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Abstract. The schemata theorem, on which the working of Genetic Algorithm 
(GA) is based in its current form, has a fallacious selection procedure and 
incomplete crossover operation. In this paper, generalization of the schemata 
theorem has been provided by correcting and removing these limitations. The 
analysis shows that similarity growth within GA population is inherent due to 
its stochastic nature. While the stochastic property helps in GA’s convergence. 
The similarity growth is responsible for stalling and becomes more prevalent 
for hard optimization problem like protein structure prediction (PSP). While it 
is very essential that GA should explore the vast and complicated search 
landscape, in reality, it is often stuck in local minima. This paper shows that, 
removal of members of population having certain percentage of similarity 
would keep GA perform better, balancing and maintaining convergence 
property intact as well as avoids stalling.  
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1   Introduction 

Protein structure prediction (PSP) using lattice model is regarded as a very hard 
optimization problem. This is because the prediction using lattice model is proven to 
be NP-complete [1],[2] and the number of possible valid (i.e., self avoiding walk) 
conformation is astronomical [3], [4]. We have chosen Genetic Algorithm (GA) as a 
vehicle for providing solution to the protein structure prediction (PSP) problem for its 
performance in various domains [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. 
Crossover, regarded as the key operation of GA, is also being adapted by almost all 
other promising search approaches [15],[16],[5],[17],[12]. It is considered as the 
potential operation that can build a promising conformation by cutting and joining the 
potential sub-parts of more than one conformation. In some cases, the GA population 
strategy is also being adapted by other approaches. While GA performance is 
generally very effective it can sometimes stall [18] in a hard optimization problem 
[19] like PSP with the protein sequences having length above, say 30 [12]. Thus, like 
other promising approaches, GA too cannot ensure the final generation to contain an 
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optimal solution. Even, effective [18],[20] elitism can become ineffectual for PSP 
problem. This problem is so difficult that unlike other type of problems, a mere 
application of any of the known approaches will not provide improved results. 
Therefore, in this paper, we present the generalization of the schemata theorem by 
incorporating twin removal which is necessary to overcome the limitations of the GA 
and show the impact of this generalization upon GA operation in order to secure more 
accurate and efficient PSP solutions. To achieve this, in the initial stage we revisit the 
idea of identical chromosomes (twins) in the population and relax the concept to 
embrace similar (strongly-correlated) chromosomes. This helps to generalize the 
schemata theorem as well as to find the percentage of similarity within the population 
that can keep in GA optimum search condition.    

2   Twins in GA Population 

The schemata theorem as the basis of a GA, has had its critics as evidenced in [21], 
[22]. The mathematical derivations in relation to the schemata theorem supports that 
the schemata with above average fitness values would most likely be sustained as the 
generations proceed and consequentially the similarity [23], [24], [25],[26],[27] grows 
within the population. This means that although we can set the crossover rate to a 
desired value, in many cases, the operation generates no variation due to the 
similarity. Earlier, it was observed [28] that due to the ‘stochastic error’ associated 
with GA’s genetic operators, the genetic algorithm tends to converge to a single 
solution. This can raise two different issues. First, there are certain applications where 
search interest is not for one but several solutions [29], such as to find Pareto front on 
a problem using multi-objective optimization application. Second, convergence to a 
single solution means the search becomes stagnant which can be due to the population 
losing its diversity. This phenomena is termed as ‘genetic drift’ [29], [30] due to 
which, in hard optimization problem such as PSP, the search space is extremely 
convoluted. It can cause the aforementioned stall effect which could be devastating. 
The searches can get stuck in local minima without exploring much of the vast space.  

The existence of twins and the requirement for their removal in a GA is not new. 
This matter appears as diversity issue in literature as a result of growth of the twins. 
The growth of twins was considered [26] in evaluating the cost of duplicate or 
identical chromosomes which suggested starting each chromosome with different 
patterns to avoid twins. However, if twin growth is inherent in a GA search, then the 
effect of initialization using different patterns will quickly decline after starting. In 
[23], [31], it was advocated that if a population comprised all unique members, tests 
need to be continually applied to ensure that identical chromosomes did not breed. If 
chromosome similarity does not grow, then the GA may not converge because the 
search process becomes random rather than stochastic. While if it does grow, and then 
finding a non-similar chromosome to mate with, clearly becomes rare because of the 
inevitable occurrence of more twins, and the increasingly costly exercise of finding 
dissimilar chromosomes. On the other hand, it was also advocated [28] to allow 
individuals to reproduce if they are very closely similar. But, we have shown [32] that 
crossover between identical chromosome is a mutation operation which can turn a 
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stochastic search approach indirectly into a random search, specially for complex 
problem and therefore the solution of the problem rarely converges [11],[12].  

