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Generalized Ridge Regression Estimator in High Dimensional Sparse
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Mahdi Roozbeh

Department of Statistics, Semnan University, Iran

Abstract Modern statistical analysis often encounters linear models with the number of explanatory variables much
larger than the sample size. Estimation in these high-dimensional problems needs some regularization methods to be
employed due to rank deficiency of the design matrix. In this paper, the ridge estimators are considered and their restricted
regression counterparts are proposed when the errors are dependent under a multicollinearity and high-dimensionality
setting. The asymptotic distributions of the proposed estimators are exactly derived. Incorporating the information
contained in the restricted estimator, a shrinkage type ridge estimator is also exhibited and its asymptotic risk is analyzed
under some special cases. To evaluate the efficiency of the proposed estimators, a Monté-Carlo simulation along with a
real example are considered.
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1. Introduction

Consider a linear regression model:

yi = x⊤
i β + εi, i = 1, 2, . . . , n, (1.1)

where yis are responses, xi = (xi1, . . . , xip)
⊤ is design points, β = (β1, . . . , βp)

⊤ is vector denoting unknown
coefficients, εis are unobservable random errors and the superscript (⊤) denotes the transpose of a vector or
matrix. Further, ε = (ε1, . . . , εn)

⊤ has a cumulative distribution function F (ε); E(ε) = 0 and Var(ε) = σ2Vn,
where σ2 is finite and Vn is a known matrix belonging to the space of all positive definite matrices of dimension
n× n, denoted by S(n).

Now-a-day, many data problems nowadays carry the structure that the number of covariates p may exceed
sample size n, known as small n, large p problems. Such cases, that can be seen in the studies of genomics,
financial markets, mobile phone communication, bioinformatics and risk management, regularization methods
should be considered for inferring (see [9, 5]) about parameters of interest.

One of the mostly used regularization methods is the Tikhonov [21] regularization which was brought into
statistical contexts by Hoerl and Kennard [12] as ridge regression. To mention a few recent researches, see e.g.,
[1, 2, 3, 4, 14, 15, 16].

In this paper, when a subset of coefficients is zero, the underlying model is called sparse. Under the sparsity
assumption, the vector of coefficients β can be partitioned as (β1,β2) where β1 is the coefficient vector for
main effects and β2 is the vector for nuisance effects or insignificant coefficients. We are essentially interested
in the estimation of β1 when it is reasonable that β2 is close to zero.

The paper is organized as follows: The problem of interest is stated in section 2. In section 3, sparse ridge
model is considered by proposing the new estimators, while their asymptotic properties are derived in section
4. Section 5 is devoted to exhibiting a shrinkage type ridge estimator and analyzing its asymptotic properties.
Efficiencies of the proposed shrinkage estimators relative to the ordinary estimator are evaluated through a
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Monté-Carlo simulation as well as a real data example in section 6. We conclude our study in section 7 by
giving a summary.

2. Generalized Ridge Estimator

blueIn this section, we discuss a biased estimation technique under multicollinearity for the regression models.
So, the following preliminaries are needed. In a full matrix notation, the model (1.1) can be represented as

yn = Xnβ + ε, (2.2)

where Xn = (x1, . . . ,xn)
⊤ and yn = (y1, . . . , yn)

⊤.
As known, both of the ordinary least squares estimator (OLSE) and its covariance matrix are heavily

dependent to the characteristics of the matrix Sn = X⊤
n Xn. If Sn is ill-conditioned, then the OLSE may affect

by various numerical errors. The problem of multicollinearity can be solved by collecting additional data,
reparameterizing the model and reselecting the variables. There are two well-known mathematical methods to
overcome multicollinearity: the ‘principal components regression method’ and the ‘ridge regression method’.
Here, we discuss the ridge regression method.

It is known that spectral decomposition of the (symmetric) positive definite matrix Sn can be given by

Sn = ΓΛΓ⊤, Λ = diag(λ1, . . . , λp), (2.3)

where the columns of Γ are eigenvectors of the matrix Sn as well as the scalers λ1,. . . , λp are its eigenvalues,
satisfying

λ1 ≥ . . . ≥ λp > 0,

without loss of generality. Therefore, the orthogonal (canonical) version of the model (2.2) is given by

yn = X∗
nα+ ϵ, (2.4)

where X∗
n = XnΓ and α = Γ⊤e. However, when Sn is ill-conditioned, there exists an approximate linear

dependency among its columns. So, the OLSE of β has a large variance and multicollinearity is said to be
appeared. In such situation, there exists a small positive constant ε such that

λ1 ≥ . . . ≥ λr ≫ ε ≥ λr+1 ≥ . . . ≥ λp > 0, (2.5)

where r is called the numerical rank of Sn (Watkins, 2002). More closeness of the small eigenvalues to the
origin leads to more strength of the multicollinearity. To overcome damaging effect of the small eigenvalues,
we need to increase them.

