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Abstract: In this paper, we propose generalized sampling approaches

for measuring a multi-dimensional object using a compact compound-eye

imaging system called thin observation module by bound optics (TOMBO).

This paper shows the proposed system model, physical examples, and

simulations to verify TOMBO imaging using generalized sampling. In the

system, an object is sheared and multiplied by a weight distribution with

physical coding, and the coded optical signal is integrated on to a detector

array. A numerical estimation algorithm employing a sparsity constraint is

used for object reconstruction.
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1. Introduction

A compound-eye imaging system is a promising computational imaging modality. Compound-

eye optics have enabled light-field acquisition[1] and device compactness[2, 3]. Thin observa-

tion module by bound optics (TOMBO) is a representative example of a compound-eye imaging

system[4].

An advantage of compound-eye imaging systems is that they permit diverse data acquisition

schemes. Different lenslets may create different encodings. For example, time detection based

on the encoding concept has been proposed[5], and range detection in [6] can be considered as

a system based on the concept. These compact systems reconstruct a three-dimensional object

from a two-dimensional measurement where the size is the same as that of an axial plane of the

object.

This paper proposes generalized sampling approaches for multi-dimensional object acquisi-

tion using TOMBO. In the proposed system, an object is acquired with coding and multiplex-

ing in a two-dimensional snapshot. In particular, the coding schemes in [5, 6] are extended for

multi-dimensional data acquisition of various objects.

There could be multiple choices for coding schemes for multi-dimensional object acquisition

such as coded aperture imaging and multi-shot imaging . These schemes differ by design con-

straints. This paper considers the compactness of hardware and single-shot object acquisition

capability as critical design constraints. As indicated by a large literature, TOMBO imaging

modality is one of such techniques that can implement a compact system that can meet our

design constraints. This motivates us to investigate its potential as a compressive imaging tech-

nique.

In this paper, the mathematical model of the proposed system and examples of the coding

schemes for spectral and polarization imaging techniques are presented. Simulation results of

the proposed system are shown. The implementations are inspired by [7, 8, 9]. The previously

presented systems have a tradeoff between the spatial and axial resolutions. For example, in

[7, 8], the number of the spectral or polarization channels is roughly proportional to that of the

lenses. Increasing the number of lenses reduces the spatial resolution. The approaches proposed

in this paper may compensate for the tradeoff by leveraging compressive sampling[10].

A constrained optimization technique to incorporate sparsity in some basis of an object esti-
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Fig. 1. Cross section view of TOMBO. v, Ou, and Lu are the spatial dimension, the center

position, and the position of a lenslet in the u-th unit, respectively.

mate is used for reconstruction. The reconstruction method is inspired by compressive sampling

[10]. In compressive sampling, the systems should satisfy some assumptions stated in section2

for accurate reconstruction. The proposed system is compared to a theoretical baseline sensing

system which is a Gaussian random sensing matrix. Several systems based on sparse recon-

struction have been demonstrated and have shown promising results[11, 12, 13].

Section 2 provides a brief background on TOMBO and compressive sampling. Section 3 de-

scribes a general model for multi-dimensional TOMBO imaging. Section 4 presents examples

of coding schemes. Simulation results are given in section 5.

2. Background

2.1. TOMBO

In a simplified conceptual model, TOMBO consists of lenslets and a detector array as shown in

Fig. 1. An imaging structure associated with a lenslet is called a unit[4]. Each unit produces a

low-resolution (LR) image on the detector array.

When the number of units is Nu ×Nu in a square arrangement, the focal-length and the di-

ameter of the lenslet need to be Nu times smaller than those of the corresponding conventional

full-aperture system to obtain the same field of views. This results in a LR image whose size

is Nu times smaller than that of an image produced by the full-aperture system. The thickness

and depth-of-field of TOMBO are Nu times shorter and Nu
2 times longer, respectively. This

allows for compact hardware with a large depth-of-field. Objects are often assumed to be lo-

cated within the depth-of-field, and the lenslets are assumed to be aberration-free[4, 14]. These

assumptions are made throughout this paper, unless otherwise stated.

2.2. Compressive sampling

The proposed system model in this paper forms an underdetermined linear system of equations

as described in section 3. Compressive sampling (CS) is a theoretical framework for solving an

underdetermined system[10, 15]. The reconstruction method in this paper is inspired by CS.

