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The Generalized Riemann Problem (GRP) is the initial-value problem for non-
linear hyperbolic systems of (quasi) conservation laws, in one space dimension.
The initial data in this case are piecewise linear, with possible jump discontinu-
ities (of the unknowns and their slopes). The classical Riemann Problem (RP)
serves as a primary “building block” in the construction of many numerical
schemes (most notably the Godunov scheme). Likewise, the GRP plays a key
role in the design of second-order high-resolution schemes (e.g., the MUSCL
scheme). The analytic study of the GRP, both for scalar conservation laws and
for systems, leads to an array of “GRP schemes” which generalize the Go-
dunov method and at the same time are explicit, robust numerical algorithms,
capable of resolving complex multidimensional fluid dynamical problems. (M.
Ben-Artzi and J. Falcovitz, “Generalized Riemann Problems in Computational
Fluid Dynamics”, Cambridge University Press, 2003). The paper reviews the
basic theory in the scalar case, with special attention to the surprising com-
plexity of scalar 2-D “Riemann-type” problems (the Guckenheimer equation).
The GRP analysis is then extended to the case of quasi 1-D compressible,
inviscid, non-isentropic flow. The basic analytic facts and the resulting nu-
merical algorithms are outlined. Special attention is devoted to the “Acoustic
Approximation”, which is a very simple (yet second-order) modification of the
Godunov scheme. Some simulations of rather complex two-dimensional flows
are presented and compared with experimental data.
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1. Introduction

Hyperbolic systems of conservation laws govern a large body of natural

phenomena related to the time evolution of compressible, inviscid, non-

isentropic gas flow. It leads to complex wave patterns resulting from mul-

tiple interactions of “elementary” waves, namely shocks, contact disconti-
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nuities and rarefaction waves.

In this review we give an outline of a systematic approach to the nu-

merical simulation of such phenomena, based on the GRP (Generalized

Riemann Problem) method.

Let us first consider entropy solutions to the initial value problem for

scalar conservation laws

∂u

∂t
+
∂f(u)

∂x
= 0, x ∈ ℜ, t ≥ 0, (1)

subject to initial data

u(x, t = 0) = u0(x) ∈ L∞(ℜ) ∩BV (ℜ), (2)

where BV is the space of functions of bounded variation. We assume that

the flux function f : ℜ → ℜ is C2 and strictly convex, f ′′(u) ≥ µ > 0.

As is well–known25 the nonlinearity of flux leads to the formation of

singularities of solutions u(x, t) in a finite time even for very smooth initial

data (2). Thus a global solution u(x, t) ∈ L∞(ℜ × ℜ+) must be understood

in the weak (distribution) sense, namely for every test function φ(x, t) ∈

C∞
0 (ℜ× ℜ+)

∫ ∞

0

∫ ∞

−∞

(u
∂φ

∂t
+ f(u)

∂φ

∂x
)dxdt +

∫ ∞

−∞

u0(x)φ(x, 0)dx = 0. (3)

Furthermore such weak solutions are not unique and a suitable condition

is needed to select the “correct” solution. The latter is usually meant to be

the one obtained by Kruzkov’s vanishing viscosity approach.18 We refer the

reader to10 for general background on various entropy conditions.

We now introduce the high-resolution second-order GRP scheme in the

framework of the scalar case (1). At each time level tn, it is assumed that

the solution u(x, tn) is approximated by a piecewise linear function. More

specifically, we take an equally spaced grid in ℜ, xj+ 1
2

= (j + 1
2 )h, j ∈ Z,

and assume that

vn(x) = vn
j + (x − xj)s

n
j , x ∈ (xj− 1

2
, xj+ 1

2
). (4)

In particular, the value vn
j is the average of vn(x) in “cell j” (=(xj− 1

2
, xj+ 1

2
))

and is associated with its center xj = 1
2 (xj− 1

2
+ xj+ 1

2
), and sn

j is the slope

of vn(x) in cell j.

In general terms, the idea (initiated by van–Leer27) is to obtain the

approximation vn+1(x) at time tn+1 = tn + k by solving Eq. (1) with initial

data U(x, tn) = vn(x). Let U(x, t) be the solution. The function vn+1(x) is

then evaluated as a suitable approximation to the exact solution U(x, tn+1).

In the piecewise constant case (sn
j = 0 for all j), this leads to the Godunov
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scheme.11 The values vn+1
j are the exact averages of the solution U(x, tn+1).

This exact evaluation is of course due to the fact that in this case the

solution U(x, t) consists of an array of solutions to Riemann problems, and

the resulting fluxes f(U(xj+ 1
2
, t)), (tn ≤ t ≤ tn+1), are constant in time.

For our second order case (sn
j 6= 0 in general) a similar study for analytic

evaluation of the fluxes f(U(xj+ 1
2
, t)) leads to the generalized Riemann

problem (GRP). For the given initial distribution (4), one cannot expect

to have a full knowledge of the fluxes f(U(xj+ 1
2
, t)), and they are replaced

by some linear approximations in t. One particular way of doing it is the

GRP method,1 which is the focus of our discussion here, and which we shall

recall in detail in the next section, in the context of 1-D scalar equations.

In Sections 3–4, we turn to the two-dimensional scalar equation and

discuss the important case of “Riemann type” problems. They allow for

fully analytic solutions which nevertheless display an impressive variety of

complex wave structures, resulting from multidimensional interactions of

elementary waves. In particular, we review in Section 5 the analytical and

numerical treatment of the Guckenheimer equation. Section 6 serves as a

reminder of the system of quasi 1-D compressible flow in ducts of variable

cross-section. We outline the basic properties of the GRP approach to this

system in Section 7, leading to the GRP numerical scheme (Section 8). Sec-

tion 9 is devoted to some fluid dynamical examples, including comparison

with experimental data.

2. GRP Scheme – Basic Properties

We let U(x, t) be the exact solution to (1),(4), t ≥ tn , with U(x, tn) = vn(x).

With notations as introduced above, the approximate averages vn+1
j are

determined by

vn+1
j = vn

j − λ(f
n+ 1

2

j+ 1
2

− f
n+ 1

2

j− 1
2

), (5)

where λ = k
h and the numerical flux f

n+ 1
2

j+ 1
2

should approximate the time

average of f(U(xj+ 1
2
, t)), tn ≤ t ≤ tn+1 = tn + k. Recall that the conser-

vation law (1) is now solved subject to the initial condition vn(x) as in (4),

where the cells are of uniform size h = xj+ 1
2
− xj− 1

2
.

In the first step, we evaluate vn
j+ 1

2

by

vn
j+ 1

2

= R(0; vn
j+ 1

2
,∓), (6)

where R(x
t ;w∓) is the (self-similar) solution to the Riemann problem for

(1), having initial data w∓ for ∓x > 0. The limiting values vn
j+ 1

2
,∓

appearing
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in Eq. (6) are defined by

vn
j+ 1

2
,∓ = lim

x→x
j+ 1

2

∓
vn(x). (7)

Thus, the value vn
j+ 1

2

is the “instantaneous” value obtained by solving the

Riemann problem with the limiting values of vn(x) at the cell boundary

xj+ 1
2
. In our case (f strictly convex), the Riemann solution is determined

simply as follows.

(i) vn
j+ 1

2

= vmin, the minimum point of f(v), if vn
j+ 1

2
,−

≤ vmin ≤ vn
j+ 1

2
,+

.

In this case we say that xj+ 1
2

is a sonic point. Otherwise,

(ii) vn
j+ 1

2

= w such that f(w) = min{f(v); v ∈ [vn
j+ 1

2
,−
, vn

j+ 1
2
,+

]}

if vn
j+ 1

2
,−

≤ vn
j+ 1

2
,+

(rarefaction), or,

(iii) vn
j+ 1

2

= w such that f(w) = max{f(v); v ∈ [vn
j+ 1

2
,+
, vn

j+ 1
2
,−

]}

if vn
j+ 1

2
,+

≤ vn
j+ 1

2
,−

(shock).

We note that the wave moves to the right (resp. the left) if f ′(vn
j+ 1

2

) > 0

(resp. f ′(vn
j+ 1

2

) < 0). The key ingredient in the GRP method is the assump-

tion that both U(xj+ 1
2
, t) and f(U(xj+ 1

2
, t)) are approximated linearly (in

t ∈ [tn, tn+1]). We obtain therefore the linear expressions,

(i) ũ(xj+ 1
2
, t) = vn

j+ 1
2

+
(

∂U
∂t

)n

j+ 1
2

(t− tn),

(ii) f̃(ũ(xj+ 1
2
, t)) = f(vn

j+ 1
2

) + f ′(vn
j+ 1

2

)
(

∂U
∂t

)n

j+ 1
2

(t− tn).
(8)

The exact instantaneous value of
(

∂U
∂t

)n

j+ 1
2

at the cell boundary is obtained

from (1),

(

∂U

∂t

)n

j+ 1
2

=











−f ′(vn
j+ 1

2

)sn
j , if the wave moves to the right,

−f ′(vn
j+ 1

2

)sn
j+1, if the wave moves to the left,

0, if xj+ 1
2

is a sonic point.

(9)

Incorporating these formulas in (5), we DEFINE the GRP fluxes:

f
n+ 1

2

j+ 1
2

= f̃(ũ(xj+ 1
2
, tn +

k

2
)), −∞ < j <∞. (10)

and then vn+1
j is determined by (5). The new slopes sn+1

j are calculated in

two steps.
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Step 1. Determine vn+1
j+ 1

2

= ũ(xj+ 1
2
, tn+1) by Eq. (8)(i) and then set

s̃n+1
j =

1

h
(vn+1

j+ 1
2

− vn+1
j− 1

2

). (11)

Step 2. (“Limiter Algorithm”). Set the final value for some θ ∈ (0, 2],

sn+1
j =

1

h
minmod((2−θ)(vn+1

j+1 −v
n+1
j ), hs̃n+1

j , (2−θ)(vn+1
j −vn+1

j−1 )),

(12)

where the minmod function is defined by,

minmod(a, b, c)=

{

σmin(|a|, |b|, |c|), if σ=sign(a)=sign(b)=sign(c),

0, otherwise,

Remark 2.1. Geometrically speaking, our limiter satisfies the “mini-

mal” change needed in implementing the following “5–point rule”: If

{vn+1
j−1 , v

n+1
j , vn+1

j+1 } form a monotone increasing sequence, then so are the

five values

{vn+1
j−1 , v

n+1
j − h

2 s
n+1
j , vn+1

j , vn+1
j + h

2 s
n+1
j , vn+1

j+1 }, see Fig. 2. However θ < 1

leads to “sawtooth”, i.e., the profile of vn+1(x) for x ∈ [xj , xj+1] is not

necessarily monotone.

x xx

vn+1(x)

xj − 1 j j + 1

vn+1
j−1

vn+1
j

vn+1
j+1

vn+1
j−1/2,− vn+1

j+1/2,−

vn+1
j−1/2, + vn+1

j+1/2, +

Fig. 1. The notations vn+1

j∓ 1
2

,±
are for vn+1

j ∓ h
2
sn+1
j respectively.
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3. Self-Similar Solutions in 2-D

Turning to a two-dimensional setting, we now consider the initial value

problem (IVP) for a scalar equation,

ut + f(u)x + g(u)y = 0, (13)

u(x, y, 0) = φ(x, y), (x, y) ∈ ℜ2, (14)

where u(x, y, t) is a real (scalar) function and f(u), g(u) are real smooth

flux functions.

