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Generalized Robust Regression for Jointly

Sparse Subspace Learning

Zhihui Lai , Dongmei Mo , Jiajun Wen, Linlin Shen, and Wai Keung Wong

Abstract— Ridge regression is widely used in multiple variable
data analysis. However, in very high-dimensional cases such
as image feature extraction and recognition, conventional ridge
regression or its extensions have the small-class problem, that
is, the number of the projections obtained by ridge regression is
limited by the number of the classes. In this paper, we proposed
a novel method called generalized robust regression (GRR) for
jointly sparse subspace learning which can address the problem.
GRR not only imposes L2,1-norm penalty on both loss function
and regularization term to guarantee the joint sparsity and the
robustness to outliers for effective feature selection, but also
utilizes L2,1-norm as the measurement to take the intrinsic local
geometric structure of the data into consideration to improve the
performance. Moreover, by incorporating the elastic factor on the
loss function, GRR can enhance the robustness to obtain more
projections for feature selection or classification. To obtain the
optimal solution of GRR, an iterative algorithm was proposed
and the convergence was also proved. Experiments on six well-
known data sets demonstrate the merits of the proposed method.
The result indicates that GRR is a robust and efficient regression
method for face recognition.

Index Terms— Ridge regression, face recognition, feature selec-
tion, subspace learning, small-class problem.

I. INTRODUCTION

A
S THE widely-used statistical analysis technique, Least

Squares Regression (LSR) [1] has been utilized in many

practical applications, such as face recognition [2], video-

based gait recognition [3]. However, in the multicollinearity
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problem, the estimate of LSR is unbiased, this would possibly

make the result far from the true value when their variances

are large [4]. The ridge regression (RR) is a regularized least

square method which adds a bias term in the conventional

LSR to reduce the standard errors to improve the perfor-

mance of regression estimates [4]. Many extensions based on

LSR or RR are applied to dimensionality reduction and feature

extraction.

The classical dimensionality reduction method is Principle

Component Analysis (PCA) which solves the eigen decompo-

sition problem to obtain the optimal vectors for dimensionality

reduction [5]. Similar to PCA, Linear Discriminant Analy-

sis (LDA) is another famous dimensionality reduction method.

Different from PCA, LDA is a supervised method which uses

label information in the computational procedure to learn

an optimal projection matrix. The projections learned from

LDA not only maximize the between-class distance but also

minimize the within-class distance in the feature space so as to

improve the performance for pattern recognition [6]. Though

PCA and LDA are the famous dimensionality reduction tech-

niques, they still have some disadvantages. Firstly, they just

take the global structure of the data set into consideration and

ignore the local geometric information. This would affect the

performance as the locality is of fundamental importance in

dimensionality reduction or feature selection [7]. Secondly,

as the L2-norm based methods, traditional PCA and LDA are

sensitive to outliers because the squared residual in L2-norm

would lead to the undesirable tendency of over-emphasizing

the noise and outliers in computing the projection matrix.

In addition, for LDA or the LDA-based methods, the number

of the projections is limited by the between-class scatter

matrix (i.e. the Small Sample Size (SSS) problem) [8]. This

limitation would degrade the performance in feature extraction

and classification.

To alleviate the first problem mentioned above, many local-

ity (i.e. neighborhood preserving property) based methods

were proposed to promote the effectiveness in computer vision

and pattern recognition [9]. Among them, the representative

nonlinear dimensionality reduction algorithms include Locally

Linear Embedding (LLE) [10], Laplacian Eigenmap [11],

Isomap [12] and so on. The well-known liner version of

locality based methods include Locality Preserving Projec-

tion (LPP) [13], Laplacianfaces [14] and linear versions of

LLE (i.e. Neighborhood Preserving Projection (NPP) [15],

Neighborhood Preserving Embedding (NPE) [16], etc.) and

so on.

For the second problem mentioned above, since the methods
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using L2-norm on the loss function are sensitive to outliers,

an alternative resolution is to use L1-norm to take place of

L2-norm and lots of experimental results have proved that

L1-norm is more robust to outliers than L2-norm [17], [18].

Some L1-norm methods based on PCA have been proposed

to enhance the robustness to outliers for face recognition. One

of the popular methods is Robust Principal Component Analy-

sis (RPCA) [19] which can recover both low-rank and sparse

components by solving Principal Component Pursuit problem

using an augmented Lagrange multiplier algorithm [20]. Other

methods include L1-PCA [21], R1-PCA [22], PCA-L1 [23],

etc. The proposed L1-PCA and R1-PCA are complicated

and computationally expensive while PCA-L1 is fast and

robust [6]. Motivated by R1-PCA, a LDA-based method

called Linear Discriminant Analysis using rotational invariant

L1-norm (LDA-R1) [24] has been proposed to improve the

robustness for dimensionality reduction and feature selection.

Motivated by the PCA-L1, another LDA-based method called

Linear Discriminant Analysis based on L1-norm maximiza-

tion (LDA-L1) [6] has been proposed to overcome the draw-

back in LDA-R1 that it takes too much time to achieve

convergence in the high dimension case [6].

Recently, sparse learning methods have attracted much

attention in image processing, face recognition [25], [26] and

pattern recognition [27]. The L2,1-norm is recently becoming

popular because it is an efficient way to obtain the jointly

sparse projection for discriminative feature selection or extrac-

tion. By imposing joint L2,1-norm minimization on both the

loss function and the regularization term, Nie et al. proposed a

method called efficient and Robust Feature Selection via joint

L2,1-norms minimization (RFS) [28] for jointly sparse feature

selection. Motivated by [28], the L2,1-norm minimization is

also extended to the study of sparse regression, subspace learn-

ing [29], [30]. Another jointly sparse method called L2,1-norm

regularized discriminative feature selection for unsupervised

learning (UDFS) [31] has also been proposed to improve

the performance for unsupervised learning. Though many

L2,1-norm based methods have been proposed to deal with

different cases, their theoretical relationship with the sparse

regression and subspace learning is still unclear. In addition,

there are still some drawbacks in the current L2,1-norm

based methods. For example, RFS utilizes the L2,1-norm on

both loss function and regularization term to obtain joint

sparsity for feature selection. However, it just focuses on

global structure of the data set and meanwhile ignores the

locality of the data. Moreover, the small-class problem in RFS

remains unsolved. For some other methods, though they take

the local geometric structure of the data into consideration,

the learned locality preserving projections are not robust to

outliers as the conventional LPP based terms incorporate

the L2-norm as the measurement on the objective function.

