement 

as to the class of distributions for which our proof holds, 

but we would like to make some remarks pertinent to this 

point. 

     The behavior for large value of space time coordinate 

can be estimated by physical arguments and it is expected 

that wT decreases exponentially in space-like directions 

and according to a power law in time-like directions. 

This behavior will be inherited by ri. Hence the 

assumption that the multiplication of 1(q) by 

6(q ;Ci/t) is well-defined is a reasonable one. 

We have shown that wP and wP yield the same ri.We 

have also shown that wg can be obtained from riby an 

inversion formula. The reason why w, cannot be obtained 

by the same inversion formula is the following. w, will 

(in general) approach to non-zero values for large
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separation of its coordinates due to the vacuum intermediate 

state. Because of  this, expressions like e(q ;Ci/t) p(q) 

have ambiguity and especially the formula (3.23) cannot 

be used when multiplied byw(q).16Thus, if we substitute 

(2.28) with wp replaced by wp into (5.1), we cannot change 
the order of summation over P and multiplication by 

e(g0;C/t) and hence we do not get w(x). On the other 

hand if wP behaves as we conjectured, then we will get 

wP by (2.29). This is one of the reasons for using 

wT instead of wP' 

    We do not know much about the behavior of p(q) for 

large energy momentum. If wp(q) does not decrease for 

large q, we have to use the subtraction method. It seems 

to be a non-trivial problem to extend our results to this 

case. 

     APPENDIX A. CASE OF MORE COMPLEX SPECTRUM CONDITIONS 

     We define m(P,k) by the lowest upper bound of m such 

that 

(sEoo Ap(1) (xp(1)) ...Ap(k)) (xp(k)) (P(m)—P) 

AP(k+l) (xP(k+l)) ° ° °AP(n+l) (xP(n+l))±0) (A. I) 

vanishes identically where P(m) is the projection into 

states with mass below m and PO is the projection into 

the vacuum We We first prove 

m(p,k)=m(P°,k) if I(P,k)=--I(P°,k) (A.2)
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Suppose  (A.l) vanishes identically for P and m<m(P,k). 

Then (A.1) vanishes for P' and m< m(P,k) if the points 

Xp(1)...xP(k) and Xp(k+l)o.`xP(
n+l) are space-like to each 

other within each group. We now note that (A.1) for P' as 

a distribution in the difference variables .j=xp,(j)-xP'(j+l) 

is a boundary value of a function which is analytic for 

Im t.EV®. Hence27 (A.1) for P° also vanishes identically 
for m<m(P,k) . 

     Because of (A.2) we can define 

   m(I)=m(P,k) if I=I(P,k)(A.3) 

We now assume the following: 

     Assumption A. m(I) with fixed I is the same for all 

n such that w(x)#0. In addition 

m(I(n+l)-I)=m(I)(A.4) 

      jm(I.),> m(I) if t(I)=E?t(I)(A.5)j      j

)(A.4) is obviously true for Hermitian fields.The idea 

behind (A.5) is the following. The state 1. Trir 7.1 Ai(xjyi 
y=1 iElj 

will have the same quantum numbers (which is associated with 

fields, additive, and zero for vacuum state)28 as the 

states 11= TT A1(xi)*.10 andTr Ai(xi)I0. 
i€IiE-I 

By definition of m(Ij) there is a state ~ with mass 

around m(I1) such that (1 1 A(x1))*1)�0.  Assuming 
iElj 

assymptotic conditions, we write in the form

*o
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 =F
j  (Ain) 0_ Then the state ±t r(F. (Ain))7\j~0 

will have the same quantum number as land the mass 

around Ejm(I,). Then, assuming no accidental cancellation, 
     J 

(~ ') and ( ,EP) will not vanish identically, and we 

see that (A.5) is a reasonable assumption. 

     We note that for n=2 (A.5) takes the form 

mi+mj) mk ? I mi-mj I(A .6) 

where (i j k) is any permutation of 123).29 

     As will be proved in Appendix B, wP will satisfy 

(under the assumption B) 

(W3°) w(q)=0 unless q.t(I)EV+ and (q.,t(I))2> ma) 2 

for all IEJ 

     By the same proof as for (R3), we obtain 

(R3°) i (q) = (q) if C. and C  are neighbouring 

across h(I) and if (q. t(I)) 2< ma) 2. 