In another point of view based on the spectral decomposition, in the ridge regression the matrix Sn is replaced
by the matrix Sn(k) defined by

Sn(k) = ΓΛ(k)Γ⊤, Λ(k) = diag(λ1 + k, . . . , λp + k). (2.6)

Hence, we have ∥∥Sn(k)− Sn

∥∥
2
= k,

and,

κ2(Sn(k)) =
λ1 + k

λp + k
≤ κ2(Sn) =

λ1

λp
,

where κ2(.) stands for the spectral condition number and ∥x∥2 denotes the Euclidean norm of the vector x.
Thus, computations of the ridge regression are numerically more stable than the OLSE.

In an extension scheme, the canonical generalized ridge estimator has been proposed by Hoerl and Kennard
[12] as follows:

α̂
(
K(p)

n

)
=
(
S∗
n +K(p)

n

)−1

X∗
n
⊤yn = T ∗

n

(
K(p)

n

)
α̂, T ∗

n

(
K(p)

n

)
=
(
K(p)

n S∗−1
n + Ip

)−1

, (2.7)

for some suitably chosen diagonal matrix K
(p)
n = diag

(
k
(1)
n , . . . , k

(p)
n

)
of tuning parameters, with k

(i)
n > 0,

i=1,. . . ,p, S∗
n = X∗

n
⊤X∗

n, and α̂ = Λ−1X∗
n
⊤yn is the canonical ordinary least-squares estimate of α. Hoerl
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and Kennard [12] showed that for the known optimal values

k(i)n =
σ2

α2
i

, i = 1, . . . , p, (2.8)

the generalized ridge regression estimator is superior to all of the other ones within the class of biased
estimators, where σ2 is the error variance of the model (2.2) and α2

i is the ith entry of α. Moreover, Hocking
et al. [13] showed that with these optimal k(i)n , values the proposed estimator (2.7) is superior to all estimators
within the class of biased estimators they considered. However, the optimal value of k(i)n fully depends on the
unknown values σ2 and αi which must be estimated from the observed data. Hoerl and Kennard [12] suggested
to replace σ2 and α2

i by their corresponding unbiased estimators. That is,

k̂(i)n =
σ̂2

α̂i
2 , i = 1, . . . , p, (2.9)

where σ̂2 is an unbiased and effective estimator of σ2 and α̂i is the ith entry of α̂ which is an unbiased estimator
of α. Hoerl and Kennard [12] also suggested an iterative procedure to estimate k(i)n . Two other methods to select
k
(i)
n have been proposed by Hemmerle and Brantle [10]. Some exact finite sample properties for (2.7) can be

found in Hemmerle and Carey [11]. Thus, the matrix Sn is replaced by the matrix Sn

(
K̂

(p)
n

)
defined by

Sn

(
K̂(p)

n

)
= ΓΛ

(
K̂(p)

n

)
Γ⊤, Λ

(
K̂(p)

n

)
= diag(λ1 + k̂(1)n , . . . , λp + k̂(p)n ). (2.10)

Hence, we have ∥∥∥Sn

(
K̂(p)

n

)
− Sn

∥∥∥
2
= max

i=1,...,p
{k̂(i)n }, (2.11)

and,

κ2

(
S
(
K̂(p)

n

))
=

max
i=1,...,p

{λi + k̂(i)n }

min
i=1,...,p

{λi + k̂(i)n }
.

Now, considering the high-dimensional case p > n, we are primary interested in estimating the regression
vector-parameter β in the model (2.2). Since Sn is rank deficient, a regularization method is needed to combat
this ill-conditioning, such as Tikhonov [21] regularization. In our setup, estimating β is equal to minimizing
the following general criterion, under the L2 norm∥∥∥V − 1

2
n (yn −Xnβ)

∥∥∥2
2
+

∥∥∥∥K(p)
n

1
2β

∥∥∥∥2
2

Let F (β) =

{∥∥∥V − 1
2

n (yn −Xnβ)
∥∥∥2
2
+

∥∥∥∥K(p)
n

1
2
β

∥∥∥∥2
2

}
. Then

β̂
(
K(p)

n

)
= argminβF (β) =

(
X⊤

n V −1
n Xn +K(p)

n

)−1

X⊤
n V −1

n yn, (2.12)

where β̂
(
K

(p)
n

)
is called generalized ridge estimator (GRE).