A linear system model can be written as

ggg = ΦΦΦ fff = ΦΦΦΨΨΨβββ = ΘΘΘβββ , (1)

where ggg ∈ R
Ng×1, ΦΦΦ ∈ R

Ng×N f , fff ∈ R
N f ×1, ΨΨΨ ∈ R

N f ×N f
′
, and βββ ∈ R

N f
′×1 are a measurement

vector, a sensing matrix, an object vector, a basis matrix, and a transform coefficient vector,

respectively. R
Ni×N j denotes a Ni ×N j matrix of real numbers. We consider the case where

Ng ≪ N f .
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Let s denote the number of non-zero coefficients in βββ . CS indicates that, for accurate recon-

struction, ΘΘΘ should satisfy a sufficient condition for any s-sparse βββ . The condition is called the

restricted isometric property (RIP) defined by,

(1− cs)||βββ Λ||22 ≤ ||ΘΘΘΛβββ Λ||22 ≤ (1+ cs)||βββ Λ||22, (2)

where cs ∈ (0,1) is a constant and || · ||22 denotes an ℓ2-norm[16]. Λ is a subset of indices

supporting s nonzero coefficients in βββ . βββ Λ and ΘΘΘΛ are elements of βββ and columns of ΘΘΘ that

support the s coefficients. If cs is close to 0, Eq. (2) indicates that ΘΘΘΛ preserves the Euclidean

length of βββ Λ. µ(ΦΦΦ,ΨΨΨ) ∈ [1,
√

N f
′] defined as

µ(ΦΦΦ,ΨΨΨ) =
√

N f
′ max
1≤i≤Ng,1≤ j≤N f

′
|〈ΦΦΦ(i, :),ΨΨΨ(:, j)〉| (3)

is called coherence. ΦΦΦ(i, :), ΨΨΨ(:, j), and 〈,〉 are the i-th row of ΦΦΦ, the j-th column of ΨΨΨ, and an

inner product, respectively. When the coherence is small, ΦΦΦ and ΨΨΨ are said to be incoherent.

The number of measurement components required for accurate reconstruction is given as

Ng
′ ≥ cµ(ΦΦΦ,ΨΨΨ)2s logN f

′, (4)

where c is a constant[15]. According to CS theory[15], if ΘΘΘ satisfies RIP (Eq. (2)), measure-

ments are with high probability sufficient to accurately estimate βββ . An accurate estimate of the

s nonzero coefficients in βββ can be obtained by solving

β̂ββ = argmin
βββ

||βββ ||1 subject to ggg = ΘΘΘβββ , (5)

where || · ||1 denotes ℓ1 norm.

3. A mathmatical model for proposed acquisition schemes

Let F(x,y,z0, · · · ,zNn−1) denote a continuous density function representing a multi-dimensional

object. x and y represent spatial dimensions, and z0, · · · ,zNn−1 represent the other dimensions

dependent on the application. x = 0 and y = 0 are defined as the center of a detector array. For

simplicity, the y dimension is omitted. Extending to higher dimensions may be readily achieved

with small modifications of the model.

3.1. Continuous model

In the proposed system, a multi-dimensional object is integrated on to detectors with one of

two coding schemes, as demonstrated in Fig. 2. In one of the coded integrations inspired by

[6], an object is sheared by an optical element, and the sheared optical signal is integrated on

to a detector array. In the shear-transformation, each axial plane in an object is shifted along

the x axis as shown in Fig. 2(a). In [6], the shift corresponds to a parallax. In another coded

integration inspired by [5], an object is multiplied with a weight distribution, and the weighted

optical signal is integrated on to a detector array as shown in Fig. 2(b). The weight distribution

is a continuous function of z. In [5], the weight distribution corresponds to an exposure time.

The two schemes are referred to as sheared integration (SI) and weighted integration (WI),

respectively.