We also get the analyticity of r(r) at 

Z(ij;{m(I)} )=D'EZ°; im f ES(ij), (Re q•t(I))2< m(I)2 

                                                   (A.7) 

The sufficiency of (R3°) for (W3°) will be established in 

the same way as in section 5 if the following is true 

(cf. Lemma 7), 

(Ml) If (q . t (i)) 2<m(I)2 for at least one IejP and 

i(f m (I)} ) contains q, then each cone CP Vcontains points 
outside of C.where
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    zap( {rn(I)SJ.  'qE4; 6f3(I) ((q. t(I))2-m(i) 2) > 01 (A.8) 

     This Lemma follows from (A.5) in the same way as the 

proof of Lemma 7, if the following statement is true, 

     (M2) The N(I) in (5.13) can be taken as 1. Namely 

if C=' r C(t(I'))+ and CGCV.then 
" E) 

    t(i)=A(I,I')t(I')for IEJP(A.9) 
IC 

where MIDI') is an integer. 

     We have been unable to prove this for general n, but 

for n< 4 (n=4 corresponds to the 5 point function) (M2) can 

be verified easily. 

     Summing up we have the following theorem. 

     Theorem A. If wp satisfies (W1), (W2), and (W3'), then 

ri satisfies (R1), (R2), (R3') and (R4). The converse is 

true if (Ml) holds (which is the case for n< 4) . ) is 

analytic in the union of extended tubes T'(VQ) and at 

the points of E (i j ; { m (I))) . 

       APPENDIX B. TRUNCATED VACUUM EXPECTATION VALUES 

     First we prove a Lemma which will be used in later 

discussion. Let B(xl...xn) and C(yi...ym) be products 

of fields Bi(xi) and Ci(y) respectively. If the theory 

satisfies (2) in section 2, B(xl...xn) and C(y1...yn) 

either commute or anticommute if all the xi-yjare space-like. 

     Lemma B. If B (xl ... xn) and C (yi ... yn) anticommute for 

space-like xi-yj, then the vacuum expectation value of
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either  B(x1...xn) or C(y1...ym) vanishes identically.30 

     For the proof, by the theorem 3 of our previous 

paper31 which has been proved there under the assumption 

of (1), (3a) and (3b) (but not (2)) we have 

lim ( 0,BU(Aa,l)C-E0)=(10,BT0) (%,Cfp) 

lim (10,CU(-Ta, l) B10) = (To, B10) (10, CID) 
A 00 

where U(?a,l) is the unitary operator for the translation 

by Na, and a is any space-like vector. If B and C anti-

commute for space-like xi-yj, then for sufficiently largeT 

(I01 BU(Ta)CI0) = -(11v CU(-Ta) Bi0) 

Hence we have 

(I0,B1:0)• (10,CI0)=0(B.1) 

     We now consider the truncated vacuum expectation 

values defined recursively by (2.3). We note that, 

although the definition of sign 6 of each term in (2.3) 

refers to the order of the factors in that term, d is 

actually independent of their order or else that term 

vanishes identically due to the above Lemma. 

     We define 

w(il...ik)=(IO,Ai (xi )...Ai (xi )T0)6(il...ik) 
1 1 k k(B

.2) 

     (il...ik)T(Ai(xi
l)...Aik(xik)),r6il...ik)(B.3) 

6(il...ik) is the sign which one obtains if one commutes 

fields from the natural order to the order il,...ik
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for totally space-like configuration of  xi. 6P of (2.1) 

is (P(1) ...P(n+l)) . 

     The definition (2.3) now becomes 

      w(il...i m)=(it...im)T+Z6G(il...)T(ik...)T... (B.4) 

where the order of the i in ( )T is as in w, and the 

summation is over all groupings G of il...i
m. 6G is 

6G= 6. 6(i1...im) (1(i1...) C6. .)... 