Aforementioned issues related to twin removal provide motivation for the 
investigations presented in this paper. The need for twin removal was originally 
highlighted in [25] which emphasized that duplicates chromosomes (twins) reduce 
diversity and ultimately lead to poorer performance. The study was confined solely 
however, to the detection and removal of identical chromosomes that were unique to 
each other, with no consideration being given to the removal and impact of similar 
chromosome or strongly correlated chromosomes. To mitigate the limitations caused 
by the stall condition, PSP using a GA has principally been confined to developing 
models based around special operators [33],[34] statistical approaches [5],[33],[35] 
and special treatment techniques such as cooling [11],[12] constraints and 
hybridization [10],[14],[15],[36] with the consequence that resulting GA-based 
solutions are both model and sequence dependent but are never generic. Therefore, 
generic improvement can be coupled for further improvement. 

 
 

(a)                 (b)                  (c)

Fig. 1. (a) Conformation of sequence phhpphhpphh in 2D HP model [37] is shown by solid 
line. Any two hydrophobic residues being topological neighbor (TN) is indicated by dotted 
line. Fitness = -(TN Count) = -4, here. Three different arrows indicating Left (0), Right (1) and 
Forward (2) can be used to for chromosome encoding and it forms 001122110 in this case. (b) 
Pie chart of population having fitness 8, 6, 6, 6, 6, 6, 4 and 1. Legend: Fitness, Fitness % (with 
respect to the sum of the fitness values) (c) An example schema, H ]11[ ∗  at bits 2 to 4, 

contained in chromosomes 3, 4, 5 and 7 of population size zPop  = 7 at generation t.  

A chromosome correlation factor (CCF) defines the degree of similarity existing 
between chromosomes. For similarity measurement between two individuals in the 
genotype as described in [29], we also measure it by counting the number of bits 
along each chromosome that are equal in the two individuals being compared. For 
chromosome presented [32] in the 2D HP (used in this paper) for PSP problem, three 
bit code 0, 1 and 2 are used for presenting three moves (see Fig. 1 (a) description). 

It will be shown that by removing chromosomes having a similarity value greater 
than or equal to CCF during the search process enables the GA to continue seeking 
potential PSP solutions and ultimately provide superior results. The improved PSP 
performance of the algorithm based upon the generalized schemata theorem is 
analyzed upon accepted benchmark PSP sequences [34],[38]. Randomly-selected 
single point crossover and mutation operations are used in this paper as well as in the 
literature [11],[12] for PSP. This is because, as the solution becomes phenotypically 
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compact it can produce more collisions [14],[16], if multi-point crossovers and 
mutations were involved which would leading to increasing collisions that produce 
non-self-avoiding walks within the conformation. 

3   Preliminaries of Schemata Theorem 

While this paper considers only the Simple GA (SGA), without any loss of generality, 
the theoretical framework developed is applicable to all GA variants [39]. Firstly, the 

initial population is generated, where the thi  chromosome iC  is selected based on the 

fitness if  with probability )/( ff i , where f  is the average fitness of the population. 

Parents then produce offspring by crossover at a rate cp  for a population of size 

zPop , with the generated offspring chosen with a selection probability )/( ff i  and a 

mutation rate mp . Usually, a small percentage of elite (high fitness) chromosomes are 

then copied to the next generation to retain potential solutions, with any remaining 
chromosomes unaffected by crossover, mutation or elitism moved to the next 
generation. Assume, an alphabet of cardinality |A| (defined as countb  in this paper) is 

used and hence the cardinality of schema is (|A|+1) including the don’t-care which is 
normally applied to cover the unrestricted locus of the schema. The length of the 
schema )(Hδ  is the distance between the position of the first and last non don’t-care 
characters, which actually indicates the number of possible crossover positions. For a 
chromosome length n , there are )1)1(( −+ nA  possible schema, excluding the 

