

Proceedings of the Estonian Academy of Sciences, 2011, **60**, 4, 251–257 doi: 10.3176/proc.2011.4.05 Available online at www.eap.ee/proceedings

MATHEMATICS

Generalized Sasakian space forms with semi-symmetric non-metric connections

Sibel Sular and Cihan Özgür*

Department of Mathematics, Balıkesir University, 10145, Çağış, Balıkesir, Turkey

Received 23 August 2010, accepted 18 January 2011

Abstract. We introduce generalized Sasakian space forms with semi-symmetric non-metric connections. We show the existence of a generalized Sasakian space form with a semi-symmetric non-metric connection and give some examples by warped products endowed with semi-symmetric non-metric connections.

Key words: generalized Sasakian space form, warped product, semi-symmetric non-metric connection.

1. INTRODUCTION

A semi-symmetric linear connection in a differentiable manifold was introduced by Friedmann and Schouten in [5]. Hayden [6] introduced the idea of a metric connection with torsion in a Riemannian manifold. In [15], Yano studied a semi-symmetric metric connection in a Riemannian manifold. In [1], Agashe and Chafle introduced the notion of a semi-symmetric non-metric connection and studied some of its properties.

Furthermore, in [2], Alegre, Blair, and Carriazo introduced the notion of a generalized Sasakian space form and gave many examples of these manifolds by using some different geometric techniques.

In [11], the present authors studied a warped product manifold endowed with a semi-symmetric metric connection and found relations between curvature tensors, Ricci tensors, and scalar curvatures of the warped product manifold with this connection. Moreover, in [12], we considered generalized Sasakian space forms with semi-symmetric metric connections.

Motivated by the above studies, in the present paper, we consider generalized Sasakian space forms admitting semi-symmetric non-metric connections. We obtain the existence theorem of a generalized Sasakian space form with a semi-symmetric non-metric connection and give some examples by the use of warped products.

The paper is organized as follows: In Section 2, we give a brief introduction to the semi-symmetric non-metric connection. In Section 3, the definition of a generalized Sasakian space form is given and we introduce generalized Sasakian space forms endowed with semi-symmetric non-metric connections. In the last section, the existence theorem of a generalized Sasakian space form with a semi-symmetric non-metric connection is given by warped product $\mathbb{R} \times_f N$, where *N* is a generalized complex space form. In that section we obtain some examples of generalized Sasakian space forms with non-constant functions with respect to semi-symmetric non-metric connections.

^{*} Corresponding author, cozgur@balikesir.edu.tr

2. SEMI-SYMMETRIC NON-METRIC CONNECTION

Let *M* be an *n*-dimensional Riemannian manifold with Riemannian metric *g*. If ∇ is the Levi-Civita connection of a Riemannian manifold *M*, a linear connection $\stackrel{\circ}{\nabla}$ is given by

$$\stackrel{\circ}{\nabla}_X Y = \nabla_X Y + \eta(Y)X,\tag{1}$$

where η is a 1-form associated with the vector field ξ on M defined by

$$\eta(X) = g(X,\xi),\tag{2}$$

(see [1]). By the use of (1), the torsion tensor T of the connection ∇

$$T(X,Y) = \overset{\circ}{\nabla}_X Y - \overset{\circ}{\nabla}_Y X - [X,Y]$$
(3)

satisfies

$$T(X,Y) = \eta(Y)X - \eta(X)Y.$$
(4)

A linear connection $\overset{\circ}{\nabla}$ satisfying (4) is called a *semi-symmetric connection*. $\overset{\circ}{\nabla}$ is called a *metric connection* if

$$\overset{\circ}{\nabla}g=0$$

If $\stackrel{\circ}{\nabla}g \neq 0$, then $\stackrel{\circ}{\nabla}$ is said to be a *non-metric connection*. In view of (1), it is easy to see that

$$(\tilde{\nabla}_X g)(Y, Z) = -\eta(Y)g(X, Z) - \eta(Z)g(X, Y)$$
(5)

for all vector fields X, Y, Z on M.

Therefore, in view of (4) and (5), $\stackrel{\circ}{\nabla}$ is a semi-symmetric non-metric connection.