Besides, the robustness of these methods is not guaranteed in

different cases, especially when the data set is corrupted by

strong noise. Therefore, a more robust and efficient method is

necessary to be proposed to improve the performance for face

recognition or other applications.

In this paper we propose a novel method which integrates

the properties of LPP, RR and L2,1-norm to alleviate the

potential problems in RR and its extensions. This method is

capable to address the small-class problem in the regression-

based methods and simultaneously guarantee the robustness

and effectiveness for face recognition. The main contributions

of this work are described as below:

1. Unlike the ridge regression based methods, the proposed

method can break out the small-class problem that the

number of the projections is limited by the number of

class. Thus, our method can obtain more projections to

perform feature extraction and get higher accuracy than

previous methods.

2. The proposed method not only imposes the joint

L2,1-norm minimization on both the locality term and

the loss function to guarantee the robustness to out-

liers, but also use L2,1-norm as the penalty on the

regularization term to ensure the joint sparsity of the

learned projection for discriminative feature selection.

It makes the proposed model differ from all the existing

LPP-based methods, ridge-regression based meth-

ods or the previous L2,1-norm based methods.

3. The proposed method incorporates the elastic factor to

the loss function to avoid over-fitting problem and thus

can further guarantee the model’s stability. Based on

the compact model, the proposed method is able to

enhance the robustness while dealing with complicated

cases, especially when the data set is corrupted by strong

noise. Besides, the convergence of the proposed iterative

algorithm is also proved.

The rest of the paper is organized as follows. We first

present some notations and then propose the novel method

and its corresponding iterative algorithm in Section II.

Section III shows theoretical analyses, including the conver-

gence of the proposed method and its computational com-

plexity. In Section IV, we perform a series of experiments to

evaluate the performance of the proposed method and then

draw a conclusion in Section V.

II. GENERALIZED ROBUST REGRESSION

In this section, a model called Generalized Robust Regres-

sion (GRR) for jointly sparse subspace learning will be pre-

sented and the alternatively iterative algorithm is designed to

solve the optimization problem.

A. Notations

Scalars are denoted as lowercase italic letters, i.e. i , j , n,

d , c, m, etc. while vectors are represented as bold lowercase

italic letters, i.e. x, y, v, etc.. Matrices are defined as bold

uppercase italic letters, i.e. X , Y , A, B, etc.

Let X ∈ Rn×d denotes the training sample matrix, where

n is the number of total training samples and d denotes

the feature dimension of each sample, each row of X is a

sample xi . Let Y ∈ Rn×c denotes the label matrix, where

c is the total number of classes. The matrix Y is defined as

a binary label matrix with Y i j = 1 while xi belongs to the

j -th class; Y i j = 0, otherwise.

B. The Motivations and the Novel Definitions

There are some obvious disadvantages in Least square

regression (LSR) [1] and Ridge Regression (RR) [4].
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First, they have small-class problem. That is, when the number

of the class in the training data is too small, only c projections

can be obtained to perform feature extraction and selection.

Second, since LSR and RR are the L2-norm based methods,

the square operation on the objective function will lead to

sensitivity to outliers. Third, since the learned projection

from traditional ridge regression is not sparse, the projections

learned from LSR or RR have no sparse property for feature

selection. Thus, a more robust loss function is demanded

for feature selection. Nie et al. proposed a method called

Efficient and Robust Feature Selection via joint L2,1-norms

minimization (RFS) [28]. The objective function of RFS is

min
P

‖X P − Y‖2,1 + γ ‖P‖2,1 (1)

By utilizing L2,1-norm on both loss function and regular-

ization term, RFS is able to release the drawback in ridge

regression for its sensitivity to outliers. In addition, the regu-

larization term in RFS guarantees the joint sparsity to improve

the performance for feature selection and face recognition.

But there are still some drawbacks in RFS. Firstly, it still

has the small-class problem. Secondly, since the projections

learned by RFS are just the liner combinations of the global

structure of the data points, the local geometry of the data

set is ignored. However, lots of experimental results indicate

that preserving the locality tends to improve the performance

in feature extraction and classification [14]. Therefore, new

technique is needed to deal with these problems.

In this paper we propose a generalized robust regression

method for jointly sparse subspace learning. This method not

only inherits the advantages in RFS, but also integrates the

property of LPP, RR to further improve the performance for

feature selection. Namely, it utilizes L2,1-norm on the loss

function to minimize the squared operation errors and simul-

taneously use L2,1-norm minimization on the regularization

term to guarantee the joint sparsity for discriminative feature

selection. Moreover, it releases the small-class problem and

at the same time takes the local geometric structure into

consideration. It also imposes the L2,1-norm penalty on the

locality preserving projection term to ensure the robustness to

outliers. In addition, to improve the robustness of the proposed

method, the elastic factor is incorporated to the loss function

for jointly sparse subspace learning.

C. The Objective Function of GRR

The objective function of GRR is to minimize the L2,1-norm

based optimization problem with some constraints:

min
A,B,h

∑

i

∑

j

∥

∥

∥

xi B AT − x j B AT
∥

∥

∥

2
W i j + β ‖B‖2,1

+ γ
∥

∥

∥

X B AT + 1hT − Y

∥

∥

∥

2,1
+ λ ‖h‖2

2

s.t . AT A = I (2)

where B ∈ Rd×k is the projection matrix, A ∈ Rc×k is an

orthogonal matrix, d and k is the number of matrix size while

c is the number of class. W ∈ Rn×n is the similarity matrix as

defined in LPP. 1 ∈ Rn×1 is the vector with all elements equal-

ing to 1. The vector h ∈ Rc×1 is the bias term and the three

coefficients β, γ and λ are parameters to balance different

terms. Note that the bias term h was used in some previous

semi-supervised algorithms, i.e. LapRLS/L [32], FME [33],

etc.. The proposed method extends this bias term as the

elastic factor in the generalized regression to improve the

robustness for face recognition, especially when the data points

are corrupted by strong noise.

In (2), the first part
∑

i

∑

j

∥

∥xi B AT − x j B AT
∥

∥

2
W i j aims

at locality preserving property [13]. Instead of computing the

Euclidean distance between each training sample xi (i =
1, 2, . . . , n) and x j ( j = 1, 2, . . . , n) which is sensitive to out-

lier while preserving local information, the proposed method

uses L2,1-norm as the measurement to enhance robustness

on the locality preserving ability. By inheriting the locality

preserving property, the proposed GRR not only preserves the

intrinsic local geometric structure of the data [13], but also

guarantees the robustness to outliers.