A “Riemann type” problem for (13) is the IVP where φ(x, y) is finitely

valued and homogeneous of order zero,

φ(x, y) = u0(θ), θ = arg(x, y)(= arctan
y

x
), (15)

and u0(θ) is piecewise constant in [0, 2π] with finitely many jumps.

Recall (see13) and the original papers18,28) that, for any initial function

φ ∈ L∞(ℜ2), there exists a unique (weak) solution u(x, y, t) to Eqs. (13)–

(14). The entropy condition (which contains already the fact that u is indeed

a weak solution) can be described as follows.

Let U(s) be a real convex function and F (s) and G(s) functions such

that

F ′(s) = U ′(s)f ′(s), G′(s) = U ′(s)g′(s). (16)

Then, in the sense of distributions,

U(u)t + F (u)x +G(u)y ≤ 0. (17)

The initial value (14) is attained in the sense that

u(x, y, t) → φ(x, y) in L1
loc(ℜ

2), as t→ 0 + . (18)

When the initial data is given by (15), the uniqueness implies that the

solution is “self-similar”, namely,

u(x, y, t) = u(x/t, y/t, 1), t > 0. (19)

In what follows we shall use the similarity coordinates

ξ =
x

t
, η =

y

t
, (20)

and set v(ξ, η) = u(ξ, η, 1).

The solutions to the Riemann–type problem Eqs. (13)–(15) display an

extremely rich variety of wave patterns, some of which are far from being

“evident”. We refer to12,20,29,30 for a thorough presentation. Our intention
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in this review is to show that this variety can serve as a basis for the

investigation of “fine points and subtleties” pertinent to high resolution

schemes. Unlike the “one–dimensional test cases” (most of which have been

carried out only for the Burgers equation), the truly two–dimensional wave

structures, combined with the inherent “spatial splitting” of the numerical

schemes, poses a considerable challenge. We remark that the description of

geometric shapes in Cartesian grids presents already a nontrivial difficulty

for the schemes (see3).

4. The Analysis of 2-D Riemann–Type Solutions

We recall here the basic facts concerning solutions to Eqs. (13)–(15). Using

the similarity notation (19)–(20), we refer to the solution as v(ξ, η). Note

that the initial condition (15) now becomes

u0(θ) = lim
r→∞

v(r cos θ, r sin θ), 0 ≤ θ ≤ 2π. (21)

In general terms, the IVP can be cast in terms of an equation for v (in

the (ξ, η) plane) with a boundary condition (21) imposed at the “circle

at infinity”. In fact, due to finite propagation speed, the solution consists

of separate 1–D waves i (emanating from rays in direction of the jumps

of u0(θ)). These waves interact in a disk centered at the origin, and the

difficulty lies in the need to account for the interactions, subject to the

entropy conditions.

In regions of smooth flow (i.e., where v(ξ, η) ∈ C1), we have from (13),

(−ξ + f ′(v))vξ + (−η + g′(v))vη = 0, (22)

which is a quasilinear equation. Its characteristic curves carry constant

values of v, and are therefore straight lines (terminating at singularities).

Let LC be the line carrying the value v = C. By (22) it is an integral line for

the field ΦC(ξ, η) = (−ξ+f ′(C),−η+g′(C)), hence lies on a ray emanating

from the critical point zC := (f ′(C), g′(C)). We orient it, by convention, in

the direction of zC.

Remark 4.1. Note that by (13), the characteristic lines LC are just the

traces of the bicharacteristic lines for (13) on the (x, y) plane, now identified

as the (ξ, η) plane. The chosen orientation for LC (toward zC) corresponds

to orienting the bicharacteristic line in the direction t → +∞ (so that

(ξ, η) = (x
t ,

y
t ) approaches zC).
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Definition 4.1. The “critical set” Γ(v) for Eq. (22) is the set of all possible

points zC, i.e.,

Γ(v) = {(f ′(C), g′(C)), C = v(zC), for some zC ∈ ℜ2}. (23)

We now turn to conditions imposed on jump discontinuities of solutions

to (22). Using the standard procedure for the definition of weak solutions,

we obtain the Rankine–Hugoniot jump relations.

Claim 4.1. Let η = η(ξ) be the (C1) trajectory of a jump discontinuity.

Then the slope σ = η′(ξ) satisfies the R–H condition

σ =
η − g′+,−

ξ − f ′
+,−

, (24)

where h′+,− = h(v+)−h(v
−

)
v+−v

−

and v± are the limiting values of the solution v

at the jump.

proof Note that by the standard procedure (see13) applied to (22) in the

form

(−ξv + f(v))ξ + (−ηv + g(v))η + 2v = 0, (25)

we get

σ =
−η(v+ − v−) + g(v+) − g(v−)

−ξ(v+ − v−) + f(v+) − f(v−)
,

which reduces to (24). ✷

Remark 4.2. As in the case of Remark 4.1, the R–H condition (24) can

be derived by applying the notion of a weak solution directly to Eq. (13).

In this case, a surface of discontinuity in the (x, y, t) variables is expressed

in a self-similar form y = tη(x
t ), and the R–H condition is applied to the

normal direction (σ,−1, η − ξσ), where σ = η′(ξ) (and (ξ, η) = (x
t ,

y
t )). In

particular, the “effective” flux function in this direction (see13) is

Hσ(v) = σf(v) − g(v). (26)

The entropy (admissibility) condition on jump discontinuities is most

easily obtained by resorting to the (x, y, t) setting and the “directional”

flux Hσ, as in (26). Using the convention v− < v+, we get

Hσ(k) −Hσ(v−)

k − v−
≥
Hσ(v+) −Hσ(v−)

v+ − v−
, k ∈ [v−, v+] (27)
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as a necessary and sufficient condition for a jump (v−, v+) whose slope is

σ = η′(ξ).

In analogy with Γ(v) (see (23)), we define the set (for a given solution v

and a fixed state v̄),

Γs(v; v̄) = {(f ′
+,−, g

′
+,−), v− = v̄, v+ = v(ξ+, η+) for some (ξ+, η+) ∈ ℜ2}.

(28)

In view of (24), the set Γs(v; v̄) has the following geometric interpreta-

tion. If l is a tangent line to a smooth discontinuity curve, and v takes on

the value v̄ at the tangency point (on either side) then l intersects Γs(v; v̄).

The entropy condition (27) implies, as is well–known, that all bicharac-

teristic lines (in (x, y, t)) “impinge” on the shock surface, as t → +∞ (or

are tangent to it). In view of Remark 4.1 and our convention for the ori-

entation of characteristic curve in the (ξ, η) plane, we obtain the following

corollary.

Corollary 4.1. If η = η(ξ) is the trajectory of an admissible shock, then

the characteristic lines on its two sides run “into it” (with the given orien-

tation) or are tangent to it (so that the shock becomes sonic on that side).

The structure of a centered rarefaction wave (CRW) in the (ξ, η) plane

is derived from the discussion of characteristic lines and their directions.

For clarity we state it in the following claim.

Claim 4.2. A CRW centered at (ξ0, η0) is given by the sector

α ≤
η − η0

ξ − ξ0
≤ β,

where, for any direction r ∈ [α, β], v = Cr such that

r =
g′(Cr) − η0

f ′(Cr) − ξ0
. (29)

Remark 4.3. Observe that this CRW corresponds to a rather complex

structure in the original (x, y, t) setting; the vertex (ξ0, η0) represents the

line x = ξ0t, y = η0t. At any time t there is a (rarefaction) fan of rays ema-

nating from (x, y, t) and carrying constant values of u. The whole structure

moves in a self-similar fashion as t increases. The rays then become planes

(carrying constant values of u) whose traces on the (ξ, η) plane satisfy (29).

We can summarize the procedure for the solution of the Riemann–type

problem Eqs. (13)–(15) as follows.
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(a) The problem is restated as Eq. (22) in the (ξ, η) plane, where the

function v(ξ, η) satisfies the boundary condition (21).

(b) Outside of a sufficiently large disk (in (ξ, η)) we determine the 1–

D waves issuing at the jump discontinuities of u0(θ) in the (x, y, t)

setting, and determine v(ξ, η) = u(ξ, η, 1).

(c) The resulting waves are extended into the disk, where they inter-

act and produce additional waves (CRW or shocks), subject to the

conditions (27) (shocks) and (29) (CRW).

As we shall see in the following section, this last step can be quite

involved, producing surprising structures. For general treatments, we refer

to.12,20,30

5. The 2-D Guckenheimer Equation

A very instructive example is provided by the Riemann-type problem for

the two-dimensional scalar conservation law, due to Guckenheimer,12

∂

∂t
u+

∂

∂x
(u2/2) +

∂

∂y
(u3/3) = 0, (30)

u(x, y, 0) = u0(θ) =















0 in sector 0 < θ < 3π
4 ,

1 in sector 3π
4 < θ < 3π

2 ,

−1 in sector 3π
2 < θ < 2π,

(31)

where θ = arctan( y
x ) (see also Fig. 2(a)). The flux functions here are not

identical. Moreover, the function g(u)=u3/3 is nonconvex, and as we shall

see below, this produces a solution with a “sonic shock”. Note that in

this case the solution to the Riemann problem (and likewise to the gen-

eralized Riemann problem) needs to be modified, taking into account the

nonconvexity of g(u). In the present case this modification is rather simple

(see [9, Section 2.6 and Remark 2.2 in Section 3.2]).

Consider the (self-similar) exact solution (see4,12,20,30) of (30)–(31),

shown in Fig. 2(b). Referring to this figure, we notice that outside of a

large disk, the solution consists of the following three shocks:

(a) A shock emanating from the line y = 0 (x > 0), moving at speed

1/3 in the positive y direction (note that g(u) = u3/3 is concave on

[−1, 0]).

(b) A standing shock along x = 0 (y < 0).

(c) A shock emanating from the line x+ y = 0. The self-similar analysis

(see4,12) shows that at t > 0 this line is given by x+ y = (5/6)t.
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The interaction of these three shocks in a disk around (0, 0) gives rise to

a very complex wave structure. At time t=1 it can be described as follows

(see Fig. 2(b)). The shock (b) extends to a segment of the positive y-axis

0 ≤ y ≤ b, b=0.2823057. At the point (0, b) it bifurcates into a CRW whose

tail characteristic is a sonic shock, across which the solution u(x, y, 1) jumps

from −1 to the value ṽ = 0.6087418. Then u increases across the rarefaction

from ṽ to 1, and it is constant along each (straight) characteristic line. The

rarefaction wave modifies shock (c) in a fashion similar to that of the curved

shock in the previous example of the Burgers equation (Case (D)). Note

that the head characteristic of the CRW carries the value u=1. It intersects

the shock (c) at the point (x0, y0) given by

x0 =
5
6 − b

2 − b
, y0 =

5
6 + b

6

2 − b
.