We denote integrated data associated with the u-th unit as Gu(v), where v denotes the spatial

dimension in a unit as shown in Fig. 1. v in the u-th unit is defined as v = x−Ou, where Ou is

the center of the u-th unit. Gu(v) is expressed as

Gu(v) =
∫

. . .
∫

F

(

v−Lu −∑
n

Sn,u(zn),z0, · · · ,zNn−1

)

∏
n

Wn,u(zn)dzn,

(u = 0, · · · ,Nu −1),

(6)
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Fig. 2. Coding schemes in TOMBO. (a) Sheared integration and (b) weighted integration

in a unit.

where Sn,u(zn) and Wn,u(zn) show a shift in SI and a weight distribution in WI of the zn dimen-

sion in the u-th unit, respectively. Lu is the center position of the u-th lenslet on the v axis as

shown in Fig. 1. For simplicity, Nn = 1 is assumed, and a subscript n is omitted. Eq. (6) can be

rewritten as

Gu(v) =
∫

F (v−Lu −Su(z),z)Wu(z)dz. (7)

3.2. Discretization model

A discrete object ∈ R
Nx×Nz and a discrete integrated data ∈ R

Nx×Nu are denoted by F̃(l,m) =
F(l△x,m△z) and G̃′

u(i) = Gu(i△x) using notation similar to that in [17], where a tilde indicates

a discrete data. G̃′ is an intermediate data before sampling by the detectors. l, m, and i are

integer variables of the x, z, and v axes in a discretization model, respectively. △x and △z are

the pixel pitches along the x and z axes in a discrete object. G̃′
u(i) is sampled by detectors. The

measurement data ∈ R
Nv×Nu is expressed as G̃u( j) = ∑i G̃′

u(i) rect((i△x − j△v −Du)/△v),
where Nv, j, △v, and Du are the number of detectors in a unit, an index for the detectors in a

unit, the pixel pitch of the detectors, and the center of the center detector on the v axis in the

u-th unit. Then, the measurement data G̃ can be written as

G̃u( j) = ∑
i

rect

(

i△x − j△v

△v

)

∑
m

F̃
(

i− S̄u(m),m
)

W̄u(m), (8)

where S̄u(m) = ⌊(Lu + Su(m△z)−Du)/△x + 0.5⌋ and W̄u(m) = Wu(m△z)△z. ⌊·⌋ is the floor

function.

3.3. System matrix

We assume that △x = △v/Nu and Nx = NvNu, which are both typical assumptions in TOMBO

imaging [4, 5, 6, 14]. Thus, the numbers of elements in the measurement data and the object

are Ng = Nx and N f = NxNz.

As indicated in Eq. (8), the m-th axial plane in F̃ is shifted by S̄u(m) and multiplied with

W̄u(m). CCC′
m,u ∈ R

Nx×Nx which denotes the coding operation for the m-th axial plane in F̃ in the

u-th unit is expressed as,

CCC′
m,u(p,q) =

{

W̄u(m) (p = q+ S̄u(m)),
0 (p = q+ S̄u(m)),

(9)
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where CCC′
m,u(p,q) is the (p,q)-th element in the matrix CCC′

m,u.

CCCu ∈ R
N f ×N f represents the coding operation implemented by the TOMBO system on the

object fff (F̃ in vector form) in the u-th unit and is written as

CCCu =

⎡

⎢

⎢

⎢

⎣

CCC′
0,u OOO . . . OOO

OOO CCC′
1,u . . . OOO

...
...

. . .
...

OOO OOO . . . CCC′
Nz−1,u

⎤

⎥

⎥

⎥

⎦

, (10)

where OOO is a Nx ×Nx zero matrix.

The matrix QQQ ∈ R
Nx×N f which sums all of the axial layers is defined by

QQQ =
[

III III · · · III
]

, (11)

where III ∈ R
Nx×Nx denotes an identity matrix.

The downsampling matrix TTT ∈ R
Nv×Nx can be defined by

TTT =

⎡

⎢

⎢

⎢

⎣

1T 0T . . . 0T

0T 1T . . . 0T

...
...

. . .
...

0T 0T . . . 1T

⎤

⎥

⎥

⎥

⎦

, (12)

where 1 and 0 denote a Nu × 1 vector whose elements are all 1 and a Nu × 1 vector whose

elements are all 0, respectively. A superscript T indicates a transpose of a matrix.

Therefore, the measurement data G̃ on the u-th unit is TTT QQQCCCu fff , which means, firstly, an

object is coded in each unit by CCCu, secondly, the coded data is integrated on to a detector array

by QQQ, and lastly, the integrated data is downsampled with detectors by TTT . The sensing matrix

ΦΦΦ ∈ R
Ng×N f is expressed by

ΦΦΦ =

⎡

⎢

⎢

⎢

⎣

TTT QQQCCC0

TTT QQQCCC1

...