The second part in (2) is the regularization term β ‖B‖2,1,

which guarantees that the learned projection matrix B is

jointly sparse for discriminative feature selection [28], [31].

The joint sparsity ensures that most elements of the learned

projections are zero and the important features are selected for

feature extraction.

In (2), the third part γ
∥

∥X B AT + 1hT − Y
∥

∥

2,1
is the loss

function as in classical RR and the fourth part λ ‖h‖2
2 serves

as the bias term to guarantee the stability of the whole model.

Comparing with RR, (2) using L2,1-norm minimization on the

loss function makes the model more robust to outliers [28].

Another potential reason of the robustness of GRR is that the

elastic factor h on the loss function can avoid the overfitting

problem in practice. On the loss function of RFS, the matrix P

must always be fitting for Y so as to ensure that the error

between the matrix X P and the label matrix Y can be mini-

mized, which would lead to the potential risk of the overfitting

problem. However, GRR imposes the elastic factor h as the

supplement term on the loss function and the matrix X B AT

is not strictly needed to fit the matrix Y so as to release

the overfitting problem to guarantee the strong generalization

ability for feature selection or extraction, especially in the

case when the images are corrupted by block subtraction or

noise.

Moreover, by using the matrix B AT on the loss function

instead of the P in (1), (2) is designed to address the small-

class problem in the LSR, RR and RFS. That is, the size

of P is d × c while the size of B, A is d × k and c × k

respectively, then the size of B AT is d × c (i.e. B AT has

the same size with P). In LSR, RR and RFS, the projection

matrix is P and the number of the learned projections is c

(i.e. the number of the class). However, in GRR, the learned

projection matrix is B with the size d × k and k can be set

as any integer to obtain enough projections to perform face

recognition. Therefore, the number of the projection in the

proposed GRR is not limited by the number of class and the

small-class problem in RR can be addressed.

D. The Optimal Solution

According to the definition of the L2,1-norm on projection

matrix B, a diagonal matrix D̃ with the i -th diagonal element
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can be defined as [28]:

D̃ii = 1

2
∥

∥Bi
∥

∥

2

(3)

where Bi denotes the i -th row of matrix B. Thus the second

part in (2) is rewritten as

‖B‖2,1 = tr(BT D̃ B) (4)

Similarly, the third part in (2) is rewritten as
∥

∥

∥

X B AT + 1hT − Y

∥

∥

∥

2,1

= tr((X B AT + 1hT − Y)T D̂(X B AT + 1hT − Y)) (5)

where D̂ is also a diagonal matrix with the i -th diagonal

element as

D̂ii = 1

2
∥

∥(X B AT + 1hT − Y)i
∥

∥

2

(6)

For the first part in (2), since we change the square of

Euclidean norm to be the L2,1-norm, thus in order to utilize

the property of LPP, we reformulate it as follow:

∑

i

∑

j

∥

∥

∥

xi B AT − x j B AT
∥

∥

∥

2
W i j

=
∑

i

∑

j

∥

∥xi B AT − x j B AT
∥

∥

2

2
∥

∥xi B AT − x j B AT
∥

∥

2

W i j

=
∑

i

∑

j

∥

∥

∥

xi B AT − x j B AT
∥

∥

∥

2

2
W i j /Gi j (7)

where Gi j =
∥

∥xi B AT − x j B AT
∥

∥

2
. Thus, we have

∑

i

∑

j

∥

∥

∥

xi B AT − x j B AT
∥

∥

∥

2
W i j

= tr(BT XT (D − W∅G)X B) (8)

where ∅ is the element-wise deviation of matrices and D is

a diagonal matrix and its elements are row (or column) sum

of W∅G, namely, Dii =
∑

i

(W∅G)i j .

From (4), (5) and (8), the objective function (2) is equal to

the following function:

min
A,B,h

[tr(BT XT (D − W∅G)X B) + βtr(BT D̃B)

+ γ tr((X B AT + 1hT − Y)T D̂(X B AT + 1hT − Y))

+ λtr(hT h)]
s.t . AT A = I (9)

In order to obtain the local optimal solution of GRR, we fix

the two variables A, B and set the derivatives of (9) with

respect to h equaling to zero, then we have

h = 1

s
(Y T D̂ 1− ABT XT D̂1) (10)

where s = 1T D̂1 + λI .

Similarly, for fixed A and h, we set the derivatives of (9)

with respect to B equaling to zero, then (9) is minimized by

B = γ [β D̃+XT ((D − W∅G)+γ D̂)X]−1 XT D̂(Y −1hT )A

(11)

In (9), when the two variables B and h are fixed, the fol-

lowing maximization problem about A provides the optimal

solution.

max
A

AT (h1T − Y T ) D̂X B

s.t . AT A = I (12)

The optimal solution in (12) can be obtained from the follow-

ing theorem:

Theorem 1 [5]: Let S and Z be c × k matrices and Z has

rank k. Given the following optimization problem

Ŝ = arg max
S

Tr(ST Z) s.t . ST S = Ik

Suppose the SVD of Z is Z = Ŭ D̆V̆
T

, then Ŝ = Ŭ V̆
T

.

From Theorem 1, we can know that for given B and h

in (12), suppose the SVD of (h1T − Y T ) D̂X B is (h1T −
Y T ) D̂X B = U D̄V

T
, then

A = UV T (13)

To obtain the local optimal solution of the objective

function, details of the iterative algorithm are represented

in Table I. The convergence of the proposed algorithm will

be proved in the next section.

E. Comparison and Discussion

From the above subsections, we can conclude the main

differences between GRR and previous methods. Comparing

with the conventional ridge regression or the ridge-regression-

based methods, the proposed method can easily address the

small-class problem to obtain enough projections to per-

form feature selection and extraction. Yang et al. proposed

UDFS [31] by imposing the L2,1-norm minimization on the

regularization term to obtain discriminative feature subset

from the whole feature set for unsupervised learning [31].

Nie et al. proposed RFS [28] by imposing L2,1-norm min-

imization on both the loss function and the regularization

term to guarantee the joint feature selection function and the

robustness to outliers. All these previous L2,1-norm based

methods have obtained the favorable performance in some

degree. However, most of these methods do not take the local

geometric structure into consideration for feature selection.