The tail characteristic (sonic shock) intersects the shock (a) at the point

(ξ̃, 1
3 ), where ξ̃ = 0.3519610. The result of the interaction between the CRW

and the shock (c) leads, as noted above, to a “bending” of the latter, form-

ing a shock branch y=y(x) connecting (x0, y0) to (ξ̃, 1
3 ). It can be determined

by solving an ordinary differential equation (4).

Thus, we obtain a wave pattern that includes a shock wave bifurcating

into a CRW and a sonic shock which serves as a tail characteristic of the

CRW. It intersects with the other two shocks at the triple point (ξ̃, 1
3 ). This

wave pattern provides for a good test of finite-difference schemes.

Two numerical tests were performed, one using the Godunov scheme

and the other with the GRP scheme. The 2-D algorithm is obtained from

the 1-D scheme by using the Strang ”Splitting Method” (see [2, Chapter 7]

and26) which ensures the second-order accuracy of the GRP scheme.

The computation domain was the square [−1 ≤ x ≤ 1, −1 ≤ y ≤

1] which was divided into 320 × 320 square cells. The time step was

∆t=0.003125 (i.e., µ
CF L

=0.5 since max|u|=1 and f ′(u)=u, g′(u)=u2), and

the computation was performed to final time t=1. The boundary conditions

were specified by calculating the exact solution on the outer segments of

boundary cells. This is possible as long as the domain boundary is inter-

sected only by the three shocks (a), (b), (c), which according to Fig. 2(b)

is still true at t=1.

The results are shown in the sub-domain [−0.05 ≤ x ≤ 0.60, 0 ≤

y ≤ 0.65] (see Fig. 3(a) for the Godunov scheme, and Fig. 3(b) for the

GRP scheme). Recall that inside the rarefaction fan u is constant along the

(straight) characteristic lines, so that numerical U -level curves approximate

the fan structure. The U -level sequence (32) given below is designed to
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show the shock fronts and the rarefaction fan. The five levels L = 9, ..., 13

correspond to the tail, head, and three inner characteristic lines of the

rarefaction fan (as shown in Fig. 2(b)).

UL =

{

−1 + 0.2L . . . L = 0, 1, ..., 8

0.60874, 0.68295, 0.76366, 0.86089, 1, . . . L = 9, ..., 13.

(32)

In order to enable interpolation at the lowest and highest U -levels, they were

slightly shifted to −0.990 and 0.997, respectively. For comparison of the

exact and numerical solutions, we represent the exact solution (Fig. 2(b))

by discrete “marker points” situated on shock fronts, as shown in Fig. 5.

Additional marker points are located at points (x, y) inside the rarefaction

fan, where the exact solution takes on the same values UL, L = 9, ..., 13 as

given by (32).

Our primary observation with respect to the numerical solution is that

both finite-difference schemes, applied according to the operator splitting

produce a correct approximation to this complex 2-D wave-interaction pat-

tern (Fig. 5). The GRP solution agrees quite well with the exact one, while

the Godunov solution shows a nearly equal agreement for the shock fronts,

but a lesser agreement in the rarefaction fan. In this centered fan, the

characteristic line that coincides with the sonic shock front corresponds

to a constant value of u=ṽ, and it is one of the U -level lines plotted

(L=9). In the GRP solution this line is seen very near the sonic shock

front (Fig. 3(b)), while in the Godunov case its stand-off distance is per-

ceptibly higher (Fig. 3(a)). The captured sonic shock is represented by the

cluster of level lines L = 0, ..., 9 (since the jump across this shock is from

u=U0 to u=U9). At the other end of the rarefaction fan, the head charac-

teristic line is plotted with U13=0.997 (close to the exact value of U13=1,

for a clear U -level interpolation). In the Godunov solution this line extends

well beyond the exact solution, while in the GRP solution it agrees well

with the exact marker points. The rarefaction fan is the only region of the

solution where u(x, y, 1) varies smoothly with a non-zero gradient. Hence,

these observations indicate that in such regions the (second-order accurate)

GRP scheme produces considerably smaller errors than the (first-order ac-

curate) Godunov scheme. In what concerns the bifurcation point (0, b) and

the triple point (ξ̃, 1
3 ), resulting from the two-dimensional setting, we ob-

serve that they are well replicated by both schemes.
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(b) Exact Guckenheimer Structure at t=1

Fig. 2. The Guckenheimer Structure for ut + (u2/2)x + (u3/3)y = 0.
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(a) First-order (Godunov ∆x=∆y=0.00625)
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(b) Second-order (GRP ∆x=∆y=0.00625)

Legend curved or oblique shock                                    
planar shock (x-facing or y-facing)                        
characteristic lines (or sonic shock)                      

Fig. 3. U -level curves for Guckenheimer equation at t=1
ut + (u2/2)x + (u3/3)y = 0. Initial data in Fig. 2(a).
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6. Euler Equations of Quasi 1-D Compressible Inviscid

Flow

We consider here the time-dependent flow of a compressible inviscid fluid

moving through a duct of variable cross-section. The flow is assumed to be

Quasi-One-Dimensional, (Quasi 1-D) namely, at any given time t the flow

is uniform over every cross-section of the duct (but, of course, may vary

from one cross-section to another). Thus, for a duct as depicted in Fig. 6,

we let r be a spatial coordinate along the “main axis”. Our hypothesis is

D

r

r1 r2

Fig. 4. Quasi 1-D flow in a duct.

then that all flow quantities (like density, pressure, velocity,...) depend only

on (r, t).

Certainly, in many cases this is just a simplified model approximating a

more realistic two (or three) dimensional flow, based on a physical assump-

tion that the flow varies primarily along the duct axis. However, there are

three cases of substantial physical significance, in which the model is exact.

A) Planar Flow, sometimes referred to as “one-dimensional” flow. Here

the whole flow is aligned with one direction, say the x-axis. All flow

quantities depend only on x (which is now the “r coordinate”), in

addition to the time t. The velocity vector has only an x component

u(x, t).

B) Cylindrical Flow. In this case the flow is symmetric about a fixed axis,

say the z-axis. The coordinate r is now r = (x2 + y2)1/2 and all flow

quantities are functions of (r, t). The velocity v(x, y, z, t) satisfies
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v(x, y, z, t) = r−1u(r, t)(xi+ yj) (i, j,k are the unit vectors along the

x, y, z axes, respectively). Observe that the duct can now be taken

as a sector λ1x < y < λ2x, 0 ≤ λ1 < λ2, x ≥ 0.

C) Spherical Flow. In this case the flow is symmetric about a fixed center

O, the origin. The coordinate r is now the distance (x2+y2+z2)1/2 and

the velocity is radial, namely v(x, y, z, t) = r−1u(r, t)(xi + yj + zk).

The Flow Equations

We now turn to the equations governing our quasi 1-D flow. They express

the three basic physical laws governing the flow: Conservation of mass,

conservation of momentum (or, alternatively, Newton’s second law) and

conservation of energy. These laws are most easily derived by a “control

volume” (or “integral”) approach: One considers a fixed mass of fluid and

applies the above laws to it. As is usually the case, we assume that there

are no external forces (such as gravity or electromagnetic force), so that

the only existing force is due to the hydrodynamic pressure. We shall give

here a brief outline of the derivation, and refer the reader to fluid dynamics

books, such as5,6 or,19 for a detailed derivation of the equations.

Let A(r) be the cross-sectional area of the duct at r. Clearly, A(r) ≡ 1

for planar flow, A(r) = r for cylindrical flow, and A(r) = r2 for spherical

flow. There are three unknown functions. The velocity u(r, t), which is the

(scalar) component along the r-axis, the density (mass per unit volume)

ρ(r, t), and the total specific energy (per unit mass) E(r, t). The energy E

consists of the kinetic energy (per unit mass) 1
2u

2 and the internal (thermo-

dynamic) energy e, so that E = 1
2u

2 + e. A basic thermodynamic postulate

in the derivation of the equations is that the hydrodynamic pressure p is

a function p = p(e, ρ). We refer to this function as the equation-of-state

of the fluid. The resultant force on a given volume D of the fluid is then

−
∫

∂D

pn dσ = −
∫

D

∇p dτ, where ∂D is the boundary of D, dσ the surface

element, dτ the volume element, and n the outward (unit) normal to ∂D.

The equality above follows by Stokes’ theorem. Similarly, the work done by

the pressure on the fluid (per unit time) is −
∫

D

∇ · (pv) dτ , where v is the

velocity vector. Note also that the outflux (per unit time) across ∂D, for

any quantity ψ (in our case ψ = ρ or ψ = ρE) is
∫

∂D

ψ(v ·n) dσ. We can now

take D as the segment r1 ≤ r ≤ r2 of the duct (see Fig. 6). Incorporating the

above considerations into the balance equations for mass, momentum and

energy, and letting r2 − r1 go to zero, we obtain the conservation equations
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in differential form as follows.

(i) ∂
∂tρ+A−1 ∂

∂r [Aρu] = 0 (conservation of mass),

(ii) ∂
∂t (ρu) +A−1 ∂

∂r [Aρu2] + ∂p
∂r = 0 (conservation of momentum),

(33)

(iii) ∂
∂t (ρE) +A−1 ∂

∂r [A(ρE + p)u] = 0 (conservation of energy),

where the equation-of-state p = p(e, ρ) is given.

We can write the system (33) as

∂

∂t
U +A−1 ∂

∂r

[

AF(U)
]

+
∂

∂r
G(U) = 0 , (34)

U =





ρ

ρu

ρE



 , F(U) =





ρu

ρu2

(ρE + p)u



 , G(U) =





0

p

0



 .

The presence of the function A(r) means that the system (34) cannot

be cast in the (strict) form of “Conservation Laws” (i.e., A−1(AF(U))r

cannot, in general, be written as (F̃(U))r for some F̃). However, this is

possible in the planar case A(r) ≡ 1. As in the case of a scalar equation,

the Riemann problem plays a key role in the design of a numerical scheme

for (34). It is the initial value problem for the equation, subject to the initial

data

U(r, 0) =

{

UL , r < 0 ,

UR , r > 0 .
(35)

In the planar case, one obtains the well-known self-similar solution, which

consists of three waves. The middle one is a contact discontinuity while

each one of the other two is either a shock or a rarefaction wave.6 The

full construction of the solution is reduced to solving a pair of algebraic

equations that express the continuity of the pressure and velocity across

the contact discontinuity. In the general case considered here it has been

observed that (34) is not in “conservation form”, hence the solution to the

Riemann problem is no longer self-similar, and can no longer be obtained

solely by algebraic means. However, due to the “finite propagation speed”

property of the equation this solution retains some features of the self-

similar one. More specifically, near r = 0 the wave pattern (in particular

the nature and strength of the waves at the singularity) is identical to that

of the “associated” solution obtained by “freezing” the cross-section area

A(r) at the constant value A(0). Note, however, that the (r, t) trajectories of
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the waves emanating from the singularity are curvilinear, and their speeds

vary in time, as a result of the non-uniformity of the cross-section A(r). The

reader is referred to2 for more details. We also point out that Appendix C

in2 gives an efficient algorithm for the solution of the Riemann problem in

the special case (but very important in applications and numerical tests)

of a γ-law gas. In what follows, we introduce the “Generalized Riemann

Problem” associated with (34).