Let *R* and $\overset{\circ}{R}$ be curvature tensors of ∇ and $\overset{\circ}{\nabla}$ of a Riemannian manifold *M*, respectively. Then *R* and $\overset{\circ}{R}$ are related by

$$R(X,Y)Z = R(X,Y)Z - \alpha(Y,Z)X + \alpha(X,Z)Y$$
(6)

for all vector fields X, Y, Z on M, where α is a (0,2)-tensor field denoted by

$$\alpha(X,Y) = (\nabla_X \eta)Y - \eta(X)\eta(Y).$$

(see [15]).

3. GENERALIZED SASAKIAN SPACE FORMS

Let *M* be an *n*-dimensional almost contact metric manifold with an almost contact metric structure (φ, ξ, η, g) consisting of a (1,1) tensor field φ , a vector field ξ , a 1-form η , and a Riemannian metric *g* on *M* satisfying

$$\varphi^2 X = -X + \eta(X)\xi, \qquad \eta(\xi) = 1, \qquad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for all vector fields X, Y on M [4].

An almost contact metric structure of *M* is said to be *normal* if $[\varphi, \varphi](X,Y) = -2d\eta(X,Y)\xi$, for any vector fields *X*, *Y* on *M*, where $[\varphi, \varphi]$ denotes the Nijenhuis torsion of φ , given by $[\varphi, \varphi](X,Y) = \varphi^2[X,Y] + [\varphi X, \varphi Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y]$. A normal contact metric manifold is called a *Sasakian manifold* [4].

It is well known that an almost contact metric manifold is Sasakian if and only if $(\nabla_X \varphi)Y = g(X,Y)\xi - \eta(Y)X$. Moreover, the curvature tensor *R* of a Sasakian manifold satisfies $R(X,Y)\xi = \eta(Y)X - \eta(X)Y$. An almost contact metric manifold *M* is a *trans-Sasakian manifold* [9] if there exist two functions α and β on *M* such that

$$(\nabla_X \varphi)Y = \alpha[g(X,Y)\xi - \eta(Y)X] + \beta[g(\varphi X,Y)\xi - \eta(Y)\varphi X]$$
(7)

for any vector fields X, Y on M. From (7) it follows that

$$\nabla_X \xi = -\alpha \varphi X + \beta [X - \eta (X) \xi].$$
(8)

If $\beta = 0$ (resp. $\alpha = 0$), then *M* is said to be an α -Sasakian manifold (resp. β -Kenmotsu manifold). Sasakian manifolds (resp. Kenmotsu manifolds [7]) appear as examples of α -Sasakian manifolds (β -Kenmotsu manifolds), with $\alpha = 1$ (resp. $\beta = 1$).

Another kind of trans-Sasakian manifolds is that of *cosymplectic manifolds* [3], obtained for $\alpha = \beta = 0$. From (8), for a cosymplectic manifold it follows that

$$\nabla_X \xi = 0.$$

For an almost contact metric manifold M, a φ -section of M at $p \in M$ is a section $\pi \subseteq T_p M$ spanned by a unit vector X_p orthogonal to ξ_p and φX_p . The φ -sectional curvature of π is defined by $K(X \land \varphi X) =$ $R(X, \varphi X, \varphi X, X)$. A Sasakian manifold with constant φ -sectional curvature c is called a *Sasakian space* form. Similarly, a Kenmotsu manifold with constant φ -sectional curvature c is called a *Kenmotsu space* form. A cosymplectic manifold with constant φ -sectional curvature c is called a *cosymplectic space form*.

Given an almost contact metric manifold M with an almost contact metric structure (φ, ξ, η, g) , M is called a *generalized Sasakian space form* if there exist three functions f_1, f_2 , and f_3 on M such that

$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + f_2\{g(X,\varphi Z)\varphi Y - g(Y,\varphi Z)\varphi X + 2g(X,\varphi Y)\varphi Z)\}$$

+ $f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}$ (9)

for any vector fields X, Y, Z on M, where R denotes the curvature tensor of M. If $f_1 = \frac{c+3}{4}$, $f_2 = f_3 = \frac{c-1}{4}$, then M is a Sasakian space form; if $f_1 = \frac{c-3}{4}$, $f_2 = f_3 = \frac{c+1}{4}$, then M is a Kenmotsu space form; if $f_1 = f_2 = f_3 = \frac{c}{4}$, then M is a cosymplectic space form.