combination comprising only don’t cares, so a population of zPop  chromosomes 

evaluates up to ))1)1)(((( −+ n
z APop  schema, which provides implicit parallelism within 

the GA search. The order of schema )(Ho  is the number of non don’t-care characters, 
which governs the impact that any mutation has upon the schema. The number of 
occurrences of schema H  in a population zPop  at time t  (which equals the number 

of generations) is given by ),( tHm . Throughout this paper, twins refer to pairs of 

chromosomes which are, with respect to their conformations, either i) identical, so 
CCF = 1, or ii) correlated with CCF ≥ r, where r is the minimum admissible level of 
similarity defined for a population. Also, the term overall similarity is used to indicate 
the average of all CCF values of any chromosome with respect to all the other 
chromosomes in the population.   

4   Limitations of the Schemata Theorem 

In the following sections, limitations of the working principles of GA, i.e., schemata 
theorem [40], has been explored in the context of twin removal. 

Selection: For a chromosome kC  having fitness kf , the probability of kC  being 

selected by roulette wheel selection, is given by (1): 

∑
=

=
zPop

i

ikk ffp
1

 (1) 
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The proportionate selection probability of the first chromosome (see Fig. 1 (b)) 
will be )43/8(1 =p , and similarly )43/6(2 =p , …, )43/1(8 =p . This is fallacious 

however, as from the pie-chart in Fig. 1 (b), it is clear that assuming chromosomes 
having the same fitness are identical, the fitness 6 occupies 68% in total, so the 
probability of a rolling marble randomly selecting a segment having fitness 6 is 

expressed as 43/30
6

2
2

==∑
=i

ieffective pp . The effective selection probabilities for 1C  ( 2C or 

3C or 4C or 5C  or )6C , 7C  and 8C  are thus 43/8 , 43/30 , 43/4  and 43/1  respectively. 

Effectively, any of the fitness 6 occupies 70% of the pie-chart instead of 14%. Now 
consider an arbitrary schema H ]11[ ∗  from bit position 2 to 4 as shown in Fig. 1 (c). 
The number of occurrences of such schema at time t is, ),( tHm = 4. The expected 
number of occurrences at time )1( +t  is )1,( +tHm  which depends on the fitness of the 
chromosomes containing the schema H such as ,3C  4C , 5C  and 7C .  Hence, ),( tHf  

= ( 3f  + 4f + 5f + 7f ) / 4.  The average fitness f  is now defined as: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑

=
z

zPop

i

i Popff
1

 (2) 

So if ),( tHf > f , then the number of occurrences of schema H in the next 

generation is likely to increase by )),(( ftHf . Thus, the expected number of 

occurrences of schema H  at time )1( +t  can be expressed as: 

f

tHf
tHmtHm

),(
),()1,( =+  (3) 

where, ),( tHf  is the average fitness of chromosomes containing schema H . 

Crossover: The schemata theorem computes the probable occurrences of a particular 
schema H  in the next generation, with the proviso that the longer the schema length, 
the greater probability that the H will be disrupted by either a crossover or mutation 
operation. For a chromosome of length n  there are )1( −n  possible crossover 
positions. Therefore the disruption probability is ))1()(( −nHδ  with the 
complementary existence probability being ))1()((1( −− nHδ , so in general the lower 
bound of the existence probability ep  having a crossover probability cp  is:  

⎟
⎠

⎞
⎜
⎝

⎛
−

−≥
1

)(
1

n

H
pp ce

δ  (4) 

The derivation of (4) comes from the fact that if a crossover point lies within the 
region of schema H, then the schema does not remain intact in the offspring, though 
this is not always the case. Section 5, examines all the various possible scenarios: 

Mutation: The mutation operation is able to disrupt any schema.  With a mutation 
probability mp , the bit disruption probability of a bit or character changing is )1( mp− , 

so for the schema H having order )(Ho , the existence probability of H is: 
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)()1( Ho
me pp −=  (5) 

For very small values of mp ,  

))(1( Hopp me −≈  (6) 