7. The GRP for Quasi 1-D Compressible Inviscid Flow

In Section 6 we considered the Euler equations (34) governing the quasi

1-D flow in a duct of variable cross-section. We emphasized in particular

the role of the Riemann problem (“shock tube problem”), namely the IVP

subject to initial data (35). As we have already noted, the solution to the

Riemann problem is a basic ingredient in the numerical resolution of the

flow. It was observed that in the planar case of uniform cross-sectional area

this solution is “self-similar” and is readily obtained by solving a pair of

algebraic equations. However, as is well known (even in the scalar case),

such a scheme (“Godunov’s scheme”) yields poor results in the resolu-

tion of singularities. It has been widely demonstrated that the resolution is

greatly improved when switching to piecewise-linear data, thus leading to

the Generalized Riemann Problem. Turning back to the quasi 1-D system

(34), we noted that it is not in strict conservation form. In particular, one

cannot expect here a self-similar solution to the Riemann problem, imply-

ing that it cannot be reduced to an algebraic problem, as in the planar

case. Thus, in dealing with the general case, we have to resort to further

analysis of the problem, even in the case of initial data as in (35) (see also8

in this case). Replacing the piecewise constant by piecewise linear initial

data brings about a dramatic improvement in the numerical results. This

was first established for the fluid-dynamical case in the pioneering work of

van Leer (see27). We shall therefore concentrate in this section on the IVP

for the system (34), with initial data which are linear on the two sides of

the singularity, across which both the functions and their slopes may expe-

rience a jump. The term “Generalized Riemann Problem” (GRP) has been

attached to this problem (see1) and we shall employ it henceforth.
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Structure of the Solution to the GRP

Let U(r, t) be the solution to the GRP, namely the IVP for the system (34),

subject to the initial data

U(r, 0) = U0(r) =

{

UL + rU′
L , r < 0 ,

UR + rU′
R , r > 0 ,

(36)

where UR, U
′
R, UL, U

′
L are constant vectors.

The initial structure of the solution U(r, t) is determined by the limit-

ing values (at r = 0±) UR, UL. We therefore associate with the GRP its

“limiting planar problem”.

Definition 7.1. The “Associated Riemann Problem” (to the GRP with

initial data (36)) is the Riemann problem (for the planar system obtained

by setting A(r) = A(0)), subject to the piecewise constant initial data

UA
0 (r) =

{

UL , r < 0 ,

UR , r > 0 .
(37)

We denote by UA(r, t) = RA
(

r
t ;UL,UR

)

the solution to the associated

problem. Observe that it is “self-similar”, depending only on the direction
r
t .

A schematic description of U(r, t), UA(r, t) is given in Figs. 5(a), (b)

respectively.

t

r
U(r, 0)=UL+rU′

L U(r, 0)=UR+rU′
R

Γ1

Γ2

Γ3

C− : r′(0+)=µ

(a) The solution U

t

r
UA(r, 0)≡UL UA(r, 0)≡UR

CA
− : r=µt

ΓA
1

ΓA
2

ΓA
3

(b) The solution UA

Fig. 5. The solutions to the GRP (a), and its associated RP (b).

It should be emphasized that the solutions are shown only for a short

time t, following the “decomposition” of the initial discontinuity at r=0.

The waves (in terms of type and initial strength) emanating from that

discontinuity are completely determined by the limiting values UR, UL and

the planar solution UA.
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The type (shock or CRW – Centered Rarefaction Wave) of Γi is identical

to that of ΓA
i . Furthermore, in the shock case (Γ3, ΓA

3 in Fig. 7) the initial

speeds (slopes) and initial jumps of all flow variables are identical. In the

case of a CRW the head and tail characteristics (of Γ1, ΓA
1 in Fig. 7) emanate

from r=0 with equal slopes. For any characteristic C− within the fan Γ1,

approaching the origin with limiting slope µ (see Fig. 7), there is a matching

characteristic CA
− in ΓA

1 whose (constant) slope is µ. Recall that the flow

variables along C− are not constant. However, the limiting values of the

flow variables along C− as t → 0, are equal to the corresponding (constant)

values of these variables along CA
−. Finally, the solution U(r, t) in the regions

between the three waves is smooth and approaches, along any direction

r=µt, the corresponding value of UA, which is constant along the full ray

r=µt, t>0. This observation is expressed in the following equation.

lim
t→0+

U(µt, t) = UA(µt, t) = RA
(

µ;UL,UR

)

−∞ < µ <∞ . (38)

The smoothness of U(r, t) (between waves) implies in particular that the

wave trajectories (discontinuities, characteristics) are smooth curves.

The solution U(r, t) can be represented by an asymptotic expansion in

terms of r, t. However, here we shall need only the first-order terms of this

expansion. (Note that the “zero-order” term is given by Eq. (38).) More

explicitly, we need the following.

Definition 7.2. (The Linear GRP).

Given the initial data (36), let U(r, t) be the solution to the GRP. The

Linear GRP is the following. Evaluate the limiting value
(

∂

∂t
U

)

0

= lim
t→0+

∂

∂t
U(0, t) . (39)

A detailed discussion of the solution to the linear GRP can be found

in [2, Chapter 5]. Basically, it builds on the same idea used in the so-

lution to the Riemann problem, i.e., the continuity of the pressure and

velocity across the middle (contact discontinuity) wave. This fact im-

plies that although these values vary along the trajectory, their tangen-

tial derivatives (as evaluated on the two sides) are identical. This leads

to the Main Theorem of Linear GRP as we state below. The simplest

(second-order, high-resolution) numerical scheme that can be derived from

these considerations is the one based on the Acoustic Approximation . We

introduce this approximation and prove the simplified version of the main

theorem in this context.
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Remark 7.1.

(a) The GRP method is equally applicable to the evaluation of the di-

rectional derivative
(

∂

∂t
U

)

α

= lim
t→0+

d

dt
U(r=αt, t), −∞ < α <∞ . (40)

As indicated above, this means that we obtain the full first-order per-

turbation built into U(r, t), with respect to the associated UA(r, t).

This will be important in the application of the GRP numerical

method to general “moving grids”.

(b) The evaluation of the directional derivatives (40) can be extended

to higher-order derivatives, using the same methodology. However

the entire numerical treatment presented here is based solely on the

linear GRP, combining the simplicity of the algorithm with its high-

resolution capability.

It turns out that the most convenient way of dealing with the deriva-

tives along the contact discontinuity is by rewriting the flow equations in a

Lagrangian framework. Defining the Lagrangian coordinate ξ by

ξ =

r
∫

0

A(s)ρ(s, 0) ds , (41)

the system (34) is replaced by

∂

∂t
V +

∂

∂ξ
(AΦ(V)) +A

∂

∂ξ
Ψ(V) = 0 ,

(42)

V =





τ

u

E



 , Φ(V) =





−u

0

pu



 , Ψ(V) =





0

p

0



 ,

where it is understood that all flow variables, as well as the coordinate r, are

functions of ξ, t. In particular, A = A(r(ξ, t)), and the three unknown flow

variables V = (τ , u, E) now replace those of the Eulerian representation

U = (ρ, ρu, ρE), where τ=1/ρ. Since ξ=0 at the initial discontinuity, the

contact discontinuity Γ2 stays along ξ=0 for t>0. The wave pattern for the

solution to the GRP in (ξ, t) coordinates (analogous to the one depicted in

Fig. 5(a)) is schematically given in Fig. 7.

Observe that the limiting values VL, VR are related to UL, UR, respec-

tively, as indicated above. The linear initial data (36) are replaced by the
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t

ξ

V(ξ, 0)=VL+ξV′
L V(ξ, 0)=VR+ξV′

R

(

∂V

∂t

)

L

(

∂V

∂t

)

R

Γ1

Γ2

Γ3

V∗
L,
(

∂V

∂ξ

)∗

L
,
(

∂V

∂t

)∗

L
V∗

R,
(

∂V

∂ξ

)∗

R
,
(

∂V

∂t

)∗

R

Fig. 6. Structure of the solution to the GRP in Lagrangian coordinates.

linear (in ξ) initial data

V(ξ, 0) = V0(ξ) =

{

VL + ξV′
L , ξ < 0 ,

VR + ξV′
R , ξ > 0 .

(43)

This is justified as follows. Let Q be any flow variable (say Q=ρ, or Q=u).

The initial value Q(r, 0) is linear (say for r>0), and using the definition of

the Lagrangian coordinate we get

∂

∂ξ
Q(ξ, 0)

∣

∣

∣

∣

ξ=0+

= [A(0)ρR]
−1 ∂

∂r
Q(r, 0)

∣

∣

∣

∣

r=0+

. (44)

In this equation we are using ∂
∂ξ

∣

∣

∣

∣

ξ=0+

, ∂
∂r

∣

∣

∣

∣

r=0+

to denote the one-sided

(from the right) derivatives, and ρR=ρ(0+, 0) to denote the value of the

density in UR (i.e., the limiting value of ρ(r, 0) as r → 0+). Clearly, if

Q(r, 0) is linear, Q(ξ, 0) is generally not linear (in ξ). However, the solu-

tion to the linear GRP, as we shall see, depends only on the limiting slopes

∂
∂ξQ(ξ, 0)

∣

∣

∣

∣

ξ=0±

. Thus, we are justified in assuming that V0(ξ) is given by

(43), where the relation of U′
R to V′

R is obtained from (44). Similarly, the

left-hand side derivatives are given by

∂

∂ξ
Q(ξ, 0)

∣

∣

∣

∣

ξ=0−

= [A(0)ρ
L
]−1 ∂

∂r
Q(r, 0)

∣

∣

∣

∣

r=0−

, (45)
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for any flow variableQ. Note that the cross-sectional areaA(r) is assumed to

be continuous (and even continuously differentiable) at all points, including

r=0.

We denote by V(ξ, t) the solution to the GRP (in Lagrangian coordi-

nates) subject to the initial data (43). The associated Riemann solution

(Definition 7.1) VA(ξ, t) = RA
(

ξ
t ;VL,VR

)

depends only on ξ/t. As in the

Eulerian case, the solution VA is the “limit of V” as t → 0 (see (38)). In

particular, it will be useful to denote by V∗
L, V

∗
R the (constant) values of the

solution along the two sides of the contact discontinuity (compare Fig. 7)

V∗
L = VA(0−, t), V∗

R = VA(0+, t) . (46)

Clearly, in the case of the pressure and the velocity p∗
L
=p∗

R
=p∗, u∗

L
=u∗

R
=u∗.