For the case K
(p)
n = kIp, k > 0, the GRE reduces to the ordinary ridge regression estimator introduced

by Hoerl and Kennard [12]. If k(i)n → 0, i = 1, . . . , p, then β̂(K
(p)
n ) reduces to the well-known ordinary least

square (GLS) estimator β̂n =
(
X⊤

n V −1
n Xn

)−1
X⊤

n V −1
n yn.

In what follows, we discuss about the properties of β̂(K(p)
n ).

Since β̂(K
(p)
n ) = argminF (β), F (β̂(K

(p)
n )) ≤ F (0). Therefore,

∥∥∥∥K(p)
n

1
2 β̂

∥∥∥∥2
2

≤
∥∥∥V − 1

2
n (yn −Xnβ̂)

∥∥∥2
2
+

∥∥∥∥K(p)
n

1
2 β̂

∥∥∥∥2
2

= F (β̂(K(p)
n ))
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≤ F (0) =
∥∥∥V − 1

2
n yn

∥∥∥2
2

Thus, for k1 = min(k
(i)
n ), we get∥∥∥β̂∥∥∥2

2
≤ k−1

1

∥∥∥V − 1
2

n yn

∥∥∥2
2
, and E

∥∥∥β̂∥∥∥2
2
≤ k−1

1 E
∥∥∥V − 1

2
n yn

∥∥∥2
2

(2.13)

Now, we focus on the covariance. For the high-dimensional case p > n, using spectral decomposition

X⊤
n V −1

n Xn = Γ

[
Λn×n On×(p−n)

O⊤
n×(p−n) O(p−n)×(p−n)

]
Γ⊤, Λ = diag(λ1, . . . , λn), (2.14)

where λ1 ≥ . . . ≥ λn > 0.

Theorem 1
Let kn = max1≤i≤n

(
k
(i)
n

)
and ko =

∑n
j=1

(
1/k

(j)
n

)2
. Assume λj = o(kn), for j = 1, . . . , n. Then, we have

lim
p→∞

tr
(
Cov(β̂(K(p)

n )− β)
)
= σ2ko tr

(
X⊤

n V −1
n Xn

)
.

Proof: By definition, after some algebra,

Cov(β̂(K(p)
n )− β) = σ2

(
X⊤

n V −1
n Xn +K(p)

n

)−1

X⊤
n V −1

n X⊤
n

(
X⊤

n V −1
n Xn +K(p)

n

)−1

= σ2
(
X⊤

n V −1
n Xn +K(p)

n

)−1

− σ2
(
X⊤

n V −1
n Xn +K(p)

n

)−1

×K(p)
n

(
X⊤

n V −1
n Xn +K(p)

n

)−1

= σ2



λ1(
λ1+k

(1)
n

)2

. . .
λn(

λn+k
(n)
n

)2

On×(p−n)

O⊤
n×(p−n) O(p−n)×(p−n)


since (

X⊤
n V −1

n Xn +K(p)
n

)−1

=

{
Γ

[
Λn×n On×(p−n)

O⊤
n×(p−n) O(p−n)×(p−n)

]
Γ⊤ +K(p)

n

}−1

=



λ1 + k
(1)
n

. . .
λn + k

(n)
n

On×(p−n)

O⊤
n×(p−n)

k
(n+1)
n

. . .
k
(p)
n



−1

(2.15)

Hence, trCov(β̂(K(p)
n )− β) = σ2

∑n
j=1

λj(
λj+k

(j)
n

)2 . Under the assumption λj = o(kn), for j = 1, . . . , n we

have

lim
p→∞

n∑
j=1

1(
λj + k

(j)
n

)2 =

n∑
j=1

(
1

k
(j)
n

)2

= ko. (2.16)

So, the proof is complete. 2

Under some mild conditions, it can be shown that 1
σ2ko

(β̂(K
(p)
n )− β)

D→ Np(0, diagX
⊤
n V −1

n Xn). For more
detail on high-dimensional properties, we refer to [7].
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3. Sub-model Approach

Since p > n, one methodology to infer about regression parameters is to reduce the number of features from
p to p1 < n. Hence, the regression parameter β is partitioned as β = (β⊤

1 ,β
⊤
2 )

⊤, where the sub-vector βi has
dimension pi, i = 1, 2 and p1 + p2 = p. Thus, the underlying model has form

yn = X(1)
n β1 +X(2)

n β2 + ϵ, (3.1)

where Xn is partitioned to (X
(1)
n ,X

(2)
n ) in such a way that X(i)

n is a n× pi sub-matrix, i = 1, 2. With respect
to this partitioning, the generalized least square estimators (GOLSEs) of β1 and β2 are respectively given by

β̂(1)
n = C(1)

n

−1
X(1)

n

⊤
Σ(2)

n

−1
yn, C(1)

n = X(1)
n

⊤
Σ(2)

n

−1
X(1)

n (3.2)

β̂(2)
n = C(2)

n

−1
X(2)

n

⊤
Σ(1)

n

−1
yn, C(2)

n = X(1)
n

⊤
Σ(1)

n

−1
X(1)

n (3.3)

where
Σ(i)

n

−1
= V −1

n − V −1
n X(i)

n

(
X(i)

n

⊤
V −1
n X(i)

n

)−1

X(i)
n

⊤
V −1
n , i = 1, 2.