Let ∇ be semi-symmetric non-metric connection on an almost contact metric manifold M. We define M as a generalized Sasakian space form with semi-symmetric non-metric connection if there exist four functions $\tilde{f}_1, \tilde{f}_2, \tilde{f}_3$, and \tilde{f}_4 on M such that

$$\begin{split} \ddot{R}(X,Y)Z = &\widetilde{f}_1\{g(Y,Z)X - g(X,Z)Y\} + \widetilde{f}_2\{g(X,\varphi Z)\varphi Y - g(Y,\varphi Z)\varphi X + 2g(X,\varphi Y)\varphi Z\} \\ &+ \widetilde{f}_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X\} + \widetilde{f}_4\{g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\} \end{split}$$

for any vector fields X, Y, Z on M, where \hat{R} denotes the curvature tensor of M with respect to semi-symmetric non-metric connection $\hat{\nabla}$.

Example 3.1. A cosymplectic space form with a semi-symmetric non-metric connection is a generalized Sasakian space form with a semi-symmetric non-metric connection such that $\tilde{f}_1 = \tilde{f}_2 = \tilde{f}_4 = \frac{c}{4}$ and $\tilde{f}_3 = \frac{c-4}{4}$.

Example 3.2. A Kenmotsu space form with a semi-symmetric non-metric connection is a generalized Sasakian space form with a semi-symmetric non-metric connection such that $\tilde{f}_1 = \tilde{f}_3 = \frac{c-7}{4}$ and $\tilde{f}_2 = \tilde{f}_4 = \frac{c+1}{4}$.

Remark 3.3. A Sasakian space form with a semi-symmetric non-metric connection is not a generalized Sasakian space form with a semi-symmetric non-metric connection.

If (M, J, g) is a Kaehlerian manifold (i.e., a smooth manifold with a (1, 1)-tensor field J and a Riemannian metric g such that $J^2 = -I$, g(JX, JY) = g(X, Y), $\nabla J = 0$ for arbitrary vector fields X, Y on M, where I is identity tensor field and ∇ the Riemannian connection of g) with constant holomorphic sectional curvature $K(X \wedge JX) = c$, then it is said to be a *complex space form* if its curvature tensor is given by

$$R(X,Y)Z = \frac{c}{4} \{ g(Y,Z)X - g(X,Z)Y + g(X,JZ)JY - g(Y,JZ)JY + 2g(X,JY)JZ \}.$$

Models for these spaces are \mathbb{C}^n , $\mathbb{C}P^n$, and $\mathbb{C}H^n$, depending on c = 0, c > 0, or c < 0.

More generally, if the curvature tensor of an almost Hermitian manifold *M* satisfies

$$R(X,Y)Z = F_1\{g(Y,Z)X - g(X,Z)Y\} + F_2\{g(X,JZ)JY - g(Y,JZ)JY + 2g(X,JY)JZ\},\$$

where F_1 and F_2 are differentiable functions on M, then M is said to be a *generalized complex space form* (see [13] and [14]).

4. EXISTENCE OF A GENERALIZED SASAKIAN SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

Let (M_1, g_{M_1}) and (M_2, g_{M_2}) be two Riemannian manifolds and f a positive differentiable function on M_1 . Consider the product manifold $M_1 \times M_2$ with its projections $\pi : M_1 \times M_2 \to M_1$ and $\sigma : M_1 \times M_2 \to M_2$. The *warped product* $M_1 \times_f M_2$ is the manifold $M_1 \times M_2$ with the Riemannian structure such that

$$||X||^{2} = ||\pi^{*}(X)||^{2} + f^{2}(\pi(p)) ||\sigma^{*}(X)||^{2}$$

for any tangent vector $X \in TM$. Thus we have that

$$g = g_{M_1} + f^2 g_{M_2} \tag{10}$$

holds on M. The function f is called the *warping function* of the warped product [8].

We need the following lemma from [10] for later use:

Lemma 4.1. Let $M = M_1 \times_f M_2$ be a warped product and R and \tilde{R} denote the Riemannian curvature tensors of M with respect to the Levi-Civita connection and the semi-symmetric non-metric connection, respectively. If $X, Y, Z \in \chi(M_1), U, V, W \in \chi(M_2)$ and $\xi \in \chi(M_1)$, then