Schemata Theorem: The number of occurrences of schema H in (3) can be expressed 
using (4) and (6) as:  

⎟
⎠

⎞
⎜
⎝

⎛ −
−

−=+ )(
1

)(
1

),(
),()1,( Hop

n

H
p

f

tHf
tHmtHm mc

δ
 (7) 

which was the formal mathematical representation of the schemata theorem. But, as 
(4) is incomplete then so also is (7). While it is readily apparent that (7) supports the 
growth of similarity within a population, it fails to reflect certain anomalies within the 
original schemata theorem that can impact significantly upon GA operations, as the 
growth in twins and their potential deleterious effect in complex landscape 
applications such as PSP are considered.  

5   Generalization of the Schemata Theorem  

To analyse the effect of growing similarity in a population, the following sections 
directly address the particular limitations highlighted in this Section by firstly 
generalizing the selection process, resolving the issue of the crossover component 
 

       
(a) (b) (c) (d) 

Fig. 2. (a) Schema H ]11[ ∗  produced in offspring even when both parents do not have that 

schema. (b) The offspring always contain schema H ]11[ ∗  irrespective of the crossover 
position when both the parents have the particular schema. (c) One of the parents contains 
schema H ]11[ ∗  and the crossover positions lies outside the schema region. (d) One of the 

parents contains schema H ]11[ ∗  and the crossover positions is inside the schema region. 
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contributing in equation (7) and then integrating the solutions into a generalized 
schemata theorem framework. 

Selection: The scenario under consideration is that the number of highly fitted 
chromosome will become larger as they are increasingly selected for crossover and 
mutation in each generation. The selection procedure will always favor those similar 
chromosomes that are higher in number in the population, so if kw  is the number of 

such similar chromosomes having fitness kf , it will have a lower bound of unity and 

compared with (1), the effective selection now becomes: 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= ∑

=

zPop

i

ikkk ffwp
1

 (8) 

which is a generalized representation of the original [40] selection procedure with 

kw = 1. This is fully supported by the comparative examples in Fig. 1 (b), where the 

selection process anomaly highlighted in Section 4, mandates an appropriate twin 
removal strategy be implemented in order to ensure that as kw  tend to 1, the core 

schemata theory is upheld. 

Crossover: The crossover operation however, may in certain cases not be disruptive 
[24], which can be interpreted as providing an Accrued Benefit (AB) because the 
schema of interest H is preserved rather than disrupted, which is not reflected by (4). 
Three AB scenarios are identified: 

i) Accrued Benefit1:  Neither Parent Contains a Particular Schema  
Consider the scenario illustrated in Fig. 2(a) of the crossover between two parents that 
do not contain schema H, though H may be expected to be created in the offspring. As 
neither of the parents contain schema H the crossover must occur within the schema 
region to create such an offspring, so the resulting AB can be expressed as in (9). 
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The square parenthesis term is the selection probability of those parents that do not 
contain schema H , with ∑ ),( tHf  being the aggregated fitness values of those 

chromosomes containing H, so the selection probability using (8) of these particular 

chromosomes is ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑ ∑

=

zPop

i

iftHf
1

),( . The second term in parenthesis represents the 

probability of the crossover point existing within region H, where it is intuitively 
reasonable to assume both parents contain some part of schema H close to the 
crossover point, and this is given by probability Δ . To estimate Δ , assume a single 
crossover point divides schema H into 1H  and 2H , that is the schema is actually a 

concatenation of sub-schema so, 

21 HHH •=  and ( ) ( ) ( ) ( ))()2()1( Ho
count

HoHo
count bb −+− ==Δ  (10) 
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since )()()( 21 HoHoHo += . In the example in Fig. 2 (a) where the crossover occurs 
between positions 2 and 3, the schema ]11[ ∗H  is divided into ]1[1H  and ]1[2 ∗H , where 

1)( 1 =Ho  and 1)( 2 =Ho . As }1,0{=A  then, countb = 2 and 11 2.2 −−=Δ = 0.25. An 

important point in (10) is, for a fixed )(Hδ , Δ  directly depends upon chromosomal 
encoding and proportional to countb .  

ii) Accrued Benefit2:  Both the Parents Contain a Particular Schema  
If both the parents contain schema H as shown in Fig. 2 (b), then H will never be lost 
by crossover irrespective of the crossover position. So,  

2

1

2 ),( ⎟
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⎠

⎞
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⎜

⎝
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=
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i

iftHfAB  (11) 

and since the generation continues, this benefit increases due to increments in the 
similarity, which will assist in the growth of twins.  

iii) Accrued Benefit3:  Only One Parent Contains the Schema  
In this case, two options are feasible when one parent contains schema H and the 
other does not.  