CS(il...) 6(ik...(B.5) 

In this form we see that 6G depends only on the grouping 

and not on the order of i1...i m in w. Note that, by 

Lemma B, 6(it...,ik...,...) is independent of the order of 

the groups (i.._),(i...),... unless that term vanishes 

identically. 

     The spectrum condition of Appendix A can be written as 

      (W3°1) (it...im)=0 unless q(ii...ik)E4,q(il...ik)2>m( it.. 

              for all k < m or q(it...ik)=0 for some km 

w(il...i m) 6(i,1...im) 6(11...ik) 6(ik+l...im)w(il...ik)w(ik+l 

      if q(it...ik)=0. 

The nb.tations are: 

w(it...im)= fex i(Z(gi ,xi ))w(it...im)dxi...dxim (B.6) 

q(t...im)=qi
1+e ..+qim(B.7)

.1
k 

.i

) 

m

2
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Note that  w contains 6-function, in contrast to our former 

definition of P. 

     We now strengthen the Assumption A a little. 

     Assumption B. If t(I)=E T t(I.), 

J J 

m(I) < E 7jm°(I.) unless m'(I.)=0 for all j, 

                                                  (B.8) 
min m(I.) if m'(I.)=0 for all j. 

J 

where 

m'( L il...i m6)=m({il...im() if w(il...im)=0 
          =0otherwise.(B.9) 

     The idea behind this assumption is the same as for 

Assumption A. 

     We now prove the following theorem. 

     Theorem B. If w(ii...im) satisfies conditions (Wl), 

(W2) , and (W3'°) , then (il... im) T satisfies (W1), (W2) , and 

(W3'). The converse is also true. (We make the Assumption 

     For the proof, the equivalence of (Wl) for w(ii...im) 

and (il...im)T is obvious, because the defining equation 

has a unique solution in both directions. In addition, 

because (W2) is the requirement of symmetry in i and j 

wheat xi-xjis space-like, and because (B.4) is a completely 

symmetric definition, the equivalence of (42) for w(ii...im 

and (il...im)T is also obvious. (It is important here that 

6 is independent of the order of i1...i
m.)

B.)
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     We now prove the equivalence of (W3") and (W3'). 

First suppose q(il ... i1)2< m(2. Then  by 

Assumpsion B, for any grouping of  il...i1 , either there is 

aroufor which)2`°)or else  gPq(ik...m(ik.. 

q(ik...)2< m(ik...)2 for all groups. From this we easily 

see that (W3') implies (W3"). To prove the converse, 

we define 

(i1...i
m)0= 6til...im) ( 0,Ai (xi) (1-P0) ... (1-PO)Ai(xi)j)         1mm 0 

(B.10) 

In the same way as in our previous paper,32 we can derive 

(il...in)T (il...in)0- 2 6G(il...)T...(B.11) 
con 

where the summation is over all connected groupings.33 

We can now apply the same argument as above to (B.11) and 

easily see that (W3°') implies (W3'). 

     Finally we prove that ri defined from wP and wP are 

the same. We show that the term from the summation over 

G in (2.3) cancels out in (2.28). Consider one fixed 

grouping (ilo..ik),(jl...j~),... We note that there are 

several w which contribute to the same term of the form 

(xi...xi)T(x....x.)T.o.The union of the Cfor 
 1k31i2 

such P is the cone 

    CG=t€T;ti
ll...>ti]c 9t~1>..> t~.
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This cone is obviously not pointed. Since  6 is independent 

of P, we see from (3.7) that the contributions from various 

P cancels out. 

            APPENDIX C. CONVEX POLYHEDRAL CONES34 

     Consider a real n dimensional vector space T and its 

dual S. A k dimensional linear subspace is called k-plane. 