TTT QQQCCCNu−1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

TTTCCC′
0,0 TTTCCC′

1,0 . . . TTTCCC′
Nz−1,0

TTTCCC′
0,1 TTTCCC′

1,1 . . . TTTCCC′
Nz−1,1

...
...

. . .
...

TTTCCC′
0,Nu−1 TTTCCC′

1,Nu−1 . . . TTTCCC′
Nz−1,Nu−1

⎤

⎥

⎥

⎥

⎦

. (13)

4. Implementation of proposed acquisition schemes

The proposed coding schemes can be implemented for a wide array of practical applications.

Each application would rely on some physical optical elements to implement the coding scheme

expressed by Eqs. (6) or (7). In this section, we present examples of the coding scheme for

spectral imaging and polarization imaging. Using similar schemes, physical coding strategies

for range, time, spectrum, polarization, large dynamic range, and wide field-of-view may be

available.

Physical codings for spectral imaging using SI and WI are illustrated in Fig. 3. SI for spectral

imaging can be implemented by using dispersive elements (e.g., prisms). The elements in each

unit have different dispersion directions as shown in Fig. 3(a). The dispersion results in different

shifts for each spectral slice. In Eq. (7), z represents the wavelength. The shift corresponds to

Su(z).
WI for spectral imaging may be implemented with multi-band pass filters placed above or

below the lenslet as shown in Fig. 3(b). Each of the filters has different pass-bands. Pass-bands

and stop-bands are represented with Wu(z) = 1 and Wu(z) = 0 in Eq. (7), respectively. A stack

#127128 - $15.00 USD Received 16 Apr 2010; revised 6 Aug 2010; accepted 19 Aug 2010; published 27 Aug 2010

(C) 2010 OSA 30 August 2010 / Vol. 18,  No. 18 / OPTICS EXPRESS  19372



Lenslet

Dispersive element

(a)

Detector

Multi-band pass filter

(b)

Fig. 3. Cross section views of TOMBO for spectral imaging with (a) SI and (b) WI.

(a) (b)

Fig. 4. Top views of TOMBO for polarization imaging with (a) SI and (b) WI. Arrows,

dots, circles, and shaded areas indicate directions of polarization, centers of shifted images,

lenslets, and polarization plates, respectively.

of bandstop filters or a patch of bandpass filters may be used to substitute for the multi-band

pass filter.

Figure 4 shows a conceptual diagram for polarization imaging with the proposed codings.

SI for polarization imaging may be performed with birefringent linear polarizers[18]. The ele-

ments split an incident ray into two polarized rays. Hence, an image at each polarization angle

is shifted. Each unit has different shift for each polarization angle as shown in Fig. 4(a). Here,

z represents a linear polarization angle. The shift corresponds to Su(z) in Eq. (7).

WI for polarization imaging may be performed with polarization plates. Polarization plates

with different linear polarization angle are placed above or below the lenslet as shown in

Fig. 4(b). The weight distribution is expressed as Wu(z) = cos2(Pu − z)[18], where Pu is the

polarization angle in the u-th unit. A patch of polarization plates, where each plate has a differ-

ent polarization angle, allows flexibility in the design of a weight distribution.

5. Simulation of the proposed concept

The concept of multi-dimensional TOMBO imaging was verified through application indepen-

dent simulations. These general simulations could readily modified for a specific application

like those mentioned in the previous section.

A method called two-step iterative shrinkage/thresholding algorithm (TwIST) [19] was used

for reconstruction. TwIST is an interative convex optimization algorithm that uses two previous

estimates to improve convergence properties for the problem described by Eq. (5).
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For simplicity, a shift in SI was assumed as Su(z) = (Auz+Bu)△x. Au and Bu are a gradient

and a bias, respectively, of the shear-transformation in the u-th unit defined as Au = (−2u/(Nu−
1) + 1)A0 and Bu = −AuNz△z/2. For example, A0 = 1.0 of Nu = 3 indicates that A0 = 1.0,

A1 = 0.0, and A2 =−1.0. A shift at the center axial plane, where z = Nz△z/2, is Su(z) = 0.0. Au

and Bu of the y axis is the same as those of the x axis. A weight distribution in WI was assumed

to be a binary pattern. In the m-th axial plane, h units were set as Wu(m△z) = 1 in Eq. (7). The

h units were randomly chosen, while the other Nu
2 −h units were set as Wu(m△z) = 0. In this

case, the maximum number of separable axial planes is fixed Nu
2Ch. A lenslet’s position Lu in

Eq. (8) was randomly set in each unit. The range was [−△v/2,△v/2], where △v is the pixel

pitch of the detectors. The position of the center detector in a unit is Du = 0.