In contrast, the proposed method not only uses the joint

L2,1-norm minimization on loss function and regularization

term as the basic measurement to guarantee the joint sparsity

and robustness, but also takes the local geometric structure

of the intrinsic data into consideration by incorporating the

locality preserving property on the objective function. Addi-

tionally, by replacing the L2-norm on the locality term with the

L2,1-norm, GRR is more robust to outliers than the conven-

tional LPP-based methods. Some other LPP-based methods

replace the L2-norm with L1-norm on the objective func-

tion and also obtain good performance in face recognition.

Both LPP-L1 [7] and DLPP-L1 [34] use L1-norm instead of

L2-norm in the locality term based on LPP [13] and DLPP [35]

respectively. Low-Rank Preserving Projections (LRPP) utilizes

L2,1-norm as a sparse constraint on the noise matrix to
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TABLE I

GRR ALGORITHM

perform dimensionality reduction [36]. Comparing with these

methods, the advantage of GRR is that it utilizes L2,1-norm

minimization on both loss function and regularization term to

guarantee the joint feature selection function and at the same

time enhance the robustness to outliers. Another contribution

of GRR is that it incorporates the elastic factor to the loss

function to improve the robustness when the data sets are

corrupted by noise or outliers.

In short, GRR is a novel and generalized robust regression

method for jointly sparse subspace learning. By incorporating

the L2,1-norm penalty on the loss function, regularization term

and the locality term, GRR can easily obtain the joint sparsity

for discriminative feature selection and meanwhile improve

the robustness to outliers. Additionally, GRR also addresses

the small-class problem in the conventional regression-based

methods. Moreover, GRR improves the robustness for jointly

sparse subspace learning by incorporating the elastic factor

on the loss function to decrease the negative influence when

the data is corrupted by strong noise. Experiments will be

presented in section IV to show these advantages.

III. THEORETICAL ANALYSIS

In this section, we will further analyze the convergence of

the proposed algorithm and its computational complexity.

A. The Convergence

We begin with the following Lemmas to verify the conver-

gences of the proposed iterative algorithm in Table I:

Lemma 1 [28]: For any two non-zero constants a and b,

we have the following inequality:

√
a − a

2
√

b
≤

√
b − b

2
√

b
(14)

Lemma 2 [28]: Denoted V as any nonzero matrix, V ∈ R,

the following inequality holds:

∑

i

||vi
t ||2 −

∑

i

||vi
t ||22

2||vi
t−1||2

≤
∑

i

||vi
t−1||2 −

∑

i

||vi
t−1||22

2||vi
t−1||2

(15)

where v
i
t , v

i
t−1 denote the i -th row of matrix V t and V t−1.

With the above Lemma 1 and Lemma 2, we have the

following theorem:

Theorem 2: Given all the parameters on the objective

function except B, h, A, G, D, D̃, D̂ the iterative approach

shown in Table I will monotonically decrease the objective

function value of (2) in each iteration and provide a local

optimal solution of the objective function.

Proof: For simplicity, we denote the objective function

of (9) as F(B, h, A, G, D) = F(B, h, A, G, D, D̃, D̂).

Suppose for the (t − 1)-th iteration, Bt−1, ht−1, At−1, Gt−1,

Dt−1, D̃t−1 and D̂t−1 were obtained. Then we have the

following inequality from (10) and (11):

F(Bt , ht , At−1, Gt−1, Dt−1, D̃t−1, D̂t−1)

≤ F(Bt−1, ht−1, At−1, Gt−1, Dt−1, D̃t−1, D̂t−1) (16)
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For At , as its optimal value comes from the SVD decomposi-

tion value of (ht 1
T −Y T ) D̂t−1 X Bt , that will further decrease

the objective function, we have

F(Bt , ht , At , Gt−1, Dt−1, D̃t−1, D̂t−1)

≤ F(Bt−1, ht−1, At−1, Gt−1, Dt−1, D̃t−1, D̂t−1) (17)

For Gt , Dt , since (Gi j )t =
∥

∥xi Bt AT
t − x j Bt AT

t

∥

∥

2
, (Dii )t =

∑

i

((W∅G)i j )t and Bt , At were both obtained, then we further

have the following inequality:

F(Bt , ht , At , Gt , Dt , D̃t−1, D̂t−1)

≤ F(Bt−1, ht−1, At−1, Gt−1, Dt−1, D̃t−1, D̂t−1) (18)

For simplicity, let Q = X B AT + 1hT − Y in (9), it goes

tr(BT XT (D − W∅G)X B) + βtr(BT D̃B)

+ γ tr((X B AT + 1hT − Y)T D̂(X B AT + 1hT − Y ))

+ λtr(hT h)

= tr(BT XT (D − W∅G)X B) + βtr(BT D̃ B)

+ γ tr( QT D̂ Q) + λtr(hT h) (19)

Since we have obtained Bt , ht , At , Gt , Dt for (19), then the

following inequality holds

tr(BT
t XT (Dt − W∅Gt)X Bt ) + βtr(BT

t D̃t−1 Bt )

+ γ tr( QT
t D̂t−1 Qt ) + λtr(hT

t ht )

≤ tr(BT
t−1 XT (Dt−1 − W∅Gt−1)X Bt−1)

+ βtr(BT
t−1 D̃t−1 Bt−1)

+ γ tr( QT
t−1 D̂t−1 Qt−1) + λtr(hT

t−1ht−1) (20)

This is

tr(BT
t XT (Dt − W∅Gt)X Bt ) + λtr(hT

t ht )

+ β
∑

i

∥

∥Bi
t

∥

∥

2

2

2
∥

∥Bi
t−1

∥

∥

2

+ γ
∑

i

∥

∥ Qi
t

∥

∥

2

2

2
∥

∥ Qi
t−1

∥

∥

2

≤ tr(BT
t−1 XT (Dt−1 − W∅Gt−1)X Bt−1) + λtr(hT

t−1ht−1)

+ β
∑

i

∥

∥Bi
t−1

∥

∥

2

2

2
∥

∥Bi
t−1

∥

∥

2

+ γ
∑

i

∥

∥ Qi
t−1

∥

∥

2

2

2
∥

∥ Qi
t−1

∥

∥

2

(21)

Then, we have

tr(BT
t XT (Dt − W∅Gt)X Bt ) + λtr(hT

t ht )

