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Received 23 August 2010, accepted 18 January 2011

Abstract. We introduce generalized Sasakian space forms with semi-symmetric non-metric connections. We show the existence
of a generalized Sasakian space form with a semi-symmetric non-metric connection and give some examples by warped products
endowed with semi-symmetric non-metric connections.
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1. INTRODUCTION

A semi-symmetric linear connection in a differentiable manifold was introduced by Friedmann and Schouten
in [5]. Hayden [6] introduced the idea of a metric connection with torsion in a Riemannian manifold. In [15],
Yano studied a semi-symmetric metric connection in a Riemannian manifold. In [1], Agashe and Chafle
introduced the notion of a semi-symmetric non-metric connection and studied some of its properties.

Furthermore, in [2], Alegre, Blair, and Carriazo introduced the notion of a generalized Sasakian space
form and gave many examples of these manifolds by using some different geometric techniques.

In [11], the present authors studied a warped product manifold endowed with a semi-symmetric metric
connection and found relations between curvature tensors, Ricci tensors, and scalar curvatures of the warped
product manifold with this connection. Moreover, in [12], we considered generalized Sasakian space forms
with semi-symmetric metric connections.

Motivated by the above studies, in the present paper, we consider generalized Sasakian space forms
admitting semi-symmetric non-metric connections. We obtain the existence theorem of a generalized
Sasakian space form with a semi-symmetric non-metric connection and give some examples by the use
of warped products.

The paper is organized as follows: In Section 2, we give a brief introduction to the semi-symmetric
non-metric connection. In Section 3, the definition of a generalized Sasakian space form is given and we
introduce generalized Sasakian space forms endowed with semi-symmetric non-metric connections. In the
last section, the existence theorem of a generalized Sasakian space form with a semi-symmetric non-metric
connection is given by warped productR× f N, where N is a generalized complex space form. In that section
we obtain some examples of generalized Sasakian space forms with non-constant functions with respect to
semi-symmetric non-metric connections.
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2. SEMI-SYMMETRIC NON-METRIC CONNECTION

Let M be an n-dimensional Riemannian manifold with Riemannian metric g. If ∇ is the Levi-Civita

connection of a Riemannian manifold M, a linear connection
◦
∇ is given by

◦
∇XY = ∇XY +η(Y )X , (1)

where η is a 1-form associated with the vector field ξ on M defined by

η(X) = g(X ,ξ ), (2)

(see [1]). By the use of (1), the torsion tensor T of the connection
◦
∇

T (X ,Y ) =
◦
∇XY −

◦
∇Y X− [X ,Y ] (3)

satisfies
T (X ,Y ) = η(Y )X−η(X)Y. (4)

A linear connection
◦
∇ satisfying (4) is called a semi-symmetric connection.

◦
∇ is called a metric connection if

◦
∇g = 0.

If
◦
∇g 6= 0, then

◦
∇ is said to be a non-metric connection. In view of (1), it is easy to see that

(
◦
∇X g)(Y,Z) =−η(Y )g(X ,Z)−η(Z)g(X ,Y ) (5)

for all vector fields X ,Y,Z on M.

Therefore, in view of (4) and (5),
◦
∇ is a semi-symmetric non-metric connection.

Let R and
◦
R be curvature tensors of ∇ and

◦
∇ of a Riemannian manifold M, respectively. Then R and

◦
R

are related by
◦
R(X ,Y )Z = R(X ,Y )Z−α(Y,Z)X +α(X ,Z)Y (6)

for all vector fields X ,Y,Z on M, where α is a (0,2)-tensor field denoted by

α(X ,Y ) = (∇X η)Y −η(X)η(Y ),

(see [15]).