The linear GRP in this framework is transformed into the problem of eval-

uating the instantaneous time derivatives
(

∂

∂t
V

)∗

= lim
t→0+

∂

∂t
V(0, t) , (47)

along the contact discontinuity ξ=0. The determination of all other direc-

tional derivatives (and in particular
(

∂
∂tU

)

0
along r=0), is then straightfor-

ward.

Let λ = A′(0)/A(0). It measures the deviation of the cross-section from

the planar (uniform) case, and plays an important role in the treatment of

the GRP.

The main ingredient in the solution of the linear GRP and, indeed, the

fundamental building block of the GRP method, is the following theorem.

Theorem 7.1. (Main theorem of linear GRP).

Let
(

∂u
∂t

)∗
,
(

∂p
∂t

)∗

, be the time-derivatives of the velocity and pressure along

the contact discontinuity, evaluated at t=0+. These derivatives are deter-

mined by a pair of linear equations

aL

(

∂u

∂t

)∗

+ bL

(

∂p

∂t

)∗

= dL , (7.13)L

aR

(

∂u

∂t

)∗

+ bR

(

∂p

∂t

)∗

= dR . (7.13)R

The coefficients depend on the equation of state,

and in addition

aL, bL, dL depend on λ, V∗
L, VL, V

′
L

aR, bR, dR depend on λ, V∗
R, VR, V

′
R
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All six coefficients can be explicitly evaluated from the indicated data.

Remark 7.2. Note that equations (48)L,R are coupled only through the

dependence of all six coefficients on the associated Riemann solution V∗.

Apart from that, the “left” (resp. “right”) coefficients aL, bL, dL (resp.

aR, bR, dR) depend only on the “left-side” (resp. “right-side”) initial data.

The proof of Theorem 7.1 is rather long and requires the treatment of

a centered rarefaction wave in the GRP setting. We refer to2 for details.

However, we shall present here a simplified treatment, which indeed leads

to a very successful, easy to implement, second-order numerical scheme.

The Acoustic Case

Assume that the initial flow variables are all continuous at ξ=0 so that

VL=VR, but we allow jumps in their slopes V′
L 6= V′

R. Clearly, the associ-

ated Riemann solution is now constant

VA(ξ, t) ≡ VL = VR ,

hence the GRP solution V(ξ, t) is continuous at ξ=t=0. It follows that the

initial wave pattern of V(ξ, t) does not contain a jump discontinuity (shock

or contact), nor does it contain a CRW. The “waves” emanating from the

origin are therefore just characteristic curves C−, C+ as in Fig. 7 (the curve

C0 coincides with the particle path ξ=0). These curves are characterized

t

ξ

V(ξ, 0)=VL+ξV′
L V(ξ, 0)=VR+ξV′

R

C− C+

Fig. 7. The “acoustic case” VL=VR, V′
L
6= V′

R
.

as “sound waves”, justifying the terminology “acoustic case” used here.
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Their slopes are −A(0)gL= −A(0)ρ
L
cL (for C−) and A(0)gR=A(0)ρ

R
cR (for

C+), where cL, cR are the initial speeds of sound (in the Eulerian frame),

as r → 0−, 0+ respectively. When viewed from the side of the contact

discontinuity, these slopes are, respectively, −A(0)g∗
L

and A(0)g∗
R
. Of course,

these values are equal to the previous ones, since V∗ = VL = VR. However,

we retain the two-sided notation (like gL, g∗L , gR, g∗R which are all equal) in the

formulas. This will enable us to use them in the numerical application based

on the acoustic case where VL 6= VR, but their difference is sufficiently

“small”. It can be shown that the coefficients depend continuously on VL,

VR.

Proposition 7.1. (The acoustic case – Lagrangian framework).

Assume VL=VR, V′
L 6= V′

R . Then the coefficients in Eqs. (48)L,R are given

by

aL = 1, bL = (g∗L )−1 = (ρ∗Lc
∗
L)−1, dL = −(g∗L )−1gL {A(0)[gLu

′
L + p′L] + λuLcL} ,

(49)

aR = −1, bR = (g∗
R
)−1 = (ρ∗

R
c∗
R
)−1, dR = −(g∗

R
)−1gR {A(0)[gRu

′
R
− p′

R
] + λuRcR} .

In particular, these coefficients depend only on the initial data (including

speed of sound).

Note that the derivatives in dL, dR are the ξ-derivatives (conforming with

the notation V′
L, V

′
R). Using (45) we get, for example,

u′−1
L ρ−1

L

∂

∂r
u(r, 0)

∣

∣

∣

∣

r=0−

.

proof (of Proposition 7.1).

Since u, p are continuous across the line ξ=0, the same holds true for their

time derivatives ∂u
∂t ,

∂p
∂t . They are therefore continuous in the full domain

between C− and C+ (see Fig. 7) and approach, respectively,
(

∂u
∂t

)∗
,
(

∂p
∂t

)∗

as (ξ, t) → (0, 0) in this domain. In view of the second equation in (42) the

derivative ∂p
∂ξ is also continuous in this domain, and approaches the value

A(0)
(

∂p
∂ξ

)∗

= −
(

∂u
∂t

)∗
as (ξ, t) → (0, 0). The pressure is also continuous

across C−, hence the same is true for its derivative dp
dt (along C−). Using

the chain rule, we can express this derivative in two ways, approaching C−

from either side. For t → 0+, we record separately the two limiting values

of the slope as −A(0)gL and −A(0)g∗L , and obtain
(

∂p

∂t

)∗

−A(0)g∗L

(

∂p

∂ξ

)∗

=

(

∂p

∂t

)

L

−A(0)gLp
′
L . (50)
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The flow is isentropic along ξ=const. so that

(

∂p

∂t

)

L

= c2
L

(

∂ρ

∂t

)

L

= −g2
L

(

∂τ

∂t

)

L

= −g2
L

(Au)
′

L , (51)

where in the last step we have used the first equation in (42). We now

observe that,

(Au)
′

L =
d

dξ
[A(r(ξ, 0))u(ξ, 0)]ξ=0− = λρ−1

L uL +A(0)u′L , (52)

and inserting this in (51) yields

(

∂p

∂t

)

L

= −λgLcLuL −A(0)g2
L
u′

L
. (53)

Using (53) and A(0)
(

∂p
∂ξ

)∗

= −
(

∂u
∂t

)∗
in (50) we get,

g∗L

(

∂u

∂t

)∗

+

(

∂p

∂t

)∗

= −A(0)g2
Lu

′
L −A(0)gLp

′
L − λgLcLuL

which is identical to (7.13)L with aL, bL, dL as in (49).

The values of aR, bR, dR in (49) are obtained in exactly the same way

(or by using the previous argument for the transformed setting r → −r,

ξ → −ξ, u→ −u, p→ p). ✷

Remark 7.3. Once the time derivative
(

∂p
∂t

)∗

is known, the time-

derivatives for the density are given by

(

∂ρ

∂t

)∗

L,R

= (c∗)
−2
L,R

(

∂p

∂t

)∗

. (54)

The density is evidently continuous across ξ=0 when VL=VR. However,

Eq. (54) is used in the more general setting as discussed in the paragraph

preceding Proposition 7.1.

Remark 7.4. It has been our experience that the acoustic case (i.e., the

coefficients as given in (49)) is fully adequate for the numerical simulation of

practically all compressible flow problems. The versions of the GRP method

based on this observation (labeled E1, L1), combine simplicity with accu-

racy in resolving sharply flow discontinuities (“high-resolution” property).
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8. The GRP Numerical Method for Quasi 1-D

Compressible Inviscid Flow

The previous section dealt with the solution to the linear GRP. Given initial

piecewise linear data, we can find the value of the solution (to the system

(34)) and its time-derivative at the singularity. In this section we show how

to implement this solution in the design of a suitable numerical scheme,

and in fact a group of such schemes.

The schemes based on the GRP methodology range from the very basic

one, which is just a straightforward, easy to implement, extension of the

classical Godunov scheme, to the “Full GRP” scheme, which requires the

full power of the GRP analysis. However, we emphasize that, in all cases,

the schemes are based on explicit formulas, derived on the basis of the

Riemann solution and the equation of state. Once these formulas are incor-

porated into the numerical fluxes, the schemes prove to be robust and no

intricate post-processing procedures are needed (except for a simple “slope-

limiter”). The basic methodology has already been introduced in Section 2.

Taking for simplicity a uniform spatial grid rj = j∆r, −∞ < j < ∞, and

uniformly spaced time levels tn+1 = tn + k, t0 = 0, we refer to the interval

(rj−1/2, rj+1/2) as “cell j” and to its endpoints as the “cell boundaries”.

At the time level tn, the solution to (34) in cell j is approximated by an

average Un
j . We advance the averages

{

Un
j

}

j
to the next time level by a

general (“quasi-conservative”) scheme

Un+1
j = Un

j −
∆t

(∆v)j

[

A(rj+1/2)F
n+1/2
j+1/2 −A(rj−1/2)F

n+1/2
j−1/2

]

−
∆t

∆r

[

G
n+1/2
j+1/2 − G

n+1/2
j−1/2

]

, (55)

where (∆v)j =

rj+1/2
∫

rj−1/2

A(r) dr is the volume of the duct segment in cell j.

The scheme (55) is a “finite volume” scheme. It is obtained by integrat-

ing the quasi-conservation law (34) (after multiplication by A(r)) over the

space–time rectangle

(rj−1/2, rj+1/2) × (tn, tn+1). The integral
rj+1/2
∫

rj−1/2

A(r)U(r, tn) dr is approx-

imated by Un
j (∆v)j , and similarly

for t = tn+1. The integral
rj+1/2
∫

rj−1/2

A(r) ∂
∂rG(U(r, t)) dr is approximated
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by
(∆v)j

∆r

[

G
(

U(rj+1/2, t)
)

− G
(

U(rj−1/2, t)
)]

. The “side” integrals

tn+1
∫

tn

A(rj±1/2)F
(

U(rj±1/2, t)
)

dt ,

tn+1
∫

tn

G
(

U(rj±1/2, t)
)

dt

are then approximated, respectively, by

A(rj±1/2)F
n+1/2
j±1/2 ∆t , G

n+1/2
j±1/2 ∆t , (56)

which need to be determined. In fact, their evaluation in terms of the data
{

Un
j

}

j
is what is commonly referred to as the “design of a scheme”.

Definition 8.1. The terms F
n+1/2
j±1/2 , G

n+1/2
j±1/2 are called the “numerical

fluxes” for the quasi-conservative scheme (55).

We shall always assume that the CFL condition is satisfied in the sense

that no wave issuing from a singularity rj+1/2 at time t=tn reaches the

adjacent cell boundaries rj−1/2, rj+3/2 during the time interval (tn, tn +k).