+ β
∑

i

||Bi
t ||2 − β(

∑

i

||Bi
t ||2 −

∑

i

||Bi
t ||22

2||Bi
t−1||2

)

+ γ
∑

i

|| Qi
t ||2 − γ (

∑

i

|| Qi
t ||2 −

∑

i

|| Qi
t ||22

2|| Qi
t−1||2

)

≤ tr(BT
t−1 XT (Dt−1 − W∅Gt−1)X Bt−1) + λtr(hT

t−1ht−1)

+ β
∑

i

||Bi
t−1||2 − β(

∑

i

||Bi
t−1||2 −

∑

i

||Bi
t−1||22

2||Bi
t−1||2

)

+ γ
∑

i

|| Qi
t−1||2 − γ (

∑

i

|| Qi
t−1||2 −

∑

i

|| Qi
t−1||22

2|| Qi
t−1||2

)

(22)

From Lemma 2, we further have

tr(BT
t XT (Dt − W∅Gt)X Bt ) + λtr(hT

t ht )

+ β
∑

i

||Bi
t ||2 + γ

∑

i

|| Qi
t ||2

≤ tr(BT
t−1 XT (Dt−1 − W∅Gt−1)X Bt−1) + λtr(hT

t−1ht−1)

+ β
∑

i

||Bi
t−1||2 + γ

∑

i

|| Qi
t−1||2 (23)

With the definition of L2,1-norm, we finally arrive at

F(Bt , ht , At , Gt , Dt , D̃t , D̂t )

≤ F(Bt−1, ht−1, At−1, Gt−1, Dt−1, D̃t−1, D̂t−1) (24)

It is easy to draw the conclusion from (24) that accord-

ing to the updating rule in Table I, the proposed objective

function monotonically decreases and the corresponding iter-

ative algorithm will finally converges to the local optimal

solution. �

B. Computational Complexity Analysis

For simplicity, we suppose that the dimension of the

training data X is d . The proposed algorithm aims to

obtain the local optimal projection matrix B for further

feature selection or classification. During the computing

procedure, the algorithm needs to compute seven variables

(i.e. B, h, A, G, D, D̃, D̂). Computing h in (10) is up to

O(4d2) and B in (11) is up to O(d3). The matrix A is obtained

from the SVD of (h1T − Y T ) D̂X B, then its computational

complexity is also O(d3) at most. Computing the variable G

costs O(nK (k2 + kd)), where K denotes the number of

neighbors. The computational complexity of the variable D,

D̂ is the same, i.e. O(K d) while computing D̃ needs

O(nd K + nK 2c + nc). To sum up, the total computational

complexity of the proposed algorithm is O(T d3) by ignoring

some constants since these constant are small compared with

the dimension of the training data, where T is the iteration

steps.
IV. EXPERIMENTS

In this section, a set of experiments are presented to

evaluate the performance of the proposed Generalized Robust

Regression for jointly sparse subspace learning (GRR) for

recognition. For comparison, several different methods were

also tested on the six databases. The methods include the

dimensionality reduction methods, i.e. Sparse Principal Com-

ponent Analysis (SPCA) [5], Locality Preserving Projec-

tions (LPP) [13], the traditional Ridge regression (RR) [4],

the L1-norm based dimensionality reduction methods,

i.e. Principal Component Analysis based on L1-norm maxi-

mization (PCA-L1) [23], Linear Discriminant Analysis based

on L1-norm maximization (LDA-L1) [6] and Outlier-resisting

graph embedding (LPP-L1) [7], the L2,1-norm regulariza-

tion method (i.e. L2,1-norm regularized discriminative feature

selection for unsupervised learning (UDFS) [31]), the non-

linear kernel-based method (KPCA) and the classical sparse

learning method (i.e. robust face recognition via sparse repre-

sentation (SRC-L1LS) [25]).

The Yale face database was used to evaluate the perfor-

mance of GRR while there are variations in facial expression
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Fig. 1. Sample images of one person on FERET face database.

and lighting conditions. The AR database was used to explore

the robustness of GRR in frontal views of faces with vari-

ational facial expressions, illumination and occlusions. The

FERET and ORL databases were used to explore robustness

of GRR with the variations of face images in facial expression

and pose. Besides, the Char74K_15 database was used to

test the performance of GRR in the English character images

with excessive occlusion, low resolution or noise. The LFW

database was used to evaluate the effectiveness of the proposed

GRR and other competing methods based on deep learning

situation.

In addition, the AR database was also used to test the robust-

ness of the proposed GRR against the compared methods in

three challenging situations (when training images are with

random block corruption, disguise and illumination variation).

A. Experiments on FERET Face Database

The FERET face database is a result of the FERET program,

which was sponsored by the USD department of Defense

through the DARPA Program [37]. It has become a standard

database for testing and evaluating state-of-the-art face recog-

nition algorithms. The proposed method was tested on a subset

of the FERET database. This subset included 1,400 images

of 200 individuals (each individual has seven images) and

involved variations in facial expression, illumination, and pose.

In the experiment, the facial portion of each original image

was automatically cropped based on the location of the eyes,

and the cropped images were resized to 40 × 40 pixels. The

sample images of one person are shown in Fig.1.

1) Experimental Setting: The performance of the feature

selection methods (i.e. the proposed GRR and SPCA, LPP,

RR, PCA-L1, LDA-L1, LPP-L1, UDFS, SRC-L1LS, KPCA)

are measured by the recognition rate with selected features on

the testing data set. PCA was first used as the pre-processing to

reduce the dimensionality of the original data. The experiments

were independently performed 10 times on the six databases.

The nearest neighbor classifier is used for classification. The

average recognition rates and the corresponding dimensions

and the standard deviations of each method were listed on the

tables. Besides, the comparison results were also shown in the

figures when several images of each individual were randomly

selected for training while the remaining images were used for

testing. The real dimension used in the experiment is the same

with the number marked on the horizontal axis on the six data

sets and all the images are cropped and aligned automatically.

Usually, the initial value of the proposed algorithm has little

effect on its performance, therefore the variables in GRR are

randomly initialized in our experiments.

2) Exploration of the Performance of the Parameters:

Since the value of the three parameters β, γ and λ affect

the performance of the proposed GRR in some degree, thus

we need to explore the optimal parameter values of GRR.