3. GENERALIZED SASAKIAN SPACE FORMS

Let M be an n-dimensional almost contact metric manifold with an almost contact metric structure
(ϕ,ξ ,η ,g) consisting of a (1,1) tensor field ϕ , a vector field ξ , a 1-form η , and a Riemannian metric g
on M satisfying

ϕ2X =−X +η(X)ξ , η(ξ ) = 1, g(ϕX ,ϕY ) = g(X ,Y )−η(X)η(Y )

for all vector fields X ,Y on M [4].
An almost contact metric structure of M is said to be normal if [ϕ,ϕ](X ,Y ) = −2dη(X ,Y )ξ , for any

vector fields X ,Y on M, where [ϕ,ϕ] denotes the Nijenhuis torsion of ϕ , given by [ϕ ,ϕ](X ,Y ) = ϕ2[X ,Y ]+
[ϕX ,ϕY ]− ϕ[ϕX ,Y ]− ϕ[X ,ϕY ]. A normal contact metric manifold is called a Sasakian manifold [4].
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It is well known that an almost contact metric manifold is Sasakian if and only if (∇X ϕ)Y = g(X ,Y )ξ −
η(Y )X . Moreover, the curvature tensor R of a Sasakian manifold satisfies R(X ,Y )ξ = η(Y )X−η(X)Y. An
almost contact metric manifold M is a trans-Sasakian manifold [9] if there exist two functions α and β on
M such that

(∇X ϕ)Y = α[g(X ,Y )ξ −η(Y )X ]+β [g(ϕX ,Y )ξ −η(Y )ϕX ] (7)

for any vector fields X ,Y on M. From (7) it follows that

∇X ξ =−αϕX +β [X−η(X)ξ ]. (8)

If β = 0 (resp. α = 0), then M is said to be an α-Sasakian manifold (resp. β -Kenmotsu manifold). Sasakian
manifolds (resp. Kenmotsu manifolds [7]) appear as examples of α-Sasakian manifolds (β -Kenmotsu
manifolds), with α = 1 (resp. β = 1).

Another kind of trans-Sasakian manifolds is that of cosymplectic manifolds [3], obtained for α = β = 0.
From (8), for a cosymplectic manifold it follows that

∇X ξ = 0.

For an almost contact metric manifold M, a ϕ-section of M at p ∈ M is a section π ⊆ TpM spanned by
a unit vector Xp orthogonal to ξp and ϕXp. The ϕ-sectional curvature of π is defined by K(X ∧ϕX) =
R(X ,ϕX ,ϕX ,X). A Sasakian manifold with constant ϕ-sectional curvature c is called a Sasakian space
form. Similarly, a Kenmotsu manifold with constant ϕ-sectional curvature c is called a Kenmotsu space
form. A cosymplectic manifold with constant ϕ-sectional curvature c is called a cosymplectic space form.

Given an almost contact metric manifold M with an almost contact metric structure (ϕ,ξ ,η ,g), M is
called a generalized Sasakian space form if there exist three functions f1, f2, and f3 on M such that

R(X ,Y )Z = f1{g(Y,Z)X−g(X ,Z)Y}+ f2{g(X ,ϕZ)ϕY −g(Y,ϕZ)ϕX +2g(X ,ϕY )ϕZ)}
+ f3{η(X)η(Z)Y −η(Y )η(Z)X +g(X ,Z)η(Y )ξ −g(Y,Z)η(X)ξ} (9)

for any vector fields X ,Y,Z on M, where R denotes the curvature tensor of M. If f1 = c+3
4 , f2 = f3 = c−1

4 ,
then M is a Sasakian space form; if f1 = c−3

4 , f2 = f3 = c+1
4 , then M is a Kenmotsu space form; if

f1 = f2 = f3 = c
4 , then M is a cosymplectic space form.