In practice, this is achieved by inspecting all such waves at time t=tn and

taking their maximal speed Sn. Since (generally speaking) the wave speeds

vary in time, an additional “safety” factor µCF L<1 is added to make up for

a possible growth of the maximal speed. This factor is then labeled “CFL-

ratio”, and the next time step kn is set to be kn = µCF L ·
∆r
Sn

. For notational

simplicity we omit henceforth the dependence of k on n, and write kn=k.

The Godunov Scheme

Given the initial data U0(r) = U(r, 0), we define the initial set of cell

averages by

U0
j =

1

(∆v)j

rj+1/2
∫

rj−1/2

A(r)U0(r) dr , −∞ < j <∞ . (57)

Next we assume that the cell averages
{

Un
j

}

j
are known and determine the

numerical fluxes in (55). To this end we assume that the cross-sectional area

is “locally uniform” in adjacent cells. The system (34) is then transformed

into a “planar” one near the cell boundaries rj±1/2. We further assume that

the flow distribution is piecewise (or “cellwise”) constant, being equal to

Un
j throughout cell j (at time t=tn). These assumptions imply that, due

to the CFL condition, the solution in the time interval (tn, tn + k) consists

of a “sequence of Riemann solutions”. Each cell boundary rj+1/2 carries an
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initial discontinuity, separating two constant states UL = Un
j , UR = Un

j+1 .

Translating the point r = rj+1/2 to the origin, we conclude that the solution

along the line r = rj+1/2 is constant and equal to the Riemann solution

R(0;Un
j ,U

n
j+1). The CFL restriction on k prevents the waves emanating

from rj+1/2 from reaching either rj−1/2 or rj+3/2, as seen in Fig. 8.

Definition 8.2. (The Godunov Scheme).

Given the initial distribution
{

U0
j

}

−∞<j<∞
, determine successively (for

n = 1, 2, . . . ) the cell averages by

Un+1
j = Un

j −
k

(∆v)j

[

A(rj+1/2)F
G,n+1/2
j+1/2 −A(rj−1/2)F

G,n+1/2
j−1/2

]

−
k

∆r

[

G
G,n+1/2
j+1/2 − G

G,n+1/2
j−1/2

]

, −∞ < j <∞ , (58)

where the numerical fluxes satisfy,

F
G,n+1/2
j+1/2 = F

(

R(0;Un
j ,U

n
j+1)

)

−∞ < j <∞ , (59)

G
G,n+1/2
j+1/2 = G

(

R(0;Un
j ,U

n
j+1)

)

(F(U), G(U) as in (34)).

The Basic GRP Scheme

We have seen in the case of the Guckenheimer equation that the Godunov

scheme performed reasonably well in capturing jump discontinuities. How-

ever, the excessive “dissipativity” of the scheme tends to “spread out” dis-

continuities and to “clip out” extremal points. These numerical effects are

even more pronounced in the case of systems. The remedy suggested in Sec-

tion 2 was based on the fundamental observation by van Leer:27 Replace the

t

r
tn

tn+1

U ≡ R(0;Un
j ,U

n
j+1)

Un
j Un

j+1rj−1/2 rj+1/2 rj+3/2

Fig. 8. Structure of the solution for Godunov’s scheme.
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cellwise constant distribution of variables at time t=tn by a “piecewise lin-

ear” distribution, thus achieving second-order accuracy. At the same time,

maintaining the “upwind” character of the scheme as in (55) enables the

accurate capturing of jump discontinuities. Following this line of thought,

we now assume that the flow variables are linearly distributed in each cell,

so that at time t=tn,

Un(r) = Un
j + (r − rj)L

n
j , rj−1/2 < r < rj+1/2 . (60)

At the cell boundaries rj±1/2 we therefore allow a jump of both the variables

and their gradients, as in Fig. 8. The problem is once again to determine

r

Un
j

Un

rj−1/2 rj+1/2 rj+3/2 rj+5/2

Fig. 9. Distribution of flow variables at time t=tn (GRP setup).

the numerical fluxes as in Definition 8.1. Furthermore, in the case where

all slopes Ln
j vanish and the cross-sectional area is (locally) uniform, we

require that the fluxes coincide with those of the Godunov scheme (59).

The reasoning employed in the case of the Godunov scheme can be

implemented here. The CFL condition implies that during the time interval

(tn, tn + k) the exact solution U(r, t) to the system (34), subject to initial

data Un(r), is not affected (along the line r=rj+1/2) by waves issuing from

the neighboring discontinuities at rj−1/2, rj+3/2. Shifting r=rj+1/2 to r=0

and the time tn to t=0, we see that the solution U(rj+1/2, t), tn ≤ t ≤ tn+1,

is that of the GRP where, as in (36),

UL = Un
j +

∆r

2
Ln

j , UR = Un
j+1 −

∆r

2
Ln

j+1

(61)

U′
L = Ln

j , U′
R = Ln

j+1 .

Unlike the case of the Godunov scheme, where the waves emanating from

the discontinuities propagate along straight lines (see Fig. 8), these waves
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are now typically as shown in Fig. 5(a). The solution U(rj+1/2, t) cannot

be obtained exactly and we must resort to appropriate approximations.

The basic guideline here is to maintain the second-order accuracy, as in the

scalar case. With an eye to a simple second-order extension of the Godunov

scheme, we now try to design numerical fluxes based on the GRP solution.

The first step is the evaluation of the “instantaneous” values of the solution

U(r, t) at the jump discontinuities (rj+1/2, tn). These values are obtained,

in accordance with (38), as Riemann solutions related to the values of Un(r)

at the cell boundaries. Designating these values as

Un
j+1/2,− = Un

j +
∆r

2
Ln

j , Un
j+1/2,+ = Un

j+1 −
∆r

2
Ln

j+1 (62)

(these are UL, UR in (61)) and using the notation of (38) we get,

Un
j+1/2 = lim

t→tn+
U(rj+1/2 , t) = RA

(

0;Un
j+1/2,−,U

n
j+1/2,+

)

. (63)

In the following theorem we examine the meaning of “second-order ac-

curacy” in the present context.

Theorem 8.1. (Numerical Fluxes for the Basic GRP Scheme).

Consider the piecewise linear distribution Un(r) as in (60). At the point

rj+1/2 define the values Un
j+1/2 as the Riemann solution (63) and

(

∂
∂tU

ac
)n

j+1/2
as the acoustic time-derivative, based on the linear profiles

(61) . Define the numerical fluxes by,

F
n+1/2
j+1/2 = F

(

Un
j+1/2 +

k

2

(

∂

∂t
Uac

)n

j+1/2

)

,

(64)

G
n+1/2
j+1/2 = G

(

Un
j+1/2 +

k

2

(

∂

∂t
Uac

)n

j+1/2

)

.

Using these fluxes in (55), the resulting scheme is of second-order accuracy.

Definition 8.3. The scheme presented in Theorem 8.1 is the BASIC GRP

SCHEME, and we label it the E1 SCHEME.

Remark 8.1. (The E1 Scheme as a generalization to Godunov’s Scheme).

Godunov’s scheme serves as the foundation of the E1 scheme. It carries the

main burden of the “upwinding”. As a result, it serves as the basis for the

“shock capturing” capability of the scheme. The refinement involved in the

E1 scheme contributes to the “high-resolution” (i.e., “sharpness”) of the

captured discontinuities. Inasmuch as “computation time” is considered,
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the construction of the time-derivatives adds, in practical cases only 2–5%

to the time required for the computation of the Riemann solution Un
j+1/2 .

Remark that no information concerning the equation of state is needed for

the time-derivatives.

The E∞ Scheme, Intermediate Schemes, MUSCL

In Theorem 8.1 we defined the numerical fluxes based on the acoustic ap-

proximation. However, starting from the piecewise linear distribution (60)

we can evaluate, by means of the full solution to the linear GRP, the exact

time-derivative
(

∂
∂t U

)n

j+1/2
. Equation (64) for the numerical fluxes is then

replaced by

F
n+1/2
j+1/2 = F

(

Un
j+1/2 +

k

2

(

∂

∂t
U

)n

j+1/2

)

,

(65)

G
n+1/2
j+1/2 = G

(

Un
j+1/2 +

k

2

(

∂

∂t
U

)n

j+1/2

)

.

Definition 8.4. (E∞ Scheme).

The scheme (55), with numerical fluxes given by (65), is called the E∞

Scheme.

The reason for the indices in labeling the E1, E∞ schemes lies in the

order (in k) to which the numerical fluxes are evaluated. In E∞, they are ob-

tained from the exact solution to the linear GRP, and no approximation is

involved (once the linear distributions Un(r) are given). On the other hand,

in the case of E1, the numerical fluxes are based on the time-derivative
(

∂
∂t Uac

)n

j+1/2
, which approximates the exact solution to the linear GRP

only within O(k). By this convention, if the computed time-derivative ap-

proximates the exact one
(

∂
∂tU

)n

j+1/2
within O(k2) error, we refer to the

resulting scheme as an E2 scheme. Such an approximation results if the

acoustic approximation is replaced by the assumption that the waves Γ1,Γ3

are always SHOCKS satisfying the Rankine-Hugoniot condition. It means

that a CRW is replaced by a “rarefaction shock”. This assumption and the

resulting approximation is the one used by van Leer27 in his pioneering

work.
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Concluding the GRP Algorithm

We can now sum up the GRP algorithm, which is a second-order upwind

finite-difference scheme for the system (34) governing quasi 1-D compressible

flow. Referring to this system, the vector of unknown flow variables is

U =





ρ

ρu

ρE



 .

At the cell boundaries
{

rj+1/2

}

we obtain the values
{

Un
j+1/2

}

by solv-

ing a (planar) Riemann problem. Next we evaluate the “instantaneous”

time-derivatives
(

∂
∂tU

app
)n

j+1/2
. They are computed by the acoustic ap-

proximation or by the analytic solution to the linear GRP (or any interme-

diate scheme). The numerical fluxes are given by

F
n+1/2
j+1/2 = F

(

Un
j+1/2 +

k

2

(

∂

∂t
Uapp

)n

j+1/2

)

,

(66)

G
n+1/2
j+1/2 = G

(

Un
j+1/2 +

k

2

(

∂

∂t
Uapp

)n

j+1/2

)

,

and the new values
{

Un+1
j

}

by (55). The new cell boundary values
{

Un+1
j+1/2

}

are determined by using the linear approximation (in time) at

the cell boundaries and the new slopes
{

Ln+1
j

}

by differencing these values.

Finally, the slopes in all cells are subjected to a “slope limiter” algo-

rithm, without EVER changing the average values
{

Un+1
j

}

. The fact that

slope-limiting is indispensable has already been demonstrated in the scalar

case above. In practice, each of the three basic flow variables is subjected

to the same simple algorithm used in the scalar case.

9. Fluid Dynamical Examples

Various studies on shock wave phenomena have been conducted in the

course of implementing the GRP scheme to the fluid dynamical equations,

some of them including comparison to experiments involving complex wave

interactions. Here we consider specifically the four cases :

• A rarefaction wave propagating into a narrower duct via a converging

nozzle.