Figure 5 shows a simulation of four-dimensional data acquisition using the two TOMBO

coding schemes. An object whose size is 128×128×4×2 and measurement data whose size

is 128× 128 are shown in Figs. 5(a) and 5(b). The compression ratio is 8, which is calculated

as N f /Ng, where N f and Ng are the numbers of elements in an object and measurement data,

respectively. In Fig. 5, the object and the simulation results are reshaped to 128× 128× 8 for

display. SI with A0 = 1.0 and WI with h = 3 were used for the z0 and z1 axes, respectively.

The measurement signal-to-noise ratio (SNR) in the presence of additive white Gaussian noise

and the number of units were 30 dB and 2× 2, respectively. The object estimate sparsity in

gradients was enforced using the total variation (TV) [20]. Two-dimensional TV was applied

independently for each axial plane as ∑lx ∑ly ∑m0
∑m1

|∇[F̃(lx, ly,m0,m1)]lx,ly |, where lx and ly
are indices for the x and y axes in a discrete object. ∇[·]lx,ly is a two-dimensional gradient vector

for the x and y directions, and | · | denotes the magnitude of the gradient vector. The object

consists of multiple Shepp-Logan phantoms, which is sparse in two-dimensional TV domain.

The total number of non-zero gradient values was s = 3242. The reconstruction results with

TwIST and the Richardson Lucy method (RL)[21, 22] are compared in Figs. 5(c) and 5(d).

Their peak signal-to-noise ratios (PSNR) were 32.1 dB and 19.4 dB, respectively. The PSNR is

found by computing 20log10(MAX/
√

MSE), where MAX and MSE represent the maximum

of the signal values and the mean squared error between two signals, respectively[23].

CS object reconstruction accuracy may be estimated using a correlation between columns of

ΘΘΘ, which is the multiplication of a sensing matrix ΦΦΦ and a basis matrix ΨΨΨ, in Eq. (1)[24]. When

a correlation between two columns in ΘΘΘ is high, it is difficult to resolve the two components in

a transform coefficient vector βββ corresponding to the columns in ΘΘΘ. So that, the reconstruction

accuracy depends on not only ΦΦΦ but also ΨΨΨ.

When a two-dimensional basis is used for each axial plane as in the previous simulation,

the reconstruction accuracy along the axial direction in an object estimate may be roughly

predicted based on the correlation between columns of ΦΦΦ corresponding to two axial planes.

Let φφφ m ∈ R
Nx×Nx denote

φφφ m =

⎡

⎢

⎢

⎢

⎣

TTTCCC′
m,0

TTTCCC′
m,1

...

TTTCCC′
m,Nu−1

⎤

⎥

⎥

⎥

⎦

. (14)

From Eqs. (1), (13), (14), and the assumption to use a two-dimensional basis, a sensing matrix,

a basis matrix, and ΘΘΘ can be rewritten as

ΦΦΦ =
[

φφφ 0 φφφ 1 . . . φφφ Nz−1

]

, (15)
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ΨΨΨ =

⎡

⎢

⎢

⎢

⎣

ψψψ OOO . . . OOO

OOO ψψψ . . . OOO
...

...
. . .

...

OOO OOO . . . ψψψ

⎤

⎥

⎥

⎥

⎦

, (16)

ΘΘΘ = ΦΦΦΨΨΨ =
[

φφφ 0ψψψ φφφ 1ψψψ . . . φφφ Nz−1ψψψ
]

, (17)

respectively, where ψψψ ∈ R
Nx×Nx and OOO ∈ R

Nx×Nx are a two-dimensional basis matrix for each

axial plane and a Nx ×Nx zero matrix. If the correlation between a column in φφφ m and that on

another axial plane is high, then the corresponding correlation between a column in φφφ mψψψ and

that on another axial plane may be high. In this case, it is difficult to resolve the axial planes.