(i)
$$\overset{\circ}{R}(X,Y)Z \in \chi(M_1)$$
 is the lift of $^{M_1}\overset{\circ}{R}(X,Y)Z$ on M_1 ,
(ii) $\overset{\circ}{R}(V,X)Y = [-H^f(X,Y)/f - g(Y,\nabla_X\xi) + \eta(X)\eta(Y)]V$,
(iii) $\overset{\circ}{R}(X,Y)V = 0$,
(iv) $\overset{\circ}{R}(V,W)X = 0$,
(v) $\overset{\circ}{R}(X,V)W = -g(V,W)[(\nabla_X \operatorname{grad} f)/f + (\xi f/f)X],$
(vi) $\overset{\circ}{R}(U,V)W = ^{M_2}R(U,V)W - \{\|\operatorname{grad} f\|^2/f^2 + (\xi f/f)\}[g(V,W)U - g(U,W)V].$

Now, let us begin with the existence theorem of a generalized Sasakian space form with a semisymmetric non-metric connection: S. Sular and C. Özgür: Generalized Sasakian space forms

Theorem 4.2. Let $N(F_1, F_2)$ be a generalized complex space form. Then the warped product $M = \mathbb{R} \times_f N$ endowed with the almost contact metric structure (φ, ξ, η, g) with a semi-symmetric non-metric connection is a generalized Sasakian space form with a semi-symmetric non-metric connection such that

$$\widetilde{f}_{1} = \frac{(F_{1} \circ \pi)}{f^{2}} - \left[\left(\frac{f'}{f} \right)^{2} + \frac{f'}{f} \right], \quad \widetilde{f}_{2} = \frac{(F_{2} \circ \pi)}{f^{2}},$$
$$\widetilde{f}_{3} = \frac{(F_{1} \circ \pi)}{f^{2}} - \left[\left(\frac{f'}{f} \right)^{2} + \frac{f'}{f} \right] + \frac{(f'' - f)}{f}, \quad \widetilde{f}_{4} = \frac{(F_{1} \circ \pi)}{f^{2}} - \left[\left(\frac{f'}{f} \right)^{2} - \frac{f''}{f} \right].$$

Proof. For any vector fields X, Y, Z on M, we can write

$$X = \eta(X)\xi + U,$$

$$Y = \eta(Y)\xi + V,$$

and

 $Z=\eta(Z)\xi+W,$

where U, V, W are vector fields on a generalized complex space form N. Since the structure vector field ξ is on \mathbb{R} , then in view of Lemma 4.1 we have

$$\overset{\circ}{R}(X,Y)Z = \eta(X)\eta(Z) \left[\frac{H^{f}(\xi,\xi)}{f} - 1 \right] V - \eta(X)g(V,W)[(\nabla_{\xi} \operatorname{grad} f)/f + (\xi f/f)\xi] - \eta(Y)\eta(Z) \left[\frac{H^{f}(\xi,\xi)}{f} - 1 \right] U + \eta(Y)g(U,W)[(\nabla_{\xi} \operatorname{grad} f)/f + (\xi f/f)\xi] + {}^{N}R(U,V)W - \{\|\operatorname{grad} f\|^{2}/f^{2} + (\xi f/f)\}[g(V,W)U - g(U,W)V].$$
(11)

Since f = f(t), grad $f = f'\xi$, we get

$$\nabla_{\xi} \operatorname{grad} f = f'' \xi + f' \nabla_{\xi} \xi.$$

By virtue of Proposition 35 on page 206 in [8], since $\nabla_{\xi} \xi = 0$, the above equation reduces to

$$\nabla_{\xi} \operatorname{grad} f = f'' \xi. \tag{12}$$

Moreover, we have

$$H^{f}(\xi,\xi) = g(\nabla_{\xi}\operatorname{grad} f,\xi) = f'', \tag{13}$$

$$\|\operatorname{grad} f\|^2 = (f')^2, \quad \xi f = g(\operatorname{grad} f, \xi) = f'.$$
 (14)

By virtue of equations (10), (12), (13), and (14) in (11) and by using the fact that N is a generalized complex space form, we have

$$\overset{\circ}{R}(X,Y)Z = \left(\frac{f''-f}{f}\right) \{\eta(X)\eta(Z)V - \eta(Y)\eta(Z)U\} + \left(\frac{f''+f'}{f}\right) \{f^2g_{M_2}(U,W)\eta(Y)\xi - f^2g_{M_2}(V,W)\eta(X)\xi\} + (F_1 \circ \pi)\{g_{M_2}(V,W)U - g_{M_2}(U,W)V\} + (F_2 \circ \pi)\{g_{M_2}(U,JW)JV - g_{M_2}(V,JW)JU + 2g_{M_2}(U,JV)JW\} + \left(\left(\frac{f'}{f}\right)^2 + \frac{f'}{f}\right)\{f^2g_{M_2}(U,W)V - f^2g_{M_2}(V,W)U\}.$$