For the other methods, since UDFS was introduced with the

parameter lying on the area of [10−3, 103], then we used this

area for UDFS to perform feature selection and presented the

corresponding experimental results. The parameters of other

methods were selected according to the related introduction

in the original paper.

In FERET database, we first analyze the optimal values of

β, γ , λ and then use the values to obtain the best performance

for GRR. Table II shows the best average recognition rates,

the corresponding dimensions and the standard deviations of

different methods with different dimensions form 5 to 150

based on 10 times experiments. Fig. 2 (a) shows the recogni-

tion rates when the two parameters β and γ change from 10−9

to 109. Fig. 2 (b) presents the performance of the parameters λ

varies in the area of [10−9, 109] on all databases. It is

obvious that, the value of λ does not affect the performance

when it lies in the area of [10−9, 100]. For simplicity, we

choose λ = [10−9, 100] in all experiments. Fig. 4 (a) shows

the average recognition rates versus various dimensions of

different methods when 6 images were selected for the training

while the remaining images were used for testing.

From the result showed in Fig. 2 (a), we obtain the optimal

area for parameters β and γ are [10−11, 10−10, 10−9, 10−8,

10−7] and [10−8, 10−7, 10−6, 10−5, 10−4] respectively.

Namely, GRR obtains the best performance when the two

parameters lie on these areas. Otherwise, other parameter

values would cause the large decline of the face recognition

rate of GRR. Table II shows that SRC-L1LS and GRR

perform better than other methods. Fig. 4 (a) indicates when

6 images of each person are used for training, GRR gives full

play to its advantages and outperforms other methods with

about 15.75% to 41.05% of the recognition rate. Moreover,

GRR keeps going up smoothly and quickly achieves the best

performance for feature selection.

B. Experiments on ORL Face Database

The ORL dataset consists of 10 face images from 40 sub-

jects for a total of 400 images, with some variation in pose,

facial expression and details. The resolution of the images is

112 × 92, with 256 gray-levels. Before the experiments, we

scale the pixel gray level to the range [0, 1]. Fig. 3 depicts

some sample images of a typical subset in the ORL dataset.

In this experiment, l (l = 3, 4, 5) images of each individual

were randomly selected for training, and the rest of the

images in the data set were used for testing. The optimal

areas of parameter β and γ were set in [106, 107, 108]
and [10−5, 10−4, 10−3, 10−2] respectively. Fig. 4 (b) shows

the average testing recognition rates. Table III listed the

performance of different methods. It is obvious that GRR

outperforms other methods again.

C. Experiments on Yale Face Database

The Yale face database [43] was constructed at the Yale

Center for Computational Vision and Control. It contains

165 grayscale images of 15 individuals. The images demon-

strate variations in lighting condition (left-light, center-light,

right-light), facial expression (normal, happy, sad, sleepy,

surprised, and wink), and with/without glasses. Fig. 5 shows

the sample images from this database.
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Fig. 2. (a) The recognition rate versus the parameters β and γ on the FERET face database. (b) The recognition rate versus the parameters γ on the FERET,
ORL, Yale, AR, Char74K_15 database, respectively.

TABLE II

THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF DIFFERENT METHODS ON FERET FACE DATABASE

TABLE III

THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF DIFFERENT METHODS ON THE ORL FACE DATABASE

Fig. 3. Sample images of one person on ORL face database.

In this experiment, l (l = 4, 5, 6) images of each individual

were randomly selected for training, and the rest of the images

in the data set were used for testing. The optimal areas of

parameter β and γ were [107, 108, 109] and [10−7, 10−6],
respectively. The performances of different methods are shown

in Table IV. Fig. 6 (a) shows the average testing recognition

rates when 6 images of each people were used for training.

It clearly indicates that GRR obtains outstanding results.

D. Experiments on AR Face Database

The AR face database [38] contains over 4,000 color face

images of 126 people (70 men and 56 women), including

frontal views of faces with different facial expressions, lighting

conditions, and occlusions. The pictures of 120 individuals

(65 men and 55 women) were selected and divided into two

sessions (separated by two weeks) and each session contains

13 color images. 20 images of these 120 individuals were

selected and used in our experiments. The face portion of

each image was manually cropped and then normalized to

50 × 40 pixels. The sample images of one person are shown

in Fig. 7 (a). These images vary as follows: neutral expression,

smiling, angry, screaming, left light on, right light on, all sides
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Fig. 4. (a) The recognition rates (%) versus the dimensions of different methods on the FERET face database. (b) The recognition rates (%) versus the
dimensions of different methods on the ORL face database.

Fig. 5. Sample images of one person on Yale face database.

Fig. 6. (a) The recognition rates (%) versus the dimensions of different methods on the Yale face database. (b) The recognition rates (%) versus the dimensions
of different methods on the AR face database.

light on, wearing sun glasses, wearing sun glasses and left light

on, wearing sun glasses and right light on.

In this experiment, we randomly selected l (l = 4, 5, 6)

images of each individual for training, and the rest of the

images in the data set were used for testing. The optimal

areas of parameter β and γ were in [107, 108, 109, 1010] and

[10−2, 10−1] respectively. Fig. 6 (b) shows the average testing

recognition rates with 4 images of each object used as training

set. Table V lists the performance of different methods. We can

know from both Fig. 6 (b) and Table V that GRR outperforms

the other methods.

E. Experiments on Char74K_15 Database

The character images of the Char74K dataset [39] are

mostly photographed from sign boards, hoardings and

advertisements and a few images of products are in super-

markets and shops. Fig. 8. (a) depicts sample images of

English scene characters from Char74k. As for the Char74K

dataset, we only use the English character images cropped

from the natural scene images. The English dataset has

12503 characters, of which 4798 were labeled as bad images

due to excessive occlusion, low resolution or noise. It contains

62 character classes. A small subset with a standard partition

is used in our experiments, i.e. Char74K-15, which contains

15 training samples per class and 15 test samples per class.

The optimal areas of β and γ are [101, 102, 103, 104, 105],
[10−1, 10−2, 10−3, 10−4, 10−5] respectively. Fig.8 (b) demon-

strates the average testing recognition rates versus the dimen-

sions of different methods while Table VI shows the best

average recognition rates and the corresponding dimensions
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Fig. 7. (a) The sample images of one person form the AR face database. (b) The sample images with block noise of one person in our experiment on the
AR face database.