The sparse model is defined when Ho : β2 = 0 is true. In this paper, we refer restricted regression model (RRM)
to the sparse model.

For the RRM, the generalized restricted estimator based on OLS estimator (GROLSE) has form

β̂R1
n =

(
X(1)

n

⊤
V −1
n X(1)

n

)−1

X(1)
n

⊤
V −1
n yn. (3.4)

According to [20], the GROLSE performs better than GOLSE when model is sparse. However, the former
estimator performs poorly as β2 is different from zero. In the following result, in a similar fashion as in [22],
the relation between the sub-model and full-model estimators of β1 is obtained. It can be easily shown that

β̂(1)
n = β̂R1

n −
(
X(1)

n

⊤
V −1
n X(1)

n

)−1

X(1)
n

⊤
V −1
n X(2)

n β̂(2)
n . (3.5)

3.1. Sparse ridge model

Under the sparsity assumption, i.e., β2 = 0 in the high-dimensional problem, following [19], the generalized
restricted ridge estimator (GRRE), is given by

β̂R1
n

(
K(p1)

n

)
=

(
X(1)

n

⊤
V −1
n X(1)

n +K(p1)
n

)−1

X(1)
n

⊤
V −1
n yn

=

(
Ip1

+
(
X(1)

n

⊤
V −1
n X(1)

n

)−1

K(p1)
n

)−1

β̂R1
n

= T1

(
K(p1)

n

)
β̂R1
n , (3.6)

where K
(p1)
n = diag

(
k
(1)
n , . . . , k

(p1)
n

)
is the ridge parameter matrix as a function of sample size n and

T1

(
K

(p1)
n

)
=

(
Ip1 +

(
X

(1)
n

⊤
V −1
n X

(1)
n

)−1

K
(p1)
n

)−1

.

Similarly, the generalized ridge estimators (GREs) of β1 and β2 respectively have forms

β̂(1)
n

(
K(p1)

n

)
=

(
X(1)

n

⊤
Σ−1

2

(
K(p2)

n

)
X(1)

n +K(p1)
n

)−1

X(1)
n

⊤
Σ−1

2

(
K(p2)

n

)
yn

=

(
Ip1 +

(
X(1)

n

⊤
Σ−1

2

(
K(p2)

n

)
X(1)

n

)−1

K(p1)
n

)−1

β̂(1)
n

= R1

(
K(p1)

n

)
β̂(1)
n , (3.7)

β̂(2)
n

(
K(p2)

n

)
=

(
X(2)

n

⊤
Σ−1

1

(
K(p1)

n

)
X(2)

n +K(p2)
n

)−1

X(2)
n

⊤
Σ−1

1

(
K(p1)

n

)
yn

=

(
Ip2

+
(
X(2)

n

⊤
Σ−1

1

(
K(p1)

n

)
X(2)

n

)−1

K(p2)
n

)−1

β̂(2)
n
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= R2

(
K(p2)

n

)
β̂(2)
n , (3.8)

where

R1

(
K(p1)

n

)
=

(
Ip1

+
(
X(1)

n

⊤
Σ−1

2

(
K(p2)

n

)
X(1)

n

)−1

K(p1)
n

)−1

,

R2

(
K(p2)

n

)
=

(
Ip2 +

(
X(2)

n

⊤
Σ−1

1

(
K(p1)

n

)
X(2)

n

)−1

K(p2)
n

)−1

,

Σ−1
i

(
K(pi)

n

)
= V −1

n − V −1
n X(i)

n

(
X(i)

n

⊤
V −1
n X(i)

n +K(pi)
n

)−1

X(i)
n

⊤
V −1
n , i = 1, 2. (3.9)

It is easy to show that

β̂(1)
n

(
K(p1)

n

)
= β̂R1

n

(
K(p1)

n

)
−
(
X(1)

n

T
V −1
n X(1)

n

)−1

X(1)
n

T
V −1
n X(2)

n β̂(2)
n

(
K(p2)

n

)
. (3.10)

4. Asymptotics

In this section we study the asymptotic performance of the sub-model estimator when p1 < n. For the purpose
of this paper, we need to take the following assumptions as regularity conditions:

(A1) max1≤i≤n x
⊤
i

(
X⊤

n V −1
n Xn +K

(p)
n

)−1

xi = o(n), where x⊤
i is the ith row of Xn.