(a) Crossover Point is Located Outside the Schema Region 
Since the crossover point does not lie within the schema region (Fig. 2 (c)), then: 
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where the third term in parenthesis indicates the probability that the crossover point is 
not located within the schema length and region. 

(b) Crossover Point Lies Within the Schema Region 
The crossover point now lies within the schema region (Fig. 2(d)) and it is further 
assumed that the crossover point divides the schema H into 1H  and 2H  for single 

crossover position, so H = 1H • 2H  and:  
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where, ( ) ( )( ) { })()( 21 )()(1)( Ho
count

Ho
count bbnH −− ⊕−= δθ  (14) 

where ⊕  is the ‘Exclusive OR’ operation, while θ represents the probability of the 
formation of schema H from parents. The first bracketed term in (14) is actually the 
probability of the crossover point occurring within the schema region, while the 
second term is the probability that part of schema H will come from each parent, so H 
resides exclusively in one of the offspring. The composite AB3 for the case where only 
one parent contains the schema now becomes: 

ba ABABAB 333 +=  (15) 
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Combining the three Accrued Benefit from (9), (11) and (15), the existence probability 

ep  of a schema due to crossover occurring at a rate cp  can be expressed as:   

( )321 ABABABpp ce ++=  (16) 

The Generalized Schemata Theorem: The equations delineated in the previous two 
sections covering chromosome selection and crossover, are now formally embedded 
into a generalized schemata theorem framework. With a crossover 
probability 0.1<cp , those chromosomes unaffected by crossover occur at )1( cp− . So 

the original schemata theorem in (7) can be rewritten using (10) as in (17):   
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Now, (17) is a generalized representation of how the GA functions, such that in the 
case where cp =1.0, 1AB = 0, 2AB = 0, bAB3 = 0 and all chromosome selection 

probabilities are ignored (the first two terms in (17) then it reduces to the classical 
schemata theorem. Interestingly (17) supports the nonlinear fast growth of the 
surviving (also referred to as favorable) schema and with the incorporation of the 
appropriate selection procedure and various crossover scenarios, (17) clearly reveals 
the obvious expansion of twins in the population. The implications of this growth and 
the increasing likelihood of converging prematurely into the stall condition are now 
considered. 

Impact of Generalization: The inexorable growth of identical and also progressively 
more highly-correlated twins as manifest in (17) can lead to the premature 
convergence or stall [18],[41] in the search process, a situation exacerbated by 
crossover creating even more twins and the impact of the mutation becoming 
increasingly ineffectual. These two issues are now respectively considered in the 
context of the new generalized framework. 

(a) Premature Convergence or Stall Condition: The reproduction probability of 
twins (r ≤  CCF ≤ 1) can be expressed using (8) as: 

( )2),( kkk pCCP =  (18) 

So, the number of twins that are going to be in the next generation can be written as: 

( ) czkkk pPopCCPtCCount ),()1,( =+  (19) 

Now consider the case where the number of similar chromosomes becomes close to 

the population so zk Popw ≈  and ∑
=

≈
zPop

i

ikk ffw
1

in (8), so using (18) we get:  

1),( ≈kk CCP  (20) 

which is the stall or premature convergence condition. (19) shows that nearly all 
offspring generated throughout the population will be similar and go forward to the 
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next generation with the result that there will be no variation in subsequent 
generations. It is entirely reasonable therefore to surmise that as the effective 
crossover rate 0≈cp , strategies that facilitate efficient removal of both identical and 

highly correlated twins will improve the GA performance, a premise that is fully 
corroborated in the experimental results Section 6.  