The linear subspace generated by a subset T1 is denoted by 

h(T1). For example, h(tt1,...tm) -~.~Piti~f'ireal}. 
                                              i=1 

The orthogonal compliment of h is denoted by ill: (If 

h€T, then hlES. If H is a family of planes h, then Hi 

means the family of planes hl . The convex polyhedral cone 

generated by t1,...tm is denoted by 

C(t1, ...tm)=LEt.;?.O }(C.1) 
                      i=1 

The positive polar C+ and the negative polar C- of a 

convex cone C is defined by 

C+= jsES° s•t>0, t€CJ') C ={sES;s•t<0, tcC j (C.2) 
The polars of a polyhedral convex cone in Tare again 

polyhedral convex cones in S. The positive polar of the 

positive polar is the original cone. Note that 

C(t1...tm)+4.s€S;s•tit>0, i=1,...,m j(C.3) 

h (t1... tm) = C (+tl...+tm),11-1-=h=h'~' (C.4)



                                                                  49. 

     We call h(C) the dimensionality space of the cone C 

and its dimension the simension of the Cone C. A 

polyhedral convex cone C has non-empty interior if and 

only if dim C=n. The maximum linear subspace contained 

in C is called the linearity space of C and its dimension 

is called the linearity of C. (Notation: L(C) and lin C.) 

If  lin C=O, C is called pointed. C is pointed if and 

only if there is a (n-1)-plane intersectin ., with the cone C 

only at the origin. We have the following relations, 

h(C+)=h(C )=L(C) , L(C+)=L(C )=h(C)L(C.5) 

   dim C + lin C+=dim C++lin C = n(C.6) 

By (C.6) C is pointed if and only if C+ has non-empty 

interior. 

     An extremum subset X of C is the set such that tl, 

t2 EC and at1+pt2E X for some positive a and p with 

a+p=1 necessarily imply t1,t2E X. Any convex extremum 

subset of C is again a polyhedral convex cone and is 

called k-facet where k is its dimension. If dim C=n, the 

(n-1)-facets of C form the boundary of C. If lin C=O, 

the 1-facets of C generate C. If k+1 < dim C, a k-facet F 

is a k-facet of some (k+l)-facet G and the intersection 

of such G is F. If f+ is a k-facet of C+, f is called 

k-corner of C. 1-facet is sometimes called extreme half-

line and 1-corner is sometimes called supporting half-space.
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We denote the set of all k-facets of C by Fk(C), the 

set of all h(f) with f in Fk(C)  by Hk(C) and the set of 

all k-corners by Fk(C). 

     The sum C+C' is the set of all sum t+t' for t€C and 

t'EC'. It is again a polyhedral convex cone. Note that 

C (T1U T2) =C (Ti)+C (T2) where T. aresubsets of T. 

The intersection C , C' is also a polyhedral convex 

cone. The C's form a lattice with the operations + and n 

C+'s form its dual. Namely, 

(c1nc2)+c3=(C1+c3)/)(c2+c3) , (cl+c2)nc3=(clnc3)+(c2rIc3) 

(c.7) 

    (c+c')+=cnC'+,(Cnc')+=c++c'+(C.8) 

(Note that C can be replaced by h because of (C.4)). 

The set of -t for all t€C is denoted by -C. 

     If every element s of a set E is expressible as a 

positive linear combination s=EA (11)s(1 ) (A (Y) ?,.0)  of 

elements s(y) of a subset E°, then E' is called a positive 

basis of E. If every s in E is expressible as 

s=+Z? ()/ )s()1  ) (7(1)0),) then Z° is called a c-basis 

of E. A c-basis of E which does not contain any sub-c-

basis is called c-minimal. If C(E) for a finite set E 

is pointed, E has a unique c-minimal positive basis. If a fin;te set 

E is c-minimal, C(E) is pointed and F1(C(E)) consists 

of C(s), s€E.
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     We now state a Lemma which is equivalent to the 

statement  (C+)+=C. 

     Lemma Cl. If s. t 1~ O B o .. s- t
m> 0 imply s• t 3 0, then 

t=EX ti with some non-negative i. 