TABLE IV

THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF DIFFERENT METHODS ON THE YALE FACE DATABASE

TABLE V

THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF DIFFERENT METHODS ON THE AR FACE DATABASE

and the standard deviations of each method. From the result,

we can find that in this dataset, GRR outperforms other

methods again.

F. Robustness Evaluation on AR Face Database

To evaluate the performance of the proposed GRR and other

compared methods in the case when there are various noises

corrupted in the images, we conducted series of experiment

including random block corruption and disguise as well as

illumination variation.

1) Images With Random Block Corruption: To evaluate the

robustness of the proposed GRR, the noise was added in the

face images in our experiments and the samples image with

block noise of one person are shown in Fig.7 (b). Table VII

lists the best average recognition rates, the corresponding

dimensions and the standard deviations of different methods

based on 10 times experiments on AR database with block size

5∗5, 10∗10, 15∗15, respectively. Fig.9 (a) shows the average

recognition rates versus the dimensions of different methods

in the case when 4 images of each individual were randomly

selected for training from the images that are corrupted by a

block size 10 ∗ 10. All of the results prove the robustness and

effectiveness of the proposed GRR.

2) Images With Disguise: To investigate the proposed GRR

and other compared methods in the case when training set is

corrupted by varying percentage of occlusion in face images,
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Fig. 8. (a) Sample images of English scene characters from Char74k. (b) The recognition rates (%) versus the dimensions of different methods on the
Char74K_15 face databases.

TABLE VI

THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF DIFFERENT METHODS ON THE CHAR74K_15 FACE DATABASE

Fig. 9. (a) The recognition rates (%) versus the dimensions of different methods on the AR face databases with noise. (b) An example of the convergence
curve of GRR.

Fig. 10. Example images from Session 1 of the AR database.

two protocols are conducted as similar in [40] and [41]. That

is, occlusion in training set due to (1) sunglasses, (2) scarf,

respectively. Note that scarf accounts for occlusion of about

40% of each face image while the occlusion of sunglasses

amounts to about 20%. Fig.10. shows the sample image of

session 1 on AR database in our experiment.

a) Sunglasses: For each individual, nc neutral images and

no ∈ {0, 1, 2, 3} occluded image(s) from Session 1 are used
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TABLE VII

THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF

DIFFERENT METHODS ON THE AR FACE DATABASE WITH NOISE

for training, where nc + no = 7. Session 2 including 7 neutral

images plus 3 occluded image (sunglasses) are used for testing.

b) Scarf: The setup of training set and testing set are

the same with sunglasses case except using scarf instead of

sunglasses as occlusion of the images.

The results of the above two occlusion cases are presented

in table VIII. It is obvious that the proposed GRR and SRC

always perform better than other methods in these situations.

For the sunglasses case, SRC performs a little better than GRR

as a whole, yet GRR definitely outperforms SRC under the

scarf case. The reason is as follow. SRC assumes the testing

image is approximately reconstructed by the training image.

However, if the training set include few or even no occluded

images, the reconstructed error as classification criteria is not

so effective since it varies in large range. In these two occluded

cases, especially the scarf case (since the occlusion percentage

is much higher), SRC generates large reconstruction errors

which bring negative impact on face recognition task. On the

contrary, the proposed GRR can guarantee the robustness

by designing a more compact and effective model. On one

hand, it utilizes L2,1-norm minimization instead of L2-norm

to alleviate the sensitiveness to outliers. On the other hand,

it uses the elastic factor h to avoid the overfitting problem in

this case.
3) Images With Illumination Variation: In this part, the first

7 images of each person on the AR database are used to form

the training set and testing set. For each individual, the first

4 images varying on facial expression plus nil ∈ {0, 1, 2, 3}
image(s) varying on illumination in Session 1 are used to form

the training set and the images in Session 2 are used as the

testing set. That is, nni ∈ {4, 5, 6, 7} images of each person

are used for training.

Table IX shows the corresponding experimental results. It is

obvious that SRC and GRR are comparative and they always

outperform other compared methods. Although GRR seems to

be a little inferior to SRC at first, it finally catches up and even

outperforms SRC.

G. Reconstruction and Subspace Learning

This subsection further performs a set of experiments to

explore the learned subspace properties of the proposed GRR

and some classical methods, i.e. PCA, RPCA, RR and LPP.

In this part, we consider two versions of experiments. For

the first version, 7 neutral images of each individual from

AR database are trained by LPP, RR, PCA, RPCA and

GRR, respectively and the corresponding results are plotted

as images. Fig.11 (a) shows the original image of one person

in our experiment. Fig.11 (b)-(d) show reconstruction images

obtained by RPCA, PCA, GRR, respectively. Note that for

RPCA, the learned low-rank approximation is presented in

this experiment. For PCA, 50 principle components are used

for reconstruction. To explore the properties of the sub-

spaces learned by GRR and other subspace learning methods

(i.e. LPP, RR, PCA), we also present the images of the first

2 projections learned by these methods. Fig.11 (e)-(h) show

the first 2 projections of the subspace obtained by LPP, RR,

PCA, GRR, respectively. In the second version, all the training

images are corrupted by random block noise with 50 ∗ 50

pixels and the results are shown in Fig. 12. According to

these experimental results, we have the following interesting

conclusion:

RPCA is good at recovering low-rank components of the

original data. It can get rid of the corrupted noise in some

degree, which can be seen from Fig.12 (b). PCA is an effective
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TABLE VIII

COMPARISONS (RECOGNITION RATE STANDARD DEVIATION AND DIMNSION) WTH DIFFEENT PERCENTAGES OF OCCLUDED IMAGES (no/7)
PRESENTED IN THE TRAINING SET. THE FEATURE DIMENSION IS SET AS 150 FOR ALL METHODS

TABLE IX

THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF DIFFERENT METHODS ON AR DATABASE

WITH VARIOUS ILLUMINATION. THE FEATURE DIMENSION IS SET AS 150 FOR ALL METHODS

method for reconstructing the original images. However, GRR

does not tend to reconstruct the original images since it focus

on discriminant information instead of reconstruction. That is,

GRR finds the most discriminative projections to obtain an

optimal subspace for efficient feature selection or extraction.

As it can be seen from Fig.12 (d) and Fig.12 (h), the block

noise on the face image is not evident. On the contrary,

Fig.12 (g) shows that the block noise on PCA-based images
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Fig. 11. (a) is original sample images, (b), (c), (d) is reconstruction images obtained by RPCA, PCA, GRR, respectively; (e), (f), (g), (h) is 2 images of the
first 2 projections from subspace obtained by LPP, RR, PCA, GRR, respectively.