(A2) k(i)
n

n → ko as n → ∞, i = 1, . . . , p.
(A3) Let

An = Xn
⊤V −1

n Xn +K(p)
n =

(
X

(1)
n

⊤

X
(2)
n

⊤

)
V −1
n

(
X(1)

n X(2)
n

)
+K(p)

n

=

(
X

(1)
n

⊤
V −1
n X

(1)
n X

(1)
n

⊤
V −1
n X

(2)
n

X
(2)
n

⊤
V −1
n X

(1)
n X

(2)
n

⊤
V −1
n X

(2)
n

)
+

(
K

(p1)
n 0

0 K
(p2)
n

)
=

(
An11 An12

An21 An22

)
.

Then, there exists a positive definite matrix A such that 1
nAn → A =

(
A11 A12

A21 A22

)
, as n → ∞.

(A4) X
(2)
n

⊤
V −1
n X

(2)
n +K

(p2)
n = o(

√
n).

(A5) x⊤
i xj = o(

√
n), i, j = 1, . . . , n.

By (A2), (A4) and (A5), one can directly conclude that Σ−1
2

(
K

(p2)
n

)
→ V −1

n as n → ∞.
According to [20], the test statistic for testing Ho : β2 = 0 diverges as n → ∞, under any fixed alternatives

Aξ : β2 = ξ. To overcome this difficulty, in sequel, the following local alternatives are considered

K(n) : β2 = β2(n) = n− 1
2 ξ, (4.1)

where ξ = (ξ1, . . . , ξp2)
⊤ ∈ Rp2 is a fixed vector.

For notational convenience, let −koA
−1β = µ =

(
µ⊤

1 ,µ
⊤
2

)⊤
, δ = A−1

11 A12ξ, µ11.2 = µ1 −
A12A

−1
22

(
(β2 − ξ)− µ2

)
, γ = µ11.2 + δ, A22.1 = A22 −A21A

−1
11 A12, B = A21A

−2
11 A12A

−1
22.1. Then,

we have

Theorem 2
Under the regularity conditions (A1)-(A3) and local alternatives {K(n)}

(i) V
(1)
(n) =

√
n
(
β̂
(1)
n

(
K

(p1)
n

)
− β1

)
D→ Np1

(
−µ11.2, σ

2A−1
11.2

)
(ii) V

(2)
(n) =

√
n
(
β̂R1
n (K

(p1)
n )− β1

)
D→ Np1(−γ, σ2A−1

11 )
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(iii) V
(3)
(n) =

√
n
(
β̂R1
n

(
K

(p1)
n

)
− β̂

(1)
n

(
K

(p1)
n

))
D→ Np1

(
−γ + µ11.2, σ

2
(
A−1

11 −A−1
11.2

))
where A11.2 = A11 −A12A

−1
22 A21.

If A12 = 0, then δ = 0, γ = µ11.2 and A11.2 = A11, and all the asymptotic risk functions reduce to
common value σ2 tr(A−1

11 ) + µ⊤
11.2µ11.2 for all ξ. In a similar fashion as in [20], if A12 ̸= 0, then when

∆2 =
(
ξ⊤A−1

22.1ξ
)
σ−2, A22.1 = A22 −A21A

−1
11 A12 moves away from 0, the asymptotic risk of β̂R1

n

(
K

(p1)
n

)
becomes unbounded. Further, if ξ = 0, β̂R1

n

(
K

(p1)
n

)
is superior to β̂

(1)
n

(
K

(p1)
n

)
(denoted by β̂R1

n

(
K

(p1)
n

)
>

β̂
(1)
n

(
K

(p1)
n

)
) in the sense of having smaller asymptotic risk function.

5. Shrinkage Estimator

Under the aforementioned analysis in previous section, one may consider improving the GRE of β1 by shrinking
toward 0 (see [20] for more details). In this respect, one plausible choice is to combine both GRE and GRRE
of β1 to obtain

β̂S
n

(
K(p1)

n

)
= α1β̂

(1)
n

(
K(p1)

n

)
+ α2β̂

R1
n

(
K(p1)

n

)
. (5.1)

Now, let β∗ be any estimator of β1. Then the asymptotic distributional risk (ADR) of β∗ is evaluated by

ADR(β1;β
∗) = lim

n→∞
E
[
n(β∗ − β1)

⊤(β∗ − β1)
]

Under the pronounced regularity conditions and local alternatives {K(n)}, the asymptotic risk of shrinkage

ridge estimator (SRE) β̂S
n

(
K

(p1)
n

)
, after some algebra, is given by

ADR
(
β1; β̂

S
n

(
K(p1)

n

))
= α2

1

[
σ2 tr(A−1

11.2) + µ⊤
11.2µ11.2

]
+ α2

2

[
σ2 tr(A−1

11 ) + γ⊤γ
]