     Given a family of (n-1)-planes H={h(s)'i' ;SEE}. If 
h(E) is the total space S, then the planes in H will divide 

the entire space T into several pointed polyhedral convex 

cones with non-empty interior. We denote the set of 

all these convex cones by r(H) .Let E0={-±-s; s€E J and Ea be 
distinct c-minimal c-basis of E0r Then 1'(H)=tC(Ea)+ 
If we denote the set of k-planes generated by a subset of 

E by -fl (E) , then Hk(C (E
a))Crk(E) and Hk(C)CTrn-k(E)l 

for any C€ F(H) . 

     A cone C(tl...t
n) with dimension n and linearity 

0 is called a simplex cone. Its polar is also a simplex 

cone. If si• t j =bi j , then C (tl ... t
n)+=C (sl ... sn) . Any 

polyhedral convex cone with dimension n can be decomposed 

into a union of almost disjoint simplex cones C
a 

C=UCa, Ca:simple*, dim CanC~L nfor a#3(C.9) 

If F1(Ca)C F1(C) for all a, this decomposition is called 

a standard simplexial decomposition. We now prove the 

following Lemma. 

     Lemma C2. If dim C=n and lin C=O, C has a standard 

simplexial decomposition. Furthermore, for any given



                                                                  52. 

plane h not belonging to  Hn_1(C), there is a standard 

simplexial decomposition (C.9) for which h/Hn_1(Ca) for any a. 
     For the proof of the first half, take any 1-facet f1 

and consider all polyhedral convex cones C
a generated by 

fl and any (n-1)-facet fa -1not containing f1. We 

easily see that C= UCa, dim (Ca n C~ )C n for aA8 , and 
F1(C

a)G F1(C). Hence by induction on the number of 

1-facets, we get the first half. Moreover we get the 

second half by always taking a 1-facet f1 not containing 

the given plane h. Note that if f1h and if there is only 

one facet not containing f1, then any standard simplexial 

decomposition after that stage will have the property that 

hHn_1(Ca) . Note also that if there is only one (n-1) - 
facet not containing f1 for every 1-facet f1, then the 

cone is simplex. 
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Appendix B for more detail. (2.3) corresponds to Ursell°s 

expansion in statistical mechanics. H. P. Ursell, 

Proc. Cambridge Phil. Soc. 23, 685 (1927).
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The signature of the metric is  (1,-1,-1,-1). 

To prove (2.15), we note that the vacuum expectation 

value of the multiple commutator for each P in (2.14) 

contains a fixed wP,(x) in (2.15) if and only if 

     P1P' (1) > p1P' (2)>... > P-1P'(j-1) , 

P1P'0-1-1)<...<P-1P'01+1). 

Since (j-1) A's always come to the left of Al(xl), 

the wP,(x) in all these terms have a common sign (-1)j-1. 

Summing up 0-functions over all P satisfying the above 

equation, we get (2.15). 

For the definition, see Appendix C. 

To be precise, we have to specify the class of dis-

tributions to which w(x) and ri(x) belong. The point 

is that a product like 0 (x;Cp/Ci) wp (x) or 0 (q;Ci/Cp) ri (q) 

has to be well-defined and the integral over dg40 or 

dx0 has to be convergent. In this paper we do not 

attempt any thorough discussion of this point, though 

we shall make a few remarks in section 7. See also 

footnote (16). 

This means Ciand C. are neighbouring cones with their 

common (n-1)-facet lying on h(I). The cones in (R4) 

will be explained below. 

C, and CP,are neighbouring cones with their 

common (n-1)-facet lying on h(ij) .
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For example, take r12(x1...x4) for the 4-fold case. 

(See H. Araki and N. Burgoyne,  loc. cit.) This 

vanishes unless x1 is advanced over x3 and x4 and 

x2 is advanced over either x3or x4.(R2) says 

that it vanishes unless (xl-x3), (xl-x4), and 

(x1+x2-x3-x4)€7+. Of course the latter and (R4) imply 

the former. 

cf. L. Schwartz, Transformation de Laplace des 

Distribution, Med. Lunds Mat. Sem., Suppl. (1952), p.196. 

Note that 6(t;C/ 6 C+) is defined only almost everywhere. 