(b) Ineffective Mutation: The growth of correlated twins inevitably weakens the 
impact of mutation, which despite introducing random variations and thereby 
different schemas, will quickly disappear in the midst of the common schema of 
so many correlated chromosomes in the population such that when zk Popw → , 

the chromosome selected for mutation )( mutatedC  is very likely to be similar (high 

CCF value) to the majority of the population. By considering the mutation 
position, if the conformational change differs with respect to kC , then two 

principal scenarios arise: i) After mutation, mutatedC  has a lower fitness ( mutatedf ) 

than average, so it is less likely to be selected, and thus will not be in the next 
generation. ii) After mutation, mutatedC  has a higher fitness than average, but is 

not similar to highly populated chromosomes, and so while kmutated ff > , as 

zk Popw →  the effect due to (8) becomes kkmutated fwf << , so the chances of 

mutatedC  being selected for reproduction in the next generation are lower and it is  

likely the fitter mutatedC  will die away, so leading to an effective mutation rate of 

0≈mp . While one possible approach to overcoming these issues is to use elitism 

[23], [42] to preserve a small proportion (5% to 10%) of elite chromosomes 
through the generations, this can convert the GA into a random rather than 
stochastic search process, with convergence never guaranteed. A better strategy is 
to remove both identical and highly correlated chromosomes to not only improve 
the performance of the GA but also avoid premature convergence.  

6   Simulation and Experimental Results 

Simulations were undertaken with (TR-r) and without (WT) the twin removal strategy 
implemented in the population. For twin removal (TR-r), it is performed after the 
crossover and mutation operations, for a range of CCF settings from r = 1.0 (identical 
chromosomes only) to r = 0.2 (the widest chromosome similarity 0.2 ≤ CCF ≤ 1.0) in 
steps of 0.1 (e.g., TR-60 refers to the removal of all chromosome twins having an 
admissible similarity value of 0.6 (60%) or above). A knock out system was adopted 
based on the superior fitness value in a Correlated Twin Removal (CTR) algorithm 
(see Algorithm I), where the chromosome with the lower fitness was removed. CTR 
uses the minimum admissible correlation value r when comparing chromosome pairs 
for conformational similarity (Line 4), and if twins are identified, the one with the 
lower fitness is removed (Lines 5 to7). After the removal, the gap is filled by 
randomly generated chromosomes, which for simplicity are not crosschecked for 
further twins. The GA parameters [26], [44] for experiments were set as zPop = 200, 

cp = 0.8, mp = 0.05 with elite rate = 0.05. WT (without twin removal) runs where 
same as in  [12] but without cooling and TR-100 is the same approach as in [25]. PSP 
with complex landscape takes longer time to converge. For this reason a maximum of  
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Table 1. Run results of 5 iterations of PSP for HP sequence length 50; maximum generation 
= 6000 and minimum fitness = -21. Sequence: H2(PH)3PH4PH(P3H)2P4H(P3H)2PH4P(HP)3H2, 
[38].  

WT TR-100 TR-90 TR-80 TR-70 TR-60 TR-50 TR-40 
TR-
30 

TR-
20 

-17 -18 -21 (287) -21 (1244) -21 (992) -21 (4671) -20 -20 -17 -17 
-19 -21 (2776) -21 (5209) -21 (2423) -21 (1721) -21 (5568) -20 -19 -17 -16 
-18 -20 -20 -21 (488) -21 (611) -21 (1668) -19 -18 -17 -17 
-18 -18 -21 (1711) -21 (928) -21 (1696) -20 -20 -17 -18 -16 
-19 -20 -20 -21 (345) -21 (295) -20 -20 -19 -18 -17 

 Data format: Maximum |fitness| (Generation number). 

Table 2. Average run results of 5 iterations of PDB sequences after conversion into HP 
sequence; maximum generation = 6000 

PDB ID Length WT TR-100 TR-90 TR-80 TR-70 TR-60 TR-50 

1PJF 46 -22 -24.6 -24.7 -25 -24.5 -24.5 -24 
1AAF 55 -13.5 -13.6 -15 -14.5 -14.4 -14.3 -14 
2PTL 78 -21 -22 -24.6 -24.9 24.8 -24.7 24.4 
1GH1 90 -22.5 -26 -29 -29.7 -29.3 -28.5 -28 
2GG1 102 -28.4 -31.8 -35 35.5 -34.3 -34.3 -34 
2CQO 119 -37.5 -41 -44 -44.5 -44 -44 -40 

      Source: PDB sequences [43].  