Fig. 12. (a) is corrupted images by block noise with size 50∗50, (b), (c), (d) is reconstruction images obtained by RPCA, PCA, GRR, respectively;
(e), (f), (g), (h) is 2 images of the first 2 projections from subspace obtained by LPP, RR, PCA, GRR, respectively.

is quite obvious. This indicates that GRR can avoid the noise

impact more effectively than PCA. Both LPP and RR can

obtain the face-like images, but LPP’s projections are affected

seriously by the block noise.

H. Experiments on LFW Database Based on Deep Learning

The LFW database [42] is a very challenging dataset which

contains images of 5,749 subjects in the uncontrolled environ-

ment. The LFW-a dataset is the aligned version of LFW after

performing the face alignment. In our experiment, 4324 images

of 158 subjects (each subject has more than 10 images) are

selected from LFW-a dataset. Note that all images are aligned

as well as cropped and resized to 112∗96 pixels. Fig.13 shows

the sample images in our experiment.

The LFW database were used to evaluate the performance

of the proposed GRR and other competing methods based

on the deep learning techniques. Similar to [43], the deep

convolutional neural network (CNN) was used as the feature

extractor to obtain the deep features of all samples (the

number of the features is 1024). After the deep features

were obtained, we further used the subspace learning methods

(i.e. SPCA, LPP, RR, PCA-L1, LDA-L1, LPP-L1, UDFS,

KPCA, SRC-L1LS and the proposed GRR) to perform feature

extraction, and then the nearest neighbor classifier was used

for classification.

In this experiment, we randomly selected l (l = 4, 5, 6, 7)

images of each subject to form the gallery set and the rest are

used as probe set. The optimal areas of parameter β and γ

are [107, 108, 109, 1010] and [10−2, 10−1], respectively.

The best recognitions rates of deep feature plus the subspace

learning methods are shown in Table X. The results indicate

the performance of the proposed GRR is still better than other

methods. Fig.9 (b) shows an example of the convergence curve

of GRR.

I. Experimental Results and Discussions

From the experimental results listed in Tables and the

figures presented in previous subsections, we can draw the

following interesting points:

1. All the experimental results indicate that GRR outper-

forms the other methods. This is because GRR integrates

multiple robust factors and locality based on the com-

bination of RR, LPP and the L2,1-norm minimization.

Thus, with these advantages, GRR is capable to out-

perform the conventional RR and LPP as well as the

L1-norm based methods.

2. From Fig. 4 (b), 6 and 8 (b), we can know that the

projection learned from the traditional ridge regression

RR is no more than the number of the class in training

data while GRR can learn any number of projections

and preserve high and stable recognition rate. Especially,

Table VI showed that when RR obtained the best recog-

nition rate on the dimension of 62 (i.e. the number of

class), GRR broke out this number and obtained the

best recognition rate on the dimension of 72. This is

because RR has the small-class problem which makes

the number of the projections limited by the number of

the class in training data. However, GRR can break out

this limitation to obtain enough projections to obtain

high recognition rate for face recognition, character

recognition or other practical applications.

3. GRR obtains quite good performance on these databases

when there are variations on pose and face expressions.

The reason is that GRR not only uses the L2,1 - norm on

both the loss function and regularization term, but also

takes the local geometric structure into consideration.

These techniques guarantee the joint sparsity and local

information for GRR to obtain effective features to

increase the recognition rates.

4. As demonstrated in Subsection IV-F, when train-

ing images are with random block corruption, dis-

guise or illumination variation, GRR still outperforms

the other methods and obtains the better recognition

rate in most cases. Comparing with the other methods,

another potential reason for the good performance of

GRR is that the elastic factor h on the loss function is

capable to decrease the negative influence caused by the

block subtraction, noise or disguise.

5. In most cases, the L2,1-norm based methods (i.e. GRR

and UDFS) obtain the better performance than

the L1-norm based methods (i.e. PCA-L1, LPP-L1,

LDA-L1). The main reason is that using L2,1-norm on
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Fig. 13. Example images from LFW database.

TABLE X

THE PERFORMANCE OF DIFFERENT METHODS ON THE LFW FACE DATABASE

the regularization term can improve the recognition rates

since it performs the joint sparse feature selection in

extraction step.

6. The state-of-the-art recognition rate on FERET, ORL,

Yale, AR and LFW database is 71.25%, 98.90%,

98.80%, 91.23% and 53.39% when 4, 5, 5, 5, 6

images of each subject are used as training, respec-

tively [44]–[46]. The newest maximum recognition rate

on Char74K_15 is 67.00% [47]. From the experimen-

tal results, we can find that the recognition rates of

the proposed GRR are higher than the state-of-the-art

recognition rates on ORL, Yale and AR database and

also competitive on other databases. This indicates that

GRR is an effective method for feature extraction and

classification.

V. CONCLUSION

Motivated by the robustness and L2,1-norm minimization

on loss function and regularization term, a novel method

called Generalized Robust Regression (GRR) is proposed

for jointly sparse subspace learning. GRR integrates the

advantages of locality preserving projections and L2,1-norm

minimization to select informative features and at the same

time guarantee the robustness in the learning procedure by

introducing an elastic factor. GRR also breaks out the small-

class problem which exists in the traditional ridge regres-

sion or its derivatives so as to obtain enough projections to

perform efficient feature extraction or selection. To optimize

the problem of GRR, an iterative algorithm is proposed

and the convergence is also proved in this paper. Moreover,

we also analyze the computational complexity of the proposed

algorithm. The favorable performance of GRR on six well-

known databases indicates that GRR outperforms the conven-

tional Sparse Principal Component Analysis (SPCA), Locality

Preserving Projections (LPP), the traditional Ridge regres-

sion (RR), the L1-norm based methods PCA-L1, LDA-L1,

LPP-L1, the L2,1-norm regularized discriminative fea-

ture selection method UDFS, the nonlinear kernel-based

method (KPCA) and the classical sparse learning method

(i.e. SRC-L1LS).

Since the proposed GRR is an iteration algorithm,

its computational complexity is more than the traditional

LPP-based methods. Also, the case of imbalanced data is not

taken into consideration in this paper. Therefore, how to reduce

the computation cost as well as how to extend the regression

method to deal with the imbalanced data is an interesting

research in the near future.
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