When |A0| is small or h is large, the correlation between a column in φφφ m and that on another

axial plane is high. For example, Fig. 5(e) shows a reconstruction result where SI with A0 = 0.2
was used for the z0 axis. The reconstruction accuracy along the axial direction with A0 = 0.2
was lower than that with A0 = 1.0.

Figure 6 shows another simulation of five-dimensional data acquisition with the discrete

wavelet transform (DWT). The sizes of the object in Fig. 6(a) and the measurement data

in Fig. 6(b) were 128 × 128 × 2 × 2 × 2 and 128 × 128. The compression ratio is 8. Two-

dimensional DWT was applied for each axial plane. The object consists of multiple natu-

ral images where the small coefficients in two-dimensional DWT were truncated. In two-

dimensional DWT domain, the total number of non-zero DWT coefficients across all the planes

was s = 2000. SI with A0 = 3.0, WI with h = 12, and WI with h = 12 were used for the z0, z1,

and z2 axes, respectively. The measurement SNR and the number of the units were 30 dB and

4× 4, respectively. The reconstruction results with TwIST and RL are compared in Figs. 6(c)

and 6(d). Their PSNRs were 24.5 dB and 15.4 dB, respectively. Figure 6(e) shows a reconstruc-

tion result where WI with h = 15 was used for the z1 and z2 axes. The reconstruction accuracy

along the axial direction with h = 15 was lower than that with h = 12.

Figure 7 illustrates the sensitivity of the reconstructions to noise as represented by a curve

relating the measurement SNR to the reconstruction PSNRs. Also, the performance is com-

pared to that of an ideal Gaussian random compressive sensing matrix, which is known to

require a (optimally) small number of measurements to satisfy the RIP compared to what the

proposed systems would require. Since the proposed systems usually have a worse RIP mean-

ing that more measurements are required to obtain higher reconstruction accuracy, they present

worse reconstruction accuracy compared to that of the Gaussian random matrix. However, such

random sensing matrices would be very difficult to physically implement in general with the

current technology. In addition, it is not clear how such random sensing systems may provide

the compactness of physical systems and snapshot acquisition functionality, which are benefits

of the proposed approach.

6. Conclusions

We proposed a generalized sampling approach for multi-dimensional object acquisition using

TOMBO. The sampling uses multi-dimensional sheared and weighted integration in each unit.

The mathematical model and some examples of the proposed measurement approach were pre-

sented. The simulation demonstrated reconstruction of an object with the number of elements

totaling eight times that of the measurement data. A method inspired by compressive sampling

was used in the reconstruction. These schemes enable us to acquire a multi-dimensional object

with a single two-dimensional measurement by a compact imaging system. Also, these schemes

extend abilities of compound-eye imaging systems to various applications.
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(a)

(b)

(c)

(d)

(e)

Fig. 5. Simulation results with total variation. (a) A four-dimensional object (∈
R

128×128×4×2), where indices of axial planes are shown under each axial plane, (b) a

measurement data, (c) a reconstruction with TwIST, (d) a reconstruction with RL, and (e)

a reconstruction with TwIST using a small |A0|.
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(a)

(b)

(c)

(d)

(e)

Fig. 6. Simulation results with discrete wavelet transform. (a) A five-dimensional object

(∈R
128×128×2×2×2), (b) a measurement data, (c) a reconstruction with TwIST, (d) a recon-

struction with RL, and (e) a reconstruction with TwIST using a large h.
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Fig. 7. Plots of reconstruction PSNR from noisy measurements in the proposed system and

a baseline sensing system which is a Gaussian random sensing matrix. (a) Plots with the

object, the parameters, and the basis used in Fig. 5(c) and (b) plots with the object, the

parameters, and the basis used in Fig. 6(c).

A useful avenue for future work is to analyze theoretical properties of the proposed systems.

It would be interesting to see how many more measurements would be required in general

for the proposed systems to produce a certain accuracy, which is related to the validity of the

sparsity assumption in the proposed systems. Also, it would be very useful to find a more

efficient sparsity transformation that provides a better RIP and a better sparse representation

of the objects of interest. Furthermore, we plan to investigate other coding schemes that may

provide a better RIP overall to better exploit the sparsity assumption.
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