6000 generations was allocated for these particular series of experiments. PSP 
sequences [34], [38] shown in Table 1 and Table 2 for the 2D HP model [37]. Unlike 
Table 2, in Table 1, if during the iterations this optimal value was not reached, the 
maximum value achieved within generations is displayed. Fig. 3 shows the 
Generation vs. Overall similarity plot. In Fig. 3, it is shown that for the WT run, the 
overall similarity reached ≈80% very rapidly (around the 50th generation) from an  
 

Algorithm-I: Correlated Twin Removal (CTR)  
Input: Population size= zPop , Chromosome (C) 
length = n , Minimum admissible correlation = r, 
where, rCCF ≥  
Output: Population without twins of size zPop≤  
Assumption: RetSimilarity (i, j) returns % of 
similarity between C(i) and C(j), where .ji ≠  
1 FOR i = 1 to )1( −zPop DO  
2  { IF  C(i).MarkDeleted = False THEN 
3    FOR j = i+1 to zPop  DO  
4     { IF RetSimilarity(i, j) ≥  r%  THEN 
5      { IF ).FitnessC().FitnessC( ji < THEN        
6             {Swap (C(i), C(j)) } 
7              C(j).MarkDeleted = True } }} 
8            }} 

 

Fig. 1. Generation vs. Overall Similarity 
(%) plot for PSP of length 50 
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initial value of ≈35%, before stabilizing at ≈90% similarity after the 150th generation. 
This clearly supports (17) in that without any twin removal policy, the overall 
population quickly becomes strongly correlated and diversity is lost. The rapid 
nonlinear growth up to the 50th generation is also supported by AB1 and AB2 in (9) and 
(11) respectively, with AB2 being the dominant component in the overall similarity, 
because each crossover is more successful in generating twins similar to their parents 
regardless of the crossover position, and also the biased selection procedure identified 
in (8) is embedded in AB2. In the 5 separate iterations (Table 1) WT never reached the 
putative ground value and its maximum fitness stalled, generally before the 250th run, 
though the simulation ran for the entire 6000 generations. This is a direct consequence 
of twins with a higher fitness appearing in the population, thereby slowing the 
convergence over time as the population becomes less diverse. The overall 
dissimilarity or diversity in the chromosomes remained around 10%, which was 
insufficient to maintain a search capability, and so it became trapped due to premature 
convergence. It must be emphasized that with such a high number of generations the 
effect of mutation is negligible even if elitism is applied, as highlighted in Section 5. 
The elite population is clearly not deriving any benefit from the mutation operation. It 
is also clear that TR-80 displays the best performance for correlated twins as the 
population maintains the most favorable balance between the overall similarity 
(chromosome correlation) so keeping the search stochastic to aid convergence, and 
upholding diversity by supporting the growth of dissimilar, but competent 
chromosomes. The generalized selection procedure delineated in Section 5 supports 
these newly created chromosomes as well as existing correlated chromosomes by 
ensuring the entire selection procedure is less biased.   

7   Conclusion 

The ease of Genetic Algorithm (GA) implementations has made them a popular 
solution for many optimization problems, with the expectation that they can be 
effectively and accurately applied to even complex optimization problems such ab 
initio protein structure prediction (PSP). This neglects however, the crucial role of the 
growth of similarity and chromosome twins has upon the population, which can lead 
to premature convergence. The twin problem can impair its performance ultimately 
leading to premature convergence or the stall condition. We have highlighted the 
fallacies within the selection procedure and shown the ‘accrued benefit’ from the 
crossover operation. A generalized schemata theorem has been proposed which 
highlights the need of twin removal and generalization of the schemata theorem for 
consistent GA performance. The definition of twins has been relaxed to not only 
embrace duplicate chromosomes, but also to take cognizance of strongly-correlated 
chromosomes. It has been observed [27], that while even in relatively simple 
landscapes, failure to remove twins can lead a GA frequently getting trapped in earlier 
generations. This problem has been overcome within the generalized framework 
presented in this paper, with chromosome correlation factor (CCF) setting to 0.8, 
affording the best performance. 
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