+(α1 + α2 − 1)2ξ⊤ξ − 2α1(α1 + α2 − 1)µ⊤
11.2ξ − 2α2(α1 + α2 − 1)γ⊤ξ

+α1α2

(
2µ⊤

11.2ξ + 2γ⊤ξ − 2µ⊤
11.2γ − ξ⊤ξ

)
. (5.2)

Obviously, under ξ = 0, β̂S
n

(
K

(p1)
n

)
> β̂

(1)
n

(
K

(p1)
n

)
whenever

(1− α2
1)σ

2 tr(A−1
11.2)− α2

2σ
2 tr(A−1

11 ) +
[
1− (α1 − α2)

2
]
µ⊤

11.2µ11.2 > 0;

and for the special case α1 = 1, it can be revealed that β̂S
n

(
K

(p1)
n

)
> β̂

(1)
n

(
K

(p1)
n

)
whenever

0 < α2 <
2µ⊤

11.2µ11.2

σ2 tr(A−1
11 ) + µ⊤

11.2µ11.2

. (5.3)

Similarly, β̂S
n

(
K

(p1)
n

)
> β̂R1

n

(
K

(p1)
n

)
whenever

(1− α2
2)σ

2 tr(A−1
11 )− α2

1σ
2 tr(A−1

11.2) +
[
1− (α1 − α2)

2
]
µ⊤

11.2µ11.2 > 0;

and for the special case α2 = 1, it can be revealed that β̂S
n

(
K

(p1)
n

)
> β̂R1

n

(
K

(p1)
n

)
whenever

0 < α1 <
2µ⊤

11.2µ11.2

σ2 tr(A−1
11.2) + µ⊤

11.2µ11.2

. (5.4)

6. Numerical Results

In this section, the Monté-Carlo studies and a real data example about riboflavin production data set (see [6])
are consider to justify the assertions.
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Figure 1. The diagram of ADRs versus α1 and α2 for simulated data set.

6.1. The Monté-Carlo simulation studies

To examine the performance of the proposed estimators, a Monté-Carlo simulation is performed. To achieve
different degrees of collinearity, following [18, 8], the explanatory variables were generated using the following
device for n = 25 and p = 30, 50 and 70 from the following model:

xij = (1− γ2)
1
2 zij + γzip, i = 1, 2, ..., n, j = 1, 2, ..., p (6.1)

where zij are independent standard normal pseudo-random numbers and γ is specified so that the correlation
between any two explanatory variables is given by γ2. These variables are then standardized so that X⊤

n Xn

and X⊤
n yn are in correlation forms. Three different values γ = 0.75, 0.90 and 0.99 are considered for the

correlation. Then the observations for the dependent variable are determined by

yn = X(1)
n β1 +X(2)

n β2 + ϵ, (6.2)

with β1 = (−1.25, 1, 2.5, 4,−3,−5)⊤, p1 = 6 and n = 25. To achieve the sparse model, β2 is generated as
Np2(0, 0.01× Ip2), p2 = p− p1. The error term of the model (6.2) is generated as

ϵ ∼ Nn(0, σ
2Vn), σ

2 = 1.44, Vn[i, j] = exp
(
− 7|i− j|

)
, i, j = 1, . . . , n.

The Monté-Carlo simulation is performed with M = 103 replications, obtaining the ridge estimators β̂1 =

β̂
(1)
n

(
K

(p1)
n

)
, β̂2 = β̂R1

n

(
K

(p1)
n

)
, β̂3 = β̂S

n

(
K

(p1)
n

)
, in the sparse restricted regression model.

The relative efficiencies of the above methods with respect to the first method are estimated as

Eff(β̂i) =

1
M

∑M
m=1

∥∥∥β̂(m)
1 − β1

∥∥∥2
2

1
M

∑M
m=1

∥∥∥β̂(m)
i − β1

∥∥∥2
2

, i = 1, 2, 3,

where β̂
(m)
i is the estimators obtained in the mth iteration.

All numerical computations were conducted using the statistical package R. In Tables 1 to 4, the proposed
estimators along with ADR(.), efficiencies of proposed estimators relative to GRE and optimal values of α1

and α2 were computed. The asymptotic risk of SRE was employed to select the optimal parameters α1 and
α2, numerically, by minimizing the ADR function of SRE. The minimum of ADR approximately occurred at
αopt
1 = 0.4749 and αopt

2 = 0.7449 for p = 70 and γ = 0.99. Figure 1 shows the ADR functions versus α1 and
α2. Since the results were similar across cases, only the results for p = 70 and γ = 0.99 were reported to save
space.