Let
◦
∇ be semi-symmetric non-metric connection on an almost contact metric manifold M. We define

M as a generalized Sasakian space form with semi-symmetric non-metric connection if there exist four
functions f̃1, f̃2, f̃3, and f̃4 on M such that

◦
R(X ,Y )Z = f̃1{g(Y,Z)X−g(X ,Z)Y}+ f̃2{g(X ,ϕZ)ϕY −g(Y,ϕZ)ϕX +2g(X ,ϕY )ϕZ}

+ f̃3{η(X)η(Z)Y −η(Y )η(Z)X}+ f̃4{g(X ,Z)η(Y )ξ −g(Y,Z)η(X)ξ}

for any vector fields X ,Y,Z on M, where
◦
R denotes the curvature tensor of M with respect to semi-symmetric

non-metric connection
◦
∇.

Example 3.1. A cosymplectic space form with a semi-symmetric non-metric connection is a generalized
Sasakian space form with a semi-symmetric non-metric connection such that f̃1 = f̃2 = f̃4 = c

4 and f̃3 = c−4
4 .

Example 3.2. A Kenmotsu space form with a semi-symmetric non-metric connection is a generalized
Sasakian space form with a semi-symmetric non-metric connection such that f̃1 = f̃3 = c−7

4 and f̃2 = f̃4 =
c+1

4 .
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Remark 3.3. A Sasakian space form with a semi-symmetric non-metric connection is not a generalized
Sasakian space form with a semi-symmetric non-metric connection.

If (M,J,g) is a Kaehlerian manifold (i.e., a smooth manifold with a (1,1)-tensor field J and a
Riemannian metric g such that J2 =−I, g(JX ,JY ) = g(X ,Y ), ∇J = 0 for arbitrary vector fields X ,Y on M,
where I is identity tensor field and ∇ the Riemannian connection of g) with constant holomorphic sectional
curvature K(X ∧ JX) = c, then it is said to be a complex space form if its curvature tensor is given by

R(X ,Y )Z =
c
4
{g(Y,Z)X−g(X ,Z)Y +g(X ,JZ)JY −g(Y,JZ)JY +2g(X ,JY )JZ}.

Models for these spaces are Cn, CPn, and CHn, depending on c = 0, c > 0, or c < 0.
More generally, if the curvature tensor of an almost Hermitian manifold M satisfies

R(X ,Y )Z = F1{g(Y,Z)X−g(X ,Z)Y}+F2{g(X ,JZ)JY −g(Y,JZ)JY +2g(X ,JY )JZ},

where F1 and F2 are differentiable functions on M, then M is said to be a generalized complex space form
(see [13] and [14]).

4. EXISTENCE OF A GENERALIZED SASAKIAN SPACE FORM WITH A
SEMI-SYMMETRIC NON-METRIC CONNECTION

Let (M1,gM1
) and (M2,gM2

) be two Riemannian manifolds and f a positive differentiable function on M1.
Consider the product manifold M1×M2 with its projections π : M1×M2 →M1 and σ : M1×M2 →M2. The
warped product M1× f M2 is the manifold M1×M2 with the Riemannian structure such that

‖X‖2 = ‖π∗(X)‖2 + f 2(π(p))‖σ∗ (X)‖2

for any tangent vector X ∈ T M. Thus we have that

g = gM1
+ f 2gM2

(10)

holds on M. The function f is called the warping function of the warped product [8].
We need the following lemma from [10] for later use:

Lemma 4.1. Let M = M1× f M2 be a warped product and R and
◦
R denote the Riemannian curvature tensors

of M with respect to the Levi-Civita connection and the semi-symmetric non-metric connection, respectively.
If X ,Y,Z ∈ χ(M1), U,V,W ∈ χ(M2) and ξ ∈ χ(M1), then

(i)
◦
R(X ,Y )Z ∈ χ(M1) is the lift of M1

◦
R(X ,Y )Z on M1,

(ii)
◦
R(V,X)Y = [−H f (X ,Y )/ f −g(Y,∇X ξ )+η(X)η(Y )]V,

(iii)
◦
R(X ,Y )V = 0,

(iv)
◦
R(V,W )X = 0,

(v)
◦
R(X ,V )W =−g(V,W )[(∇X grad f )/ f +(ξ f/ f )X ],

(vi)
◦
R(U,V )W =M2 R(U,V )W −{‖grad f‖2 / f 2 +(ξ f/ f )}[g(V,W )U−g(U,W )V ].