• Shock diffraction by a square cavity.
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• Second reflection of a shock wave by a double wedge.

• Lagrange–Euler coupled flow of heterogeneous gas–grain mixture.

In all but the first example a comparison to experimental observation

is included.

9.1. Wave Dynamics in a Duct with a Converging Segment

Consider a centered rarefaction wave that propagates in a planar duct com-

prising two long segments of uniform cross-section area joined by a smooth

converging nozzle. This problem serves as a model to processes that take

place in diverse systems of industrial and scientific interest, such as internal

combustion engines, or turbofan/turbojet engines. In addition to shedding

light on the nature of the interaction between a rarefaction wave and a con-

verging nozzle, the significance of this case lies in the comparison we make

between a full multi-dimensional solution and the corresponding quasi 1-D

approximation. The reason is that the latter (often referred to as the “duct

flow” approximation) is commonly employed as an engineering design tool.

Hence, studying the bounds of its validity as a simplified approximation

to the full multi-dimensional solution is highly significant to engineering

design and analysis.

In a study of wave interaction with diverging or converging ducts,16

it was found out that at large times the solution produced by the quasi

1-D approximation was usually close to the full 2-D solution. This was

particularly so in the case of shock waves. However, this is not universally so,

and as a specific example of wave interaction where the quasi 1-D solution

and the 2-D solution differ, we consider here the case of a 1:10 pressure ratio

rarefaction wave in a fluid assumed to be a perfect gas with γ = 1.4. The

CRW is initially located in the wider part of the duct, and it propagates

toward a (short) converging nozzle of 2 : 1 cross-section area ratio. The

initial data is that of a Riemann problem designed to produce a right-

propagating CRW. It consists of two uniform states

U(r, 0) =

{

UL = [ρL, pL, uL] = [0.27030, 0.1,−1.4016] , r < 1.3 ,

UR = [ρ
R
, pR, uR] = [1.4, 1, 0] , r > 1.3 .

(67)

Here we use “r” as the spatial coordinate along the duct axis. The location

of the initial discontinuity (r = 1.3) is just ahead of the converging segment

that occupies the interval 1.6 ≤ r ≤ 2.6. The cross-section area function of
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the duct A(r) is given by

A(r) =















2, r < 1.6 ,

2 exp
[

− 1−cos(π(r−1.6))
2 ln 2

]

, 1.6 ≤ r ≤ 2.6 ,

1, r > 2.6 .

(68)

We assume that the two-dimensional duct is symmetric and its cen-

terline in the (x, y) plane is the x-axis, which coincides with the r-axis.

The upper contour of the duct (see Fig. 9.1(a)) is thus y(x) = 1
2A(x).

Due to the duct symmetry, the 2-D computation is conducted in the

upper half of the duct, embedding it in the (finite) rectangular domain

(x, y)∈ [−1.6, 9.4]×[0, 1], which is divided into a grid of 550×50 square cells

(∆x = ∆y = 0.02). The computation is performed by the operator-split 2-

D GRP scheme, using the Moving Boundary Tracking (MBT) method [2,

Chapters 7,8] to implement the duct wall contour. A rigid-wall boundary

condition is also imposed at the centerline (y = 0). On the left and right

sides of the computational rectangle we impose “non-reflecting” boundary

conditions designed to allow waves to pass through these endplanes (al-

most) undisturbed. The computation was performed in the time interval

[0, 9], with time steps adjusted (at each integration cycle) to have a nearly

constant CFL coefficient µCF L = 0.7.

The quasi 1-D computation was conducted in the spatial interval

[−1.6, 9.4], which was divided into a grid of 550 cells of equal length

∆r = 0.02. The cross-section area function is A(r) (given in (68)). The

boundary conditions at either endpoints were of the same “non-reflecting”

type as in the 2-D case. The computation was performed with time steps

adjusted to have the same µ
CF L

= 0.7 and in the same time interval [0, 9].

We now turn to the results of the 2-D computation, shown as a

time-sequence maps of isobars (p = const.) in Fig. 9.1. When the right-

propagating rarefaction wave enters the nozzle (Fig. 9.1 at t = 1.5) the

fluid in the nozzle is set in motion, gradually evolving into a supersonic

expansion flow in a diverging nozzle.a The time-sequence of isobars plots

(Fig. 9.1), shows that the entire flow field is progressively adjusting to the

presence of a diverging nozzle in its midst, in particular by forming an

upstream-facing oblique shock wave (marked by ∗ in Fig. 9.1). This shock

stabilizes near the duct “corner point”, where the flow exits from the nozzle

into the wider duct segment. In addition to pressure-matching, the oblique

aNote that in the initial state UL the flow is already supersonic since uL=−1.947cL, i.e.,
|uL| > cL.
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shock serves to align the velocity of the flow along the diverging nozzle con-

tour with the downstream duct wall. The interaction of the flow with the

centerline (y = 0) aligns the velocity vector with that boundary, producing

the familiar pattern of Mach reflection, where three shock waves intersect

at a “triple point” (see Fig. 9.1 at t = 9).

In Fig. 9.1 we compare the results of the 2-D and quasi 1-D computations

at the final time t = 9. First we show the 2-D isobars (Fig. 9.1(a)) as in the

last frame of Fig. 9.1. This is followed by profiles of density, pressure, and

flow Mach number, as functions of the centerline coordinate (Figs. 9.1(b)–

(d)). They are extracted from the 2-D and the quasi 1-D solutions. The 2-D

computation results are shown as dashed lines for the flow at the centerline,

and dash-dot lines for the flow at the duct wall; the quasi 1-D profiles are

shown as solid lines.

It is evident from the comparison (Fig. 9.1) that the two solutions are

in close agreement throughout the narrower duct segment (r > 2.6), but

disagree elsewhere. Also, it is observed that the “transmitted” part of the

rarefaction wave propagates almost “one-dimensionally” into the narrow

part of the duct (where it naturally agrees well with the corresponding quasi

1-D solution). Moreover, it is interesting to observe that at the entrance to

the nozzle (r = 2.6), the flow speed is sonic (M = 1 in Fig. 9.1(d)). The

nozzle flow at large times thus approaches a steady supersonic expansion

flow, commencing at a virtual sonic plane (“nozzle entrance”), which serves

to “match” the unsteady rarefaction wave on its right to the steady flow on

its left.b

In other words, upon passing through the nozzle, the CRW is “trun-

cated” into a “transmitted” part and a “reflected” part, the two being sep-

arated by a (nearly) steady flow through the diverging nozzle. With respect

to the incident CRW, the first part corresponds to the sector between the

leading characteristic dr
dt = cR and the “sonic characteristic” dr

dt = u+c = 0

(which is positioned at the nozzle entrance r = 2.6). The second part cor-

responds to the “tail” sector of the CRW, between the tail characteristic
dr
dt = uL +cL < 0 and an unspecified inner characteristic (it is “unspecified”

since here we focus our attention on the other parts of the flow field). The

region of “nearly steady” flow comprises the entire diverging nozzle and

extends to the left of the shock structure.

Now the source of disagreement between the quasi 1-D and the 2-D

bRecall that under the quasi 1-D approximation for steady compressible flow in a Laval
nozzle (21,24), a supersonic flow in the diverging part of the nozzle is possible only when
the fluid enters it (through a minimum-area “throat”) at sonic speed.
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solutions is evident. The fluid expands as it flows through the nozzle at

supersonic speed, and a full 2-D description of this flow involves an oblique

shock system at the nozzle exit (Fig. 9.1(a)), which is poorly approximated

by the cross-section-averaged quasi 1-D solution that relies on a normal

shock for matching the over-expanded supersonic nozzle flow to the pressure

ahead.

It is concluded that although quasi 1-D calculations may generally be

adequate as an engineering approximation, a verification by comparison to

the appropriate multi-dimensional solution is required in order to make

sure that the disagreement between the two remains within acceptable

bounds. Our test case analysis thus brings out the significance of full multi-

dimensional numerical solutions; the (simpler) quasi 1-D solutions may not

always serve as adequate approximations.
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t=0

t=1.5

t=3

t=4.5

t=6

t=7.5

t=9

U(r, 0)=UL U(r, 0)=UR

Fig. 10. Time sequence of CRW interaction with a converging segment.
Isobars map. The ∗ marks shock formation at duct wall.
(Duct width here is twice the true size, for better visibility).
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Fig. 11. CRW interaction with a converging segment; comparison
of 2-D and quasi 1-D results at time t = 9.
(a) Isobars of 2-D calculation.
(b)–(d) Quasi 1-D solution. Distribution of density, pressure

and flow Mach number (taken as positive).
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9.2. Shock diffraction by a square cavity

This test case is a genuinely two-dimensional interaction of a planar shock

wave with the solid boundaries of a square cavity, where the flow is governed

by a combination of diffraction and reflection processes, and the resulting

flow field is quite complex. The accuracy of the 2-D operator-split GRP

scheme [2, Chapter 7] is demonstrated by the degree of agreement between

simulations and experimental shadowgraphs (showing shock or contact dis-

continuities). For a detailed account of this study we refer the reader to.15

Here we consider the particular case of an incident shock propagating into

still air at Mach number Ms = 2.032, and interacting with a 50mm square

cavity. In the experiment the interaction was recorded at an equally-spaced

time sequence of shadowgraphs. For a comprehensive presentation of the

results of simulations and experiments we refer to the above cited refer-

ence. Here we consider just the shadowgraph, taken at t = 150µs from the

beginning of the interaction.

(a) Experiment

(b) Computation

Fig. 12. Diffraction of Ms = 2.032 shock with a square cavity at time t = 150µs .

The computational configuration was a rectangle of 220×110mm, which

was divided into a grid of 990×495 square cells (i.e., the cavity was resolved

by 225 × 225 cells). The integration time step was constant ∆t = 0.1µs,

which was verified to yield a CFL ratio µCF L of no more than 0.5. The air

was assumed to be a perfect gas with γ = 1.40 and molecular weight of

29.0. In order to increase the efficiency of computation, the E1 scheme was

used at every cell-interface where the solution to the associated Riemann

problem involved pressure jumps lower that 1% of the cell pressure (by
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monitoring the computations, it was found out that only about 1% of the

cell-interfaces required the full GRP solution, i.e., the E∞ scheme was rarely

used). The initial air temperature was 296K.

The results are shown in Fig. 9.2, where various waves are indicated

on the shadowgraph. The primary (incident) shock S1 has developed into

a Mach reflection pattern with a triple point, from which the Mach stem

extends normally to the wall, the reflected shock Sr1 curves around the

corner, and the slipline (contact discontinuity) C2 separates the Mach stem

from the reflected shock. Another major reflected shock is Sr2, which is due

to reflection from the cavity floor. The shock S2 is a secondary shock wave,

which developed due to over-expansion of the flow around the leading corner

(note that the shock at the nozzle exit in the former example is likewise due

to flow over-expansion), and the contact discontinuity surface C1 separates

the the flow through the secondary shock from the fluid that was swept by

the primary shock.