As it can be found from Tables 1-3, the SRE performs better than the other proposed estimators in the sense
of having smaller ADR. Also, because of the sparsity assumption, both GRRE and SRE are more efficient than
GRE. Moreover, since the simulated model is sparse, as it is evident from Table 4, the allocated weight to the
GRRE (α2) is greater than that of the GRE (α1). From Figure 1, one can distinguish the optimal regions of
superiority of SRE over GRE and GRRE.
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Table 1. Evaluation of the proposed estimators for γ = 0.75

p = 30 p = 50 p = 70

Method GRE GRRE SRE GRE GRRE SRE GRE GRRE SRE
Coefficients

β̂1 -1.3423 -1.2296 -1.2932 -1.0754 -1.2549 -1.3500 -0.9888 -1.4900 -1.5778
β̂2 0.4666 1.0251 1.0085 0.0492 0.9809 0.9399 0.2205 0.5115 0.5116
β̂3 1.7686 2.5435 2.5604 0.7694 2.4766 2.4758 0.2324 1.7544 1.8014
β̂4 2.9308 4.0521 4.0972 1.5382 3.9842 4.0167 0.7041 3.0047 3.1030
β̂5 -2.6616 -2.5916 -2.7564 -1.9584 -2.6366 -2.8188 -1.8737 -4.1290 -4.2485
β̂6 -3.2513 -4.8248 -4.8671 -1.6499 -4.9238 -4.9359 -1.5163 -3.9774 -4.1091

kopt 1e-04 0.01 — 0.01 0.13 — 0.14 0.36 —
ˆADR(β̂i) 9.6646 1.0270 0.7930 24.091 0.9813 0.7926 32.490 6.5667 6.1225

Eff(β̂i) 1.0000 9.4102 12.187 1.0000 24.550 30.394 1.0000 4.9476 5.3066

Table 2. Evaluation of the proposed estimators for γ = 0.90

p = 30 p = 50 p = 70

Method GRE GRRE SRE GRE GRRE SRE GRE GRRE SRE
Coefficients

β̂1 -1.3071 -1.2120 -1.2890 -0.9863 -1.2109 -1.6814 -0.7243 -1.2703 -1.7947
β̂2 0.4390 0.9715 0.9271 0.1208 1.0719 0.8296 0.0910 0.9842 0.7958
β̂3 1.7053 2.5750 2.5639 0.9122 2.7129 2.5980 0.5531 2.6233 2.5118
β̂4 2.8883 4.1709 4.1653 1.6350 4.3926 4.3216 1.0719 4.2234 4.2779
β̂5 -2.6237 -2.0233 -2.3803 -1.7832 -0.1338 -1.9457 -1.2949 -0.0663 -1.8843
β̂6 -2.8491 -4.8424 -4.7643 -1.0767 -4.5903 -3.9601 -0.6508 -4.6289 -3.9573

kopt 0.10 0.30 — 0.17 0.43 — 0.43 1.07 —
ˆADR(β̂i) 13.391 3.0308 2.2409 28.250 13.213 6.4622 36.533 14.320 6.9432

Eff(β̂i) 1.0000 4.4181 5.9755 1.0000 2.1380 4.3716 1.0000 2.5512 5.2617

Table 3. Evaluation of the proposed estimators for γ = 0.99

p = 30 p = 50 p = 70

Method GRE GRRE SRE GRE GRRE SRE GRE GRRE SRE
Coefficients

β̂1 -1.0841 -1.3174 -1.3561 -0.9212 -1.4586 -1.5295 -0.9274 -1.2769 -1.4437
β̂2 0.2518 0.4380 0.5003 0.1785 0.6240 0.6248 0.1715 0.4523 0.3484
β̂3 1.1976 1.8524 1.9290 0.8593 2.1653 2.1419 0.3954 1.5600 1.5314
β̂4 2.0972 3.1175 3.2193 1.5161 3.6718 3.6278 0.8316 2.6495 2.6456
β̂5 -2.0060 -2.3669 -2.4796 -1.7413 -0.3643 -1.3213 -1.6408 -3.0978 -3.2068
β̂6 -1.7052 -3.4797 -3.5661 -0.8283 -4.3776 -3.8814 -0.8940 -2.6663 -2.8464

kopt 0.23 0.29 — 0.21 0.49 — 1.01 1.64 —
ˆADR(β̂i) 30.241 15.841 13.648 35.054 16.917 13.038 37.868 20.420 18.396