Now, let us begin with the existence theorem of a generalized Sasakian space form with a semi-
symmetric non-metric connection:
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Theorem 4.2. Let N(F1,F2) be a generalized complex space form. Then the warped product M = R× f N
endowed with the almost contact metric structure (ϕ,ξ ,η ,g) with a semi-symmetric non-metric connection
is a generalized Sasakian space form with a semi-symmetric non-metric connection such that

f̃1 = (F1◦π)
f 2 −

[(
f ′
f

)2
+ f ′

f

]
, f̃2 = (F2◦π)

f 2 ,

f̃3 = (F1◦π)
f 2 −

[(
f ′
f

)2
+ f ′

f

]
+ ( f ′′− f )

f , f̃4 = (F1◦π)
f 2 −

[(
f ′
f

)2
− f ′′

f

]
.

Proof. For any vector fields X ,Y,Z on M, we can write

X = η(X)ξ +U,

Y = η(Y )ξ +V,

and
Z = η(Z)ξ +W,

where U,V,W are vector fields on a generalized complex space form N. Since the structure vector field ξ is
on R, then in view of Lemma 4.1 we have

◦
R(X ,Y )Z =η(X)η(Z)

[
H f (ξ ,ξ )

f
−1

]
V −η(X)g(V,W )[(∇ξ grad f )/ f +(ξ f/ f )ξ ]

−η(Y )η(Z)
[

H f (ξ ,ξ )
f

−1
]

U +η(Y )g(U,W )[(∇ξ grad f )/ f +(ξ f / f )ξ ]

+N R(U,V )W −{‖grad f‖2 / f 2 +(ξ f / f )}[g(V,W )U−g(U,W )V ]. (11)

Since f = f (t), grad f = f ′ξ , we get

∇ξ grad f = f ′′ξ + f ′∇ξ ξ .

By virtue of Proposition 35 on page 206 in [8], since ∇ξ ξ = 0, the above equation reduces to

∇ξ grad f = f ′′ξ . (12)

Moreover, we have
H f (ξ ,ξ ) = g(∇ξ grad f ,ξ ) = f ′′, (13)

‖grad f‖2 = ( f ′)2, ξ f = g(grad f ,ξ ) = f ′. (14)

By virtue of equations (10), (12), (13), and (14) in (11) and by using the fact that N is a generalized complex
space form, we have

◦
R(X ,Y )Z =

(
f ′′− f

f

)
{η(X)η(Z)V −η(Y )η(Z)U}

+
(

f ′′+ f ′

f

)
{ f 2gM2(U,W )η(Y )ξ − f 2gM2(V,W )η(X)ξ}

+(F1 ◦π){gM2(V,W )U−gM2(U,W )V}
+(F2 ◦π){gM2(U,JW )JV −gM2(V,JW )JU +2gM2(U,JV )JW}

+

((
f ′

f

)2

+
f ′

f

)
{ f 2gM2(U,W )V − f 2gM2(V,W )U}.
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In view of Equation (10) and by the use of the relations between the vector fields X ,Y,Z and U,V,W , the
above equation reduces to

◦
R(X ,Y )Z =

(
(F1 ◦π)

f 2 −
[(

f ′

f

)2

+
f ′

f

])
{g(Y,Z)X−g(X ,Z)Y}

+
(

F2 ◦π
f 2

)
{g(X ,ϕZ)ϕY −g(Y,ϕZ)ϕX +2g(X ,ϕY )ϕZ}

+

(
(F1 ◦π)

f 2 −
[(

f ′

f

)2

+
f ′

f

]
+

( f ′′− f )
f

)
{η(X)η(Z)Y −η(Y )η(Z)X}

+

(
(F1 ◦π)

f 2 −
[(

f ′

f

)2

− f ′′

f

])
{g(Y,Z)η(X)ξ −g(X ,Z)η(Y )ξ}.