Thus, the major features of the shock–cavity interaction are well under-

stood in terms of classical fluid dynamics, and moreover, a good agreement

between the observed shadowgraph and the computed simulation is ob-

tained. This constitutes a validation of the GRP scheme by demonstrating

that it is capable of producing physically accurate simulations of complex

shock wave structures, and in particular, it validates the scheme extension

to two space dimensions using operator splitting.

Moreover, this physical validation may also be interpreted as leading to

interesting conclusions concerning an important mathematical property of

the scheme, namely its capability of producing unique entropy solutions. It

is well known that weak solutions (i.e., solutions involving shocks or other

discontinuities) to the hydrodynamic conservation laws of an inviscid fluid

require an additional constraint in order to render them unique and phys-

ically correct. This is the so-called “entropy condition”, the corresponding

solution being referred to as an “entropy solution” (see the discussion of

the entropy condition (16) in the case of a scalar equation). The fact that

a numerical code produces physically correct simulations of complex shock

wave structures supports the contention that its finite-difference scheme

converges to an entropy solution.

Similar studies are reported in17 for a shock wave propagating in a

branched duct, and in14 for the passage of a shock wave through a double-

bend duct. In all these studies a remarkably good agreement was obtained

between the observed (complex) shock structures and the corresponding

GRP simulations.
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9.3. Second reflection of a shock wave by a double wedge

Here we consider the reflection of a shock wave from a double wedge. The

shock is regularly reflected from the first wedge, and the incident–reflected

shock pattern is subsequently reflected from the second wedge. In our case

the surface of the second wedge is parallel to the incident shock front, as

shown in Fig. 9.3. The case considered here is an incident shock propagating

Incident Shock

Regularly reflected shock

θ x

y

Fig. 13. Regular shock reflection from first wedge.
Incident shock is parallel to second wedge surface.

into still air at a Mach number Mi = 1.488. The wedge angle is θ = 55◦. For

a more detailed account of this study, as well as additional cases of shock

Mach number and wedge angle, we refer to.7

Since the incident shock is regularly reflected by the wedge surface,

the flow is self-similar in a region extending to some finite distance from

the point of reflection. In this region the oblique reflected shock is planar.

Therefore, the second reflection is also self-similar within some finite region

about the second corner. The experimental and computed flow fields are

shown as isopycnics (lines of constant density) in Fig. 14 at a time where

the pattern due to the second reflection is still self-similar.

The computation domain was the rectangle [0 < x < 105] × [0 < y <
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(a) Experimental

T =    206.         DT =   0.781E-01     NCYC =    2787                         

(b) Computation

Fig. 14. Second reflection of Ms = 1.488 shock with a double wedge
at time t = 206.

141] (dimensions in mm), which was divided into 525 × 705 square cells.

The wedge started at the point (x, y) = (54.6, 0), and it was inclined to the

x-axis by an angle θ = 55◦. The computation was performed by the Moving

Boundary Tracking (MBT) method [2, Chapter 8], where the wedge served

as a stationary rigid-wall boundary. A rigid-wall boundary condition was

also imposed at all other boundaries of the computation domain, except

the edge x = 0 where an inflow boundary condition corresponding to the

incident shock was imposed. The initial position of the shock was x =

53.6, and the fluid state ahead of the shock was [ρ, p, u]o = [1.20, 0.0985, 0]

(in mks units). The fluid was taken as an ideal gas with γ = 1.4. The

integration time step was calculated at each cycle so as to have a CFL ratio

of µCF L = 0.7.

Consider the experimental isopycnics given in Fig. 14(a), and the cor-

responding computational map in Fig. 14(b). Since the incident shock has

already been reflected from the second wedge (which is simply the shock

tube endwall), it is seen as a planar shock segment parallel to the end-

wall. The regularly-reflected curved shock is clearly visible; it is joined to

the latter by a short (oblique) shock segment, whose endpoints are in fact

“triple points” analogous to the triple point in a Mach reflection. Each one
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of these points marks the intersection of three shocks and a slip surface, as

is clearly visible on both the experimental and computational maps. The

third shock is curved, and is apparently produced by the “secondary” re-

flection at the wedge corner, which commences when the regular reflection

point (see schematic description in Fig. 9.3) arrives at that corner. The

agreement between the experimental and computed wave fronts and isopy-

cnic lines is very good. The fact that this complex shock pattern is well

captured by the GRP/MBT scheme, may be regarded as a validation of

the scheme for shock reflection phenomena.

9.4. Lagrange–Euler Scheme for a Gas–Grains Mixture

Here we consider the flow of a heterogeneous mixture comprising (solid)

elastic grains immersed in an inviscid compressible fluid (gas). The motion

of the grains is coupled to the gas flow through the pressure at the gas–grain

interface, and the grains may also interact with each other by collision. We

treat the fluid dynamics of this mixture by an original method named LEGS

(Lagrange–Euler Granular Simulation), which is in fact a reduced version

of the classical CEL (Coupled Euler Lagrange) method due to Noh.22 The

key idea of CEL is to employ a Eulerian description for the gas flow, while

handling the (deformable) immersed solid via Lagrangian coordinates. The

coupling is achieved by taking the Lagrange boundaries as “moving bound-

ary surfaces” with respect to the gas, then in turn using the computed gas

pressure as the “driving force” acting on the Lagrange boundaries. In the

following we provide a brief outline of the two-dimensional LEGS scheme,

referring to31 for a more detailed description.

A typical flow setup may consist of several tens or hundreds of grains

“floating” in a Cartesian grid, as shown schematically in Fig. 15(a). The

grains are assumed to be rectangular, with sides parallel to the Carte-

sian axes. Thus, the complexity of the Lagrange–Euler coupling algo-

rithm is drastically reduced, enabling the handling of a large number of

grains. The fluid dynamical equations are integrated using the operator-

split GRP finite-difference scheme, where the integration is performed al-

ternately in the x, y directions. In the treatment of cells intersected by

moving grain boundaries we take account of the evolving cell geometry, as

in the MBT/GRP scheme [2, Chapter 8]. The grain motion is likewise split

into a one-dimensional “x-phase” and a one-dimensional “y-phase”, which

are performed with the corresponding operator-split integration phases of

the Euler equations for the gas. The scheme for the grains is thus not
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(a) Grain clusters in an Euler grid
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(b) Repulsive force for pair DE

Fig. 15. Haloed rectangular grains embedded in an Euler grid.

truly two-dimensional; however, it is deemed a reasonable approximation

in flows involving a relatively small (“elastic”) deformation of the grains.

The grains may also exchange momentum by (elastic) collisions. To that

end, each grain is surrounded by a narrow “potential halo” (see Fig. 15(a)),

where a strong intergranular repulsive potential is invoked whenever grain

halos intersect; the potential energy increases sharply as function of the

intersection area. This assures that the grains themselves (the gray area in

Fig. 9.4) never intersect. The repulsive force is applied per colliding grain

pair, and is directed along the line joining the two centers. The force com-

ponents are represented by a uniform pressure on the “colliding” sides of

the grains (two sides per grain); this pressure is added to the gas pressure

acting on the respective sides. Referring to the schematic configuration in

Fig. 15(a), we see several clusters of grains, such as AEDIH, whose halos

intersect. Take for instance grain E; it interacts with grains A and D. So its

total intergranular force will be the (vector) sum of the repulsive forces due

to the pairs AE and DE. In Fig. 15(b) we show graphically the repulsive

force due to the DE pairwise interaction, and the grain sides to which its

components are applied as distributed pressures. We point out that, un-

like the schematic dimensions in Fig. 15(a), typical grain side lengths are

L = 10×a and typical halos are h = a, where a is the size of an Euler mesh

cell.

A physical validation of LEGS was made possible by an experiment due

to Rogue et al.,23 where a granular bed of 2mm Nylon spheres is lifted up

(and dispersed) by a shock wave in air. The experimental setup consists
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of a vertical shock tube (Fig. 16(a)), and the granular bed is made by

loosely piling the nylon spheres on a thin-wire screen up to a thickness of

20mm. The upper end of the tube is open to the atmosphere. An upward-

propagating shock wave is generated well below the bed by a diaphragm

rupture, releasing high-pressure air (that part of the shock tube is not shown

in Fig. 16(a)). When the shock wave arrives at the bed it is simultaneously

reflected and transmitted while lifting and dispersing the grains. The gas

pressure time history was recorded by two gauges: one located 110mm below

the screen, the other 43mm above the screen.

lower gauge

in
ci

de
nt

 s
ho

ck

grain bed

x

y

upper gauge

(a) Vertical shock tube
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lower gauge − experiment
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(b) Pressure gauge histories

Fig. 16. Interaction of a granular bed with a Ms = 1.30 air shock.
Bed thickness is 20mm; loosely-piled 20mm nylon spheres.

Turning to the simulation, it is conducted as follows. The computation

domain is the rectangle [0 < x < 600] × [0 < y < 20] which is divided into

a grid of 2400× 80 square cells (dimensions are in mm). The bottom of the

granular bed (the screen in the experiment) is located at x = 200. For the

initial grain array we divided the square [200 < x < 220] × [0 < y < 20]

into 8× 8 square “unit cells” of dimensions 2.5× 2.5. A square nylon grain

(density 1100, sound speed 1000, in mks units) of size 2 × 2 (and halo

width h = 0.1mm) was placed in the middle of each unit cell, so that the

grains occupied a fraction of 0.64 of the (2-D) bed volume, compared to

a 0.65 fraction estimated for the actual bed by Rogue.23 Now, in order to

somehow account for the asymmetry of the loosely packed bed of spherical



May 15, 2008 22:41 WSPC - Proceedings Trim Size: 9in x 6in ben-artzi

47

grains, we varied randomly the dimensions of each grain by about ±3%,

while retaining its correct mass (area). The incident shock was initially

placed 1.25mm below the bed, and its Mach number was Mi = 1.30. The

state ahead of the shock was [ρ, p, u]o = [1.29, 0.1, 0] in mks units, and the

air was assumed to be an ideal gas with γ = 1.4.

It is evident from Fig. 9.4 that there is a very good agreement between

the measured and computed pressure history at the lower gauge. The agree-

ment for the upper gauge is not quite as good, probably since it is more

dependent on an accurate simulation of the bed spreading, and the result-

ing influence on the air drag. The fact that the computed pressure is higher

than the measured one seems to indicate that the computed drag effects

are somewhat undervalued.

We point out that this method is aimed at replacing existing multi-

phase methods,23 which do not achieve any better agreement in this case.

Moreover, the multi-phase modeling requires additional information: a

drag coefficient for the gas–grain interaction as function of the relative

gas–grain flow, and a quite artificial “intergranular stress” (as function of

locally-averaged density of grain cluster) in order to account for grain–grain

collisions. At present, no better mathematical modeling of heterogeneous

gas–grain flow is known. In view of all that, the LEGS approach to the con-

sidered class of flows seems quite promising; it is currently being extended

to applications involving granular combustion.
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