Eff(β̂i) 1.0000 1.9090 2.2157 1.0000 2.0722 2.6887 1.0000 1.8545 2.0585

Table 4. Optimal values of shrinkage parameters for different p and γ values

γ = 0.75 γ = 0.90 γ = 0.99

p = 30 p = 50 p = 70 p = 30 p = 50 p = 70 p = 30 p = 50 p = 70

αopt
1 0.1505 0.1660 0.1019 0.2571 1.0863 1.5641 0.2242 0.5922 0.4461

αopt
2 0.9015 0.9464 1.0027 0.8182 0.6054 0.6386 0.8660 0.7700 0.8169

6.2. Application to Riboflavin Production Data

To illustrate the usefulness of the suggested strategies for high-dimensional data in the semiparametric
regression model, the data set about riboflavin (vitamin B2) production is considered in Bacillus subtilis, which
can be found in R package “hdi”. There is a single real valued response variable which is the logarithm of the
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Figure 2. The diagram of ADR of SRE versus α1 and α2 for real data set.

riboflavin production rate. Furthermore, there are p = 4088 explanatory variables measuring the logarithm of
the expression level of 4088 genes. There is one rather homogeneous data set from n = 71 samples that were
hybridized repeatedly during a fed batch fermentation process where different engineered strains and strains
grown under different fermentation conditions were analyzed. Based on 100-fold cross validation, the Lasso
shrinks 4047 parameters to zero and remains p1 = 41 significant explanatory variables. So, the specification of
the sparse regression model is

yn = X(1)
n β1 +X(2)

n β2 + ϵ, (6.3)

where p1 = 41 and p2 = 4047.
According to [23], the unknown Vn can be estimated by a consistent estimator

V̂n =
1

n− p1

(
yn −X(1)

n bR1
n

)(
yn −X(1)

n bR1
n

)⊤
, (6.4)

where bR1
n =

(
X

(1)
n

⊤
X

(1)
n

)−1

X
(1)
n

⊤
yn is ordinary least square estimator for the sparse regression model.

Table 5 shows a summary of the results. In this Table, the RSS, MSE and R2 respectively are the
residual sum of squares, mean square error and coefficient of determination of the model, i.e., RSS =∑n

i=1(yi − ŷi)
2, 1/(n− p1)

∑n
i=1(yi − ŷi)

2 and R2 = 1−RSS/Syy, where ŷi = x⊤
i β̂.
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Table 5. Evaluation of proposed estimators for real data set

Method GRE GRRE SRE

kopt 3.4241 7.6132 —
RSS 39.39465 1.108829 1.107424
MSE 1.313155 0.036961 0.036914
R2 0.335704 0.981302 0.981326
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Figure 3. The diagram of ADRs versus α1 and α2 for real data set.

According to Figure 2, the minimum of ADR approximately occurred at αopt
1 = 0.00001 and αopt

2 = 0.9999.
Also, the ADR functions of proposed estimators versus α1 and α2 are plotted in Figure 3, which can be used in
a similar fashion as in the simulation.

7. Summary

In this paper, the generalized ridge estimators were proposed for the sparse multiple regression model. In this
context, a generalized restricted ridge estimator exhibited for the sparsity test β2 = 0, where the regression
vector-parameter β partitioned as β = (β⊤

1 ,β
⊤
2 )

⊤. Information contained in the generalized restricted ridge
estimator was employed to construct a shrinkage ridge estimator. Some asymptotic distributional results were
given for the proposed estimators and superiority conditions discussed under some regularity conditions. All
the analysis were conducted under a classical view point, using the Tikhonov regularization.

It is well-known that as the sample size tends to infinity, both Bayesian and classical analysis give almost
same results. However, under a finite sample size, one may consider a generalized Tikhonov regularization and
derive ridge regression estimators in Bayesian context. To see this, take Σ, βo and Ω as the covariance of yn,
expected value of β and covariance of β, respectively. Therefore, the generalized ridge estimator has form

β̂ = (X⊤
n Σ−1Xn +Ω−1)−1(X⊤

n Σ−1yn +Ω−1βo). (7.5)

Then, generalized restricted ridge estimator can be verified for the sparse (restricted) model.
Results of the Monté-Carlo simulation for different γ, n = 25, p = 30, 50 and 70, were presented in Tables

1 to 4 and Figure 1. From these Tables, it is realized that β̂S
n (K

(p1)
n ) is leading to be the best estimator among

others, since it offers smaller risk and bigger efficiency value, in all cases. According to Figure 1, results show
that the global minimum occurs under the ADR of GRE and GRRE. Also, there exists an optimal region for
performance of SRE with respect to GRE and GRRE. For the real example, from Table 5 as well as Figures
2 and 3, it can be deduced that β̂S

n (K
(p1)
n ) is quite efficient in the sense that it has significant goodness of fit

value.
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