In view of Equation (10) and by the use of the relations between the vector fields X, Y, Z and U, V, W, the above equation reduces to

$$\begin{split} \overset{\circ}{R}(X,Y)Z &= \left(\frac{(F_1 \circ \pi)}{f^2} - \left[\left(\frac{f'}{f}\right)^2 + \frac{f'}{f}\right]\right) \left\{g(Y,Z)X - g(X,Z)Y\right\} \\ &+ \left(\frac{F_2 \circ \pi}{f^2}\right) \left\{g(X,\varphi Z)\varphi Y - g(Y,\varphi Z)\varphi X + 2g(X,\varphi Y)\varphi Z\right\} \\ &+ \left(\frac{(F_1 \circ \pi)}{f^2} - \left[\left(\frac{f'}{f}\right)^2 + \frac{f'}{f}\right] + \frac{(f''-f)}{f}\right) \left\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X\right\} \\ &+ \left(\frac{(F_1 \circ \pi)}{f^2} - \left[\left(\frac{f'}{f}\right)^2 - \frac{f''}{f}\right]\right) \left\{g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi\right\}. \end{split}$$

Therefore, we complete the proof of the theorem.

So we can state the following corollaries:

Corollary 4.3. If N(a,b) is a generalized complex space form with constant functions, then we have a generalized Sasakian space form with a semi-symmetric non-metric connection with non-constant functions such that

$$\widetilde{f}_1 = \frac{a}{f^2} - \left\lfloor \left(\frac{f'}{f}\right)^2 + \frac{f'}{f} \right\rfloor, \quad \widetilde{f}_2 = \frac{b}{f^2},$$
$$\widetilde{f}_3 = \frac{a}{f^2} - \left\lfloor \left(\frac{f'}{f}\right)^2 + \frac{f'}{f} \right\rfloor + \frac{(f''-f)}{f}, \quad \widetilde{f}_4 = \frac{a}{f^2} - \left\lfloor \left(\frac{f'}{f}\right)^2 - \frac{f''}{f} \right\rfloor.$$

Corollary 4.4. If N(c) is a complex space form, we have

$$\widetilde{f}_{1} = \frac{c}{4f^{2}} - \left[\left(\frac{f'}{f} \right)^{2} + \frac{f'}{f} \right], \quad \widetilde{f}_{2} = \frac{c}{4f^{2}},$$
$$\widetilde{f}_{3} = \frac{c}{4f^{2}} - \left[\left(\frac{f'}{f} \right)^{2} + \frac{f'}{f} \right] + \frac{(f''-f)}{f}, \quad \widetilde{f}_{4} = \frac{c}{4f^{2}} - \left[\left(\frac{f'}{f} \right)^{2} - \frac{f''}{f} \right].$$

Hence, the warped product $M = \mathbb{R} \times_f N(c)$ is a generalized Sasakian space form with a semi-symmetric non-metric connection $\stackrel{\circ}{\nabla}$.

Thus, for example, the warped product $\mathbb{R} \times_f \mathbb{C}^n$ with non-constant functions

$$\widetilde{f}_1 = -\left[\left(\frac{f'}{f}\right)^2 + \frac{f'}{f}\right], \quad \widetilde{f}_2 = 0,$$

$$\widetilde{f}_3 = -\left[\left(\frac{f'}{f}\right)^2 + \frac{f'}{f}\right] + \frac{(f''-f)}{f}, \quad \widetilde{f}_4 = -\left[\left(\frac{f'}{f}\right)^2 - \frac{f''}{f}\right],$$

the warped product $\mathbb{R} \times_f \mathbb{C}P^n(4)$ with non-constant functions

$$\widetilde{f}_1 = \frac{1}{f^2} - \left[\left(\frac{f'}{f} \right)^2 + \frac{f'}{f} \right], \quad \widetilde{f}_2 = \frac{1}{f^2},$$