Therefore, we complete the proof of the theorem. ¤

So we can state the following corollaries:

Corollary 4.3. If N(a,b) is a generalized complex space form with constant functions, then we have a
generalized Sasakian space form with a semi-symmetric non-metric connection with non-constant functions
such that

f̃1 = a
f 2 −

[(
f ′
f

)2
+ f ′

f

]
, f̃2 = b

f 2 ,

f̃3 = a
f 2 −

[(
f ′
f

)2
+ f ′

f

]
+ ( f ′′− f )

f , f̃4 = a
f 2 −

[(
f ′
f

)2
− f ′′

f

]
.

Corollary 4.4. If N(c) is a complex space form, we have

f̃1 = c
4 f 2 −

[(
f ′
f

)2
+ f ′

f

]
, f̃2 = c

4 f 2 ,

f̃3 = c
4 f 2 −

[(
f ′
f

)2
+ f ′

f

]
+ ( f ′′− f )

f , f̃4 = c
4 f 2 −

[(
f ′
f

)2
− f ′′

f

]
.

Hence, the warped product M = R× f N(c) is a generalized Sasakian space form with a semi-symmetric

non-metric connection
◦
∇.

Thus, for example, the warped product R× f Cn with non-constant functions

f̃1 =−
[(

f ′
f

)2
+ f ′

f

]
, f̃2 = 0,

f̃3 =−
[(

f ′
f

)2
+ f ′

f

]
+ ( f ′′− f )

f , f̃4 =−
[(

f ′
f

)2
− f ′′

f

]
,

the warped product R× f CPn(4) with non-constant functions

f̃1 = 1
f 2 −

[(
f ′
f

)2
+ f ′

f

]
, f̃2 = 1

f 2 ,
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f̃3 = 1
f 2 −

[(
f ′
f

)2
+ f ′

f

]
+ ( f ′′− f )

f , f̃4 = 1
f 2 −

[(
f ′
f

)2
− f ′′

f

]
,

and the warped product R× f CHn(−4) with non-constant functions

f̃1 =− 1
f 2 −

[(
f ′
f

)2
+ f ′

f

]
, f̃2 =− 1

f 2 ,

f̃3 =− 1
f 2 −

[(
f ′
f

)2
+ f ′

f

]
+ ( f ′′− f )

f , f̃4 =− 1
f 2 −

[(
f ′
f

)2
− f ′′

f

]

are generalized Sasakian space forms with semi-symmetric non-metric connections, respectively.
Hence, this method gives us some examples of generalized Sasakian space forms with semi-symmetric

non-metric connections with arbitrary dimensions and non-constant functions.

5. CONCLUSION

Generalized Sasakian space forms with semi-symmetric non-metric connections are introduced. It is shown
that if N(F1,F2) is a generalized complex space form, then the warped product M =R× f N endowed with the
almost contact metric structure (ϕ,ξ ,η ,g) with a semi-symmetric non-metric connection is a generalized
Sasakian space form with a semi-symmetric non-metric connection. Using this method, we obtain some
examples of generalized Sasakian space forms with semi-symmetric non-metric connections with arbitrary
dimensions and non-constant functions.
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Poolsümmeetrilise mittemeetrilise seostusega üldistatud Sasaki ruumivormid

Sibel Sular ja Cihan Özgür

On tutvustatud poolsümmeetrilise mittemeetrilise seostusega üldistatud Sasaki ruumivorme. On defineeri-
tud poolsümmeetrilise mittemeetrilise seostusega üldistatud Sasaki ruumivormi mõiste, tõestatud olemas-
oluteoreem ja toodud selliste ruumivormide näiteid.