The equation (3.5) should be taken in this sense. The 

product like e(t)w(t) is meaningful only when w(t) 

belongs to a certain class of distribution. See 

L. Schwartz, Seminaire Schwartz-Levy, 1956-57, No. 3, 

Faculte des Sciences de Paris. 

cf. Lemma C2 in Appendix C. 

Fm(C) is the set of all m-facetsof C and Hm(C) is the 

set of dimensionality spaces of all m-facets of C: 

Hn(C)= Lh(f) ; f€Fm(C)J. 

r(H) is the set of all convex polyhedral cones 

obtained by division of the whole space by (n-1)-planes 

belonging to H. See Appendix C. 

Another proof can be obtained by using a standard 

simplexial decomposition of C: C= ()C a. Then 

    8(t;C/C') Z0(t;ca/c')
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Since  Fl(Ca)C7-F1(C) and C °E r(Hl (C)1) , C' is contained 

in one of 6c
a+ (defined by (3.3)). By (3.5), if 

tqC ° j6Ca, then 9 (t ; Ca/C °) =9 (t ; Ca/6C+a) =0 . 
We are only interested in the coefficients. 

Since h(I) should contain h
n-k, q(I)=0 should be 

derived from q(I
4(k))=0, 4=1...k. (cf. Lemma C1) 

One can easily find that I should contain the whole 

or no part of I(k) for each 14`k, and I cannot contain 

I(k) and I(k) at the same time if they fulfill (0). 

Furthermore, since h(I)$hand since Iµk)=Iµk-1) 
                              n-k+1 

for this case, I should contain Iyk). Thus we have 

this result. 

If ai is positive time-like LEai) 2,1/2 E(ai2)1/2. 

This is easily seen in the rest system of Eat. 

D. Hall and A. Wightman, Mat. Fys. Medd. Dan.Vid. 

Selsk. 31, No. 5 (1957). 

H. Bremmermann, R. Oehme, and J. G. Taylor, 

Phys. Rev- 109, 2178 (1958). J. G. Taylor, Annals of 

Physics, 5, No. 4, 391 (1958). F. J. Dyson, 

Phys. Rev- 110, 579 (1958). Le Garding and A. Beurling, 

to appear. 

cf. H. Epstein, A Generalization of the Edge of 

Wedge Theorem, preprint. 

By the theorem of Hall and Wightman, the analytic 

function in question is analytic in a Jost point
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     (R.Jost,  Hely. Phys. Acta 30, 409 (1957)), where 

     we have proved that (A.l) vanishes. Hence it vanishes 

     identically. We could use also edge of wedge theorem 

     (instead of Jost points) taking 0 as the analytic 

     function approaching to the same boundary value from 

     the other side. 

28. For multiplicative quantum numbers of the form (-1)n, 

     one can take n mod 2. 

29. We thank Professor A. S. Wightman for an illuminating 

     explanation of the relevance of (A.6) for the 

     sufficiency of the condition of the type (R.3). 

30. We assume (1), (2), (3a), (3b) and (3c) for the 

     theory. However, we do not make assumptions about the 

     connection between commutation relation among 

     different fields and the type of fields. 

        cf. H.Araki, "On the Connection of Spin and Commutation 

        Relations between Different Fields".

31. H. Araki, Annals of Physics, in press. Theorem 3 

in that paper is expressed in terms of wT. However, 

the properties used for wT in the proof are the
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  covariance and the existence of lowest positive mass 

 in that intermediate state where  U(Aa,l) is inserted. 

(8,BU(?a, i)clo)-(I0,B)(, O,C1-0) clearly has these 

  properties. 

 H. Araki, loc. cit. Eqs. (2.11) through (2.16). 

 If each group of a grouping G occupies consecutive 

fesd `o?1.s in (il...in) , then G is called a division of 

  (il...in). If a grouping is a subgrouping of a proper 

 division, then it is called a disconnected grouping. 

 Otherwise, a grouping is called a connected grouping. 

 Thus for a connected grouping, numbers in one group 

 are interlocked in (il...in), with those in another 

  group. 

 cf. M. Gerstenhaber, Activity Analysis of Production and 

 Allocation, (John Wiley and Sons, Inc. New York 1951) 

 Chapter 18,