S. Sular and C. Özgür: Generalized Sasakian space forms

$$\widetilde{f}_3 = \frac{1}{f^2} - \left[\left(\frac{f'}{f} \right)^2 + \frac{f'}{f} \right] + \frac{(f''-f)}{f}, \quad \widetilde{f}_4 = \frac{1}{f^2} - \left[\left(\frac{f'}{f} \right)^2 - \frac{f''}{f} \right],$$

and the warped product $\mathbb{R} \times_f \mathbb{C}H^n(-4)$ with non-constant functions

$$\widetilde{f}_{1} = -\frac{1}{f^{2}} - \left[\left(\frac{f'}{f} \right)^{2} + \frac{f'}{f} \right], \quad \widetilde{f}_{2} = -\frac{1}{f^{2}},$$
$$\widetilde{f}_{3} = -\frac{1}{f^{2}} - \left[\left(\frac{f'}{f} \right)^{2} + \frac{f'}{f} \right] + \frac{(f''-f)}{f}, \quad \widetilde{f}_{4} = -\frac{1}{f^{2}} - \left[\left(\frac{f'}{f} \right)^{2} - \frac{f''}{f} \right]$$

are generalized Sasakian space forms with semi-symmetric non-metric connections, respectively.

Hence, this method gives us some examples of generalized Sasakian space forms with semi-symmetric non-metric connections with arbitrary dimensions and non-constant functions.

5. CONCLUSION

Generalized Sasakian space forms with semi-symmetric non-metric connections are introduced. It is shown that if $N(F_1, F_2)$ is a generalized complex space form, then the warped product $M = \mathbb{R} \times_f N$ endowed with the almost contact metric structure (φ, ξ, η, g) with a semi-symmetric non-metric connection is a generalized Sasakian space form with a semi-symmetric non-metric connection. Using this method, we obtain some examples of generalized Sasakian space forms with semi-symmetric non-metric connections with arbitrary dimensions and non-constant functions.

REFERENCES

- Agashe, N. S. and Chafle, M. R. A semi-symmetric non-metric connection on a Riemannian manifold. *Indian J. Pure Appl. Math.*, 1992, 23(6), 399–409.
- 2. Alegre, P., Blair, D. E., and Carriazo, A. Generalized Sasakian-space-forms. Israel J. Math., 2004, 141, 157-183.
- 3. Blair, D. E. The theory of quasi-Sasakian structures. J. Differ. Geom., 1967, 1, 331–345.
- 4. Blair, D. E. Riemannian Geometry of Contact and Symplectic Manifolds. Birkhauser, Boston, 2002.
- Friedmann, A. and Schouten, J. A. Über die Geometrie der halbsymmetrischen Übertragungen. (*German*) Math. Z., 1924, 21(1), 211–223.
- 6. Hayden, H. A. Subspace of a space with torsion. P. Lond. Math. Soc. II Ser., 1932, 34, 27-50.
- 7. Kenmotsu, K. A class of almost contact Riemannian manifolds. *Tôhoku Math. J.*, 1972, 24, 93–103.
- 8. O'Neill, B. Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York, London 1983.
- 9. Oubiña, J. A. New classes of almost contact metric structures. *Publ. Math. Debrecen*, 1985, **32**, 187–193.
- 10. Özgür, C. and Sular, S. Warped products with semi-symmetric non-metric connections. Arab. J. Sci. Eng., 2011, 36, 461–473.
- 11. Sular, S. and Özgür, C. Warped product manifolds with semi-symmetric metric connections. *Taiwan. J. Math.*, 2011, **15**, 1701–1719.
- 12. Sular, S. and Özgür, C. Generalized Sasakian space forms with semi-symmetric metric connections. An. Stiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), forthcoming.
- 13. Tricerri, F. and Vanhecke, L. Curvature tensors on almost Hermitian manifolds. T. Am. Math. Soc., 1981, 267, 365–398.
- Vanhecke, L. Almost Hermitian manifolds with J-invariant Riemann curvature tensor. *Rendiconti del Seminario Mathematico della Universitá e Politecnico di Torino*, 1975–76, 34, 487–498.
- 15. Yano, K. On semi-symmetric metric connections. Rev. Roumaine Math. Pures Appl., 1970, 15, 1579–1586.

Poolsümmeetrilise mittemeetrilise seostusega üldistatud Sasaki ruumivormid

Sibel Sular ja Cihan Özgür

On tutvustatud poolsümmeetrilise mittemeetrilise seostusega üldistatud Sasaki ruumivorme. On defineeritud poolsümmeetrilise mittemeetrilise seostusega üldistatud Sasaki ruumivormi mõiste, tõestatud olemasoluteoreem ja toodud selliste ruumivormide